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Abstract

This paper presents a new approach to free-form object modeling from multiple range
images. In most conventional approaches, successive views are registered sequentially. In
contrast to the sequential approaches, we propose an integral approach which reconstructs
statistically optimal object models by simultaneously aggregating all data from multiple
views into a weighted least-squares (WLS) formulation. The integral approach has two com-
ponents. First, a global resampling algorithm constructs partial representations of the object
from individual views so that correspondence can be established among different views.
The global resampling algorithm is based on the spherical attribute image (SAI) previously
introduced in the context of object representation and recognition. Second, a weighted least
square algorithm integrates resampled partial representations of multiple views, using the
technique of principal component analysis with missing data (PCAMD). Experiments using
synthetic data and real range images show that our approach is robust against noise and mis-
match. In addition, the results show that our integral approach is insensitive to the order in

which views are incorporated in the model.
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1 Introduction

Observation-based modeling automatically constructs solid models from real objects
using computer vision techniques, as an alternative to building them manually. Applica-
tions of observation-based modeling include, among others, creating models for anima-
tion, reconstructing human body parts for surgical planning, recovering machine parts for

virtual factory simulation, building CAD models for model-based recognition.

Usually Observation-based modeling systems work with a sequence of images of the
object(s), where the sequence spans a smoothly varying change in the positions of the sen-
sor and/or object(s). The task of observation-based modeling is essentially the problem of
merging multiple views using an appropriate representation. Many previous observation-
based modeling techniques involve motion estimation between successive pairs of views
in a sequential manner [13][17][22] as shown in Figure 1(a). Whenever a new view is
introduced, it is matched with the previous view. The transformation between these two
successive views is estimated before the object model is updated. This sequential method
usually does not work well in practice because of errors in local motion estimation due to
noise and missing data. These errors accumulate and are propagated along the sequence,

yielding erroneous object models.

In this paper, we present a new technique for observation-based modeling of free-form
objects. This technique, called integral approach, is illustrated in Figure 1(b). Rather than
sequentially integrating successive pairs of views, we propose to reconstruct a statistically
optimal object model that is simultaneously most consistent with all the views. Our
method makes use of significant redundancy existing among all the views, i.e., it is likely
that any part of the object will be observed a number of times along the sequence of
images although each single view provides only partial information. The key idea of inte-
gral object modeling is to enable a system to integrate a complete object model in terms of

observable features.
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Figure 1 Observation-based model systems: (a) sequential modeling; (b) integral modeling

In previous work, we have applied the integral approach to polyhedral object modeling,
where polyhedral object models and view transformations are recovered simultaneously by
employing the principal component analysis with missing data (PCAMD) algorithm [20].
Unlike planar patches in polyhedral object modeling [20], however, correspondence of
range images of curved surfaces is a difficult problem. Due to discrete sampling, data points
in two different views generally do not correspond with each other. On the other hand,
salient features such as high curvature points do correspond with each other but can not be

extracted reliably from noisy range data.

We propose to determine correspondence by resampling each view of the free-form object.
In particular, this resampling process combines top-down topological knowledge (a spheri-
cal surface representation) with bottom-up geometrical properties (approximated local cur-

vature). For each range image, we first build a discrete mesh that approximates the object's



3

surface, and encodes the local curvature at each node. The local curvature at each node is
integrated from its neighborhood. During the process of mesh approximation, local connec-
tivity among different nodes is always preserved, i.e., each mesh node has exactly three
neighbors. Mesh matching is based on the local curvature distribution at each mesh node.
Global resampling is applied on the spherical mesh coordinate system to establish one-to-

one correspondence among mesh nodes from multiple views.

1.1 Organization of the Paper

The remainder of this paper is organized as follows. After reviewing previous work on mod-
eling from multiple range images in Section 2, we introduce our integral approach to object
modeling in Section 3. We show that the integral modeling can be viewed as a solution to a
combination of two subproblems: what to integrate and how to integrate. In Section 4 we
address the problem of “what to integrate” by presenting a novel global resampling scheme
which can be used to determine correspondence among different views. Each range image is
resampled using a global spherical representation. Correspondence is established by match-
ing the local curvature distribution in different views. In Section 5 we show “how to inte-
grate” by solving a two-step weighted least-squares problem from the measurement matrix
which is formed by resampling the whole sequence of range images. We demonstrate the
robustness of our proposed PCAMD method by applying it to synthetic data and real range
images. Experimental results using synthetic data of a free-form object indicate that our
approach is robust with respect to noise and surface mismatching. From sequences of real
range images, free-form object models are accurately reconstructed using our new approach.

We close with a discussion of future work along with a summary.



2 Previous Work

A significant amount of work has been done in object modeling from a sequence of range
images. Bhanu [4] modeled object by rotating it through known angles. Ahuja and Veenstra
[1] constructed an octree object model from orthogonal views. By finding the correspon-
dences from intensity patterns in all eight views, Vemuri and Aggarwal [24] derived the
motion and transformed all eight range images with respect to the first frame. Most work
assumed that the transformation between successive views is either known or can be recov-

ered, so that all data can be transformed with respect to a fixed coordinate system.

To accurately recover the transformation between two views, different range image registra-
tion techniques using various features have been proposed. Ferrie and Levine [12] used cor-
respondence points which were identified by correlation over the differential properties of
the surface. Wada et al. [25] employed facets of an approximated convex hull of range
images. Parvin and Medioni [17] proposed the construction of boundary representation (B-
rep) models using segmented surface patches. The difficulty of feature-based registration is

in realizing robustness, especially in the case of free-form objects.

Many algorithms also exist for featureless range data point matching. Besl and Kay [3] used
the iterative point matching (ICP) method to project points from one surface to another dur-
ing matching. A similar approach was proposed by Chen and Medioni [6]. Zhang [28]
improved Besl and Kay’s ICP algorithm by using robust statistics and eliminating the
requirement that one surface be a strict subset of the other. Champleboux et al. [5] used the
Levenberg-Marquart nonlinear minimization algorithm to minimize the sampled distance to

surface using octree-splines.

These featureless registration algorithms are locally optimal; they work well for free-form
objects only if a good initial transformation is given. Higuchi, Hebert and Ikeuchi [13] pro-

posed a registration method which eliminates problems for both feature-based and feature-
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less methods. Their method builds discrete spherical meshes representing the surfaces
observed in each range image, and computes local curvature at each mesh node. The local
curvature information is extracted reliably because of the use of local regularity where each
mesh node has exactly three neighbors. Registration of different images is then achieved by

comparing local curvature distribution of spherical meshes.

After transforming all range images to a world coordinate system using the registration
result, an object model is usually obtained by running a connectivity algorithm (such as the
Delaunay triangulation [10]) at the last step. Hoppe et al. [14] used graph traversal methods.
Connectivity can also be modified and determined as more views are incorporated. Parvin
and Medioni [17] used an adjacency graph to represent the connectivity of each segmented
view. In their adjacency graph, nodes represent surface patches with attributes, and arcs rep-
resent adjacency between surfaces. Soucy and Laurendeau [21] made use of the structured
information about where the images are taken; they proposed to triangulate each view and
merge multiple views via a Venn diagram when the transformation is known. The common
parts of different views are then re-sampled. However, constructing such a Venn diagram is
combinatorial in nature (only four-view merging is presented in their work). Turk and
Levoy [22] proposed a similar approach but avoided the problem of Venn diagram construc-

tion by merging only two adjacent views at each step.

Most of the previous approaches to modeling from a sequence of views are sequential. To
merge any two views, a rigid transformation has to be computed accurately. Thus, transfor-
mation errors accumulate and propagate from one matching to another, which may result in
noticeably imprecise object models. To make use of the redundancy among multiple views,
Shum, Ikeuchi and Reddy [20] showed that multiple view merging can be formulated as a
weighted least-squares problem and applied a PCAMD algorithm to polyhedral object mod-

eling.



3 An Integral Approach to Object modeling

There exist several problems for observation-based object modeling. Data acquisition and
image registration introduce significant errors. Range images have missing data points due
to occlusion and self-occlusion [2]. Several important issues related to the realization of a
practical observation-based modeling system have not been resolved satisfactorily. These

issues include:

*  What kind of representation should be used to model the object?
* How can a sequence of images be integrated?
« Can model reconstruction be made statistically optimal?

* How can objects be sampled sufficiently and unambiguously?
To solve two of the essential problems associated with observation-based object modeling,
what to integrate and how to integrate, we propose a new approach termed integral object
modeling. The key idea of integral object modeling is to enable a system to resample a
sequence of images of an object in terms of observable features, and then integrate them
using principal component analysis with missing data (PCAMD). Integral object modeling
works by integrating the partial observation provided by each view to yield a complete
object model. Although object modeling from a sequence of images is nonlinear and possi-
bly ill-conditioned, the integral approach makes use of redundant data so that statistically

optimal reconstruction is feasible.

3.1 What to Integrate?

To integrate multiple views in a statistically optimal fashion, we first need to determine what
is to be integrated from a sequence of range data. In our previous work on polyhedral object
modeling [20], we can successfully make use of the redundancy in multiple views because
planar surface patches can be tracked over the sequence. Ideally, for free-form object model-
ing, we would like to register each data point from one view to another. However, the phys-

ical correspondences between data points in two different views are usually not known a
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priori. As a result, we have to search for some salient features which do have correspon-

dence among different views.
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Figure 2 The problem of resampling (black dots and grey squares are measurements in the sensor
coordinates obtained from range sensor readings in different views).

To appreciate the difficulties in free-form object modeling, we examine, in Figure 2, a sim-
ple example of a free-form curve observed from multiple views. Two major problems exist
due to discrete and noisy sampling in practice: lack of physical correspondence among sam-
pling points in different views, and lack of global sampling for all sampling points. For
example, the measurements of view 1, myy, ..., myg do not necessarily correspond to other
measurements in other views. In addition, ordering information is unknown among all sam-
pling points because of the non-existence of global sampling. In other words, we have to
somehow figure out the proper linkage between the points in different views (e.g., my3, myy,
My, My3, Myy, ...) in order to recover an accurate model for the curve. The situation in the
three dimensional world is even more complicated because the result of transforming all
range data from multiple views into a single coordinate system is a “cloud” of noisy 3D

points. It is difficult to make a surface model from this cloud of noisy 3D points.
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Because curvature is invariant under Euclidean group transformations, we would have phys-
ical correspondence among distinguished high curvature points in different views. In prac-
tice, however, from a particular viewing direction we usually obtain only a finite number of
sampling points of a surface. These points are measured in the sensor coordinate system.
The normals, or the tangent planes, as well as the curvatures, are not explicitly or directly
known. Although surface normals can be approximated by fitting local planar surface
patches of points, the process of computing curvature at each point using range data is

known to be highly noise sensitive and may be numerically unstable.

To address the problem of what to integrate from multiple range images of known topology
object, we propose a global resampling scheme in Section 4. Our global method resamples
the object by combining top-down knowledge of topological information (spherical repre-
sentation) and bottom-up geometrical information (range data and local curvature) at each
view. The details of our global resampling method, including spherical surface representa-

tion, deformable mesh generation and one-to-one mesh node correspondence, are described

in Section 4.

3.2 How to Integrate?

Our task is to model a free-form object from a sequence of range images. Suppose that the
model consisting of 20 nodes is observed from 4 views (Figure 3). If the correspondence
among 20 mesh nodes of the object over 4 views is obtained using global resampling, we
may form a 16 X 20 measurement matrix

RGO RO N o
P, P, p; pMD p{P PP F

@ p™ p® p® ... * p@ p@ .. =
W = Pi™ P27 P3™ Py 15 1(2) EQ 1)
P pd * * p) *F P e *

* * % * 0k pl(gt) pl(gl) ...p(4)_
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(f)=((f) 0w 0

where p X, 3 Yy 22, l)T, =1....4, p=1,...,20 represents homogeneous coordi-

p
nates of vertex p at frame f, and every * indicates an unobservable point. The task now is to

recover the positions of all 20 points in a fixed coordinate system.

Figure 3 Distinct views of a free-form object with 20 mesh nodes and known connectivity

If the measurement matrix were complete, our task would be to average all those 20 points
over 4 views, assuming that the input data is noisy. The standard way to solve this problem
is to apply the singular value decomposition SVD to the matrix W, whose rank is at most 4.
The measurement matrix can subsequently be factorized, with proper normalization, into a

left matrix Q of transformation parameters and a right matrix P of plane coordinates

W = QP, where
F ]
Q( )
(2)
P = [P1 Py - pzo]’Q =12 | EQ2)
3)
Qo
4
0"
o . is the transformation of fth view with respect to the fixed world coordinate system, and

P, is the pth vertex in the same world coordinate system.
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Unfortunately, in practice the measurement matrix is often incomplete; it is not unusual for a
large portion of the matrix to be unobservable. When the percentage of missing data is very
small, it is possible to replace the missing elements by the mean or by an extreme value; this
is a useful strategy in multivariate statistics [9]. However, such an approach is no longer

valid when a significant portion of the measurement matrix is unknown.

In the sequential modeling from multiple range images, we have to first recover the transfor-
mation between view [ and view 2 if there are at least three matched points that are non-pla-
nar [11]. Then using the recovered transformation, we obtain the invisible points (mesh
nodes) in view I from its corresponding points in view 2 which are visible. This process is
repeated for the whole sequence. The major problem with the sequential method is that once
an error in the estimated transformation occurs at any step, the resulting erroneous results
will accumulate and propagate all the way along. To obviate this problem, Shum, Ikeuchi
and Reddy [20] proposed the PCAMD approach making use of more rigorous mathematical
tools developed in computational statistics. These tools cater for missing data without
resorting to error sensitive extrapolation. A closed related work was proposed by Poelman
and Kanade [18] in shape from motion where they assigned a confidence factor to each mea-
surement to handle occlusion. In Section 5 we will review the PCAMD approach and apply

it to free-form object modeling from multiple view merging.
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4 What to Integrate: Global Resampling

In this section, we describe the concept of global resampling of a free-form object. For each
range image, we first build a discrete mesh that approximates the object's surface, and
encodes the local curvature. Mesh matching is based on the local curvature distribution at
each mesh node. Using the spherical mesh coordinate system, global resampling is used to

establish one-to-one correspondence among mesh nodes from multiple views.

The concept of global resampling is based on previous work on spherical surface representa-
tion and matching for object recognition [8]. We describe only the basic approach of the
spherical surface representation and the main result of curvature-based matching, and refer

the reader to [8] for a detailed description of the algorithms.

4.1 Surface Representation Using Deformable Mesh

Many deformable models, such as irregular meshes [23], finite element models [16] and bal-
loon models [7] have been proposed for 3D shape reconstruction. Our basic surface repre-
sentation is a discrete connected mesh that is homeomorphic to a sphere. The free-form
objects are restricted to a topology of genus zero (i.e., no holes) in this paper. A distinctive
feature of our surface representation is its global structure, i.e., the connectivity of the mesh
is such that each node has exactly three neighbors. The total number of mesh nodes depends

on the resolution of the mesh.

Different attributes may be associated with each node of the mesh. The most prominent
attribute for the purpose of building models is the curvature. More precisely, an approxima-
tion of curvature, called the simplex angle [8], is computed at each node from its position

and the positions of its three neighbors. We denote by g(P) the simplex angle at node P.

Given a set of data points from a range image, the mesh representation is constructed by first

placing a spherical or ellipsoidal mesh at the approximate center of the object, then itera-
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tively deforming the shape of the mesh in response to “forces” generated by the data points

and the image features, as well as internal smoothness constraints.

An example of reconstruction of a surface model from a partial view is shown in Figure 4.
The mesh is always a closed surface. However, since only part of the object's surface is vis-
ible from a given viewpoint, some of the mesh nodes do not correspond to visible surface
data. These nodes, corresponding to occluded part of the object, are flagged as interpolated
nodes so that they can be treated differently when used. Figure 5 shows the same deform-

able surface with and without interpolated portion.

4.2 Mesh Matching

In order to compare two meshes, we need to find the correspondence between the two sets of
mesh nodes. In general, such a correspondence may not exist because the distributions of
nodes on the two surfaces may be completely different. To obviate this problem, we intro-
duce a regularity constraint on the distribution of the nodes on the surface. This constraint
can be evaluated locally at each node which has exactly three neighbors and is incorporated
in an iterative fitting algorithm as an additional force. When this constraint is enforced,
meshes representing the same surface viewed from different viewpoints have the property
that their nodes do correspond. Higher resolutions of semi-tessellated sphere [8] can be used

to ensure the existence of mesh correspondence.

Given meshes from two different views, the matching proceeds by comparing the values of
the curvature at the nodes of the two meshes. Specifically, if {P;} and { Qj} are the nodes of
the two meshes defined in the sensor coordinates, the matching problem can be defined as
finding the set of correspondences C = {(P; Q;)} such that the value of the curvature at any
node P; is as close as possible to the value of the corresponding node Q; in the other mesh.

Specifically, C is the correspondence that minimizes the “distances” between two meshes:
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Figure 4 Deformable surface reconstruction at different iteration steps (dots are range data, solid lines
are mesh models) (a) n=0 (start of deformation); (b) n=20; (c) n=50; (d) n=100 (end of
deformation).
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Figure 5 Deformable surface. (a) with interpolated part; (b) without interpolated part
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D(5,8) =3 (s(P) -2(2))° EQ3)
C

where g(P) is the simplex angle at a mesh node P. Since the local curvature is independent
of the translation, we can search for the best match C only in the rotation space. The connec-

tivity among all mesh nodes can further simplify the mesh matching [13].

Once the best set of correspondences C is obtained, we compute an estimate of the transfor-

mation (R, T) between the two views by minimizing the distance:

> |pi- (RQ;+ T (EQ4)
C

The resulting transformation (R, T) is only an initial estimate because the nodes P; and Qj do
not correspond exactly due to the resolution of the mesh. In object recognition, mesh dis-
creteness is not a problem because object recognition is based only on the goodness of fit
between the model and the scene data. In object modelling, however, the estimate is accu-
rate enough to be used as a starting point for the ICP algorithms [3][28], for example. We
will show in Section 5 how the estimate of (R, 7) and the node correspondence set C are

used as input to the PCAMD algorithm to integrate multiple views.

4.3 One-to-one Correspondence

In order to apply the PCAMD to take advantage of redundancy of multiple views, we need
one-to-one mapping among different views. The matching procedure above, however, does
not guarantee one-to-one correspondence between two sets of mesh nodes generated from

two views because of the discrete sampling and the requirement of local regularity.

We establish the one-to-one correspondence by resampling each deformable surface using
the global spherical coordinate. Once a set of spherical mesh nodes (along with its local cur-
vature attributes) is obtained, it is possible to interpolate any point on the spherical coordi-

nate from this set. For example, in Figure 6, although there exist many-to-one mappings
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between P and Q (both P, and P, are matched to Q;), mapping between P’ and P is one-to-
one because P’ results from the rotation of P. The new mesh node at P’; and its SAI value
can be interpolated from its nearest point O; on set Q and three neighbors of Q;. Let g(P’)
and g(Q;) be the values of the simplex angles at node P’ and its nearest node Q;, respec-

tively. We have the following local interpolation:

4
g(P) = Y w0 (EQ5)

i=1
where Q,, @3, and Qy are three neighbors of Q;, and w; are the weights depending on the
distance between P’ and Q; (i=1,2,3,4). The coordinates of the mesh node at P’ can be inter-
polated in the same way. Because of the one-to-one mapping between any two views, one-
to-one mapping among multiple views can be established. When the measurement matrix is
ready, we can apply the PCAMD algorithm to compute the complete set of mesh nodes and
transformations among different views. The object model is then obtained based on the

known connectivity among all mesh nodes.

(a)

node number

=

1 2 3 4 === K

(b) Py Py | Py | Py | -==-| Py
P’l P,Z P’3 P’4 === P,K

o, [ 0, Q4| -——- Ok

Figure 6 : One-to-one matching: (a) Valid correspondence between nodes; (b) Table of correspondences
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S How to Integrate: Principal Component Analysis with
Missing Data

The problem of object modeling from a sequence of views shown in Section 3 can be for-
mulated as a problem of principal component analysis with missing data (PCAMD), which
has been extensively studied in computational statistics [19][27]. Shum, Tkeuchi and Reddy
[20] modified Wiberg’s formulation of principal component analysis with missing data, and
generalized the problem as a weighted least square (WLS) problem. We briefly describe the
PCAMD algorithm proposed in [20] before applying it to our modeling problem.

Suppose that an F X P measurement matrix W consists of P individuals from an F-variate
normal distribution with mean [I and covariance X. Let the rank of W be r. If the data is
complete and the measurement matrix filled, the problem of principal component analysis is
to determine U , S ,and V such that "W— ep’ — US ‘77" is minimized, where U , and V are
Fxr and P X r matrices with orthogonal columns, S = diag (0,) is an rxr diagonal
matrix, | is the maximum likelihood approximation of the mean vector and
el = (1, ..., 1) 1s an F-tuple vector with all ones. The solution to this problem is essen-

tially the SVD of the centered (or registered) data matrix W—eu 7.

If the data is incomplete, we have the following minimization problem:

. 1
min ¢ = 5; (W, =1, = ufvp') 2 (EQ 6)
I={(,p): Wf’p is observed}

where u , and v, are column vector notations defined by

- Us°, | =vs (EQ7)
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To sufficiently determine the problem (EQ 6) more constraints are needed to normalize

either the left matrix U or the right matrix V.

By rearranging the measurement matrix W as an m-dimensional vector, where m is the num-
ber of observable elements in the measurement matrix, Ruhe [19] proposed a minimization
method to analyze a one-component model when observations are missing. The one-compo-
nent model decomposes an F X P measurement matrix into an F X 1 left matrix anda 1 x P
right matrix. Ruhe observed that the nonlinear minimization problem can be simplified as a
bilinear problem and proposed an NIPALS algorithm to solve it [19]. Wiberg [27] extended
Ruhe’s method to the more general case of arbitrary component model. The modified

Wiberg’s formulation has been proposed to achieve more efficient computation [20].

So far we have assumed that all weights are either one when data is observable or zero when
unobservable. However, in many cases we may prefer to assign weights other than ones or
zeros to individual measurement. Different sensor models can be applied to obtain a weight-
ing matrix if necessary. The minimization problem (EQ 6) can be generalized as a WLS

problem

. 1
min & = 53 (Y, (W ,—,—ulv,))?, (EQ8)
fLp
where Y » is a weighting factor for each measurement Wf o

Based on the modified Wiberg’s formulation, principal component analysis with missing
data has been formulated as a WLS problem by introducing two FP X FP diagonal weight

matrices. An efficient iterative algorithm has been devised in [20].

5.1 Two-step WLS Problem

We now apply the PCAMD algorithm to solve the following modeling problem. Suppose

that we have tracked P mesh nodes over F frames. In case of global resampling, the num-

ber of mesh nodes is known and fixed. We then have trajectories of point coordinates vlff)
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)]

for f=1,...,F, and p=1,...,P, where v, is the pth point in the fth frame. Instead of forming

a 4F x P measurement matrix as in Section 3, we assemble registered measurement matri-

(

ces W and W from the original measurement 3F X P matrix W formed from trajecto-

ries of v i in the same way as in (EQ 1). After removing the translation component, we get

W(v) = W—iM (EQ9)
where M is a row vector of all ones, and ¢ is a column vector consisting of translation vec-

tor of each view with respect to the world coordinate system, i.e.,

— "

T
[tlx 1y tlz:l
M= [[1 1 1:| [1 1 1]] r = . (EQ 10)

T
[tpx Toy tpz:l |

After removing the rotation component, we have

W@ = W-RV (EQ 11)
where R is the rotation matrix of each view with respect to the world coordinate system, and

V is the point matrix in the world coordinate system, i.e.,

R (N
velv v ER=| | (EQ 12)
R (F)
Initially R and ¢ can be obtained from SAI matching of deformable mesh nodes.

It can be easily shown that W has at most rank 3 and W'® has rank 1 when noise-free;

therefore, W and W are highly rank-deficient. We decompose w® into

WO = RV. (EQ 13)

()

Similarly, we can decompose W into
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wWd =M. (EQ 14)
When all elements in the two measurement matrices are known, we need to solve two least-
squares problems. However, since only part of the object is visible in each view, we end up

with two WLS problems instead. The first least squares problem, labeled as WLS-R, is

min Y, (Y, (WE —[RV], ))? (EQ15)
f=1..,Fp=1..P

and the second one, denoted as WLS-t, is

min Y (Y p (W) — (M1, ) 2 (EQ 16)

where Yep = 0 if the point p is invisible in frame f, and Yp = 1 otherwise. All weights

can be between zero and one, depending on the confidence of each measurement.

5.2 Iterative Algorithm

We have devised a two-step algorithm which solves the WLS-R and subsequently the WLS-
t by applying the PCAMD algorithm to both problems. The WLS-R problem has been
decomposed into F minimization problems and solved by employing the quaternion repre-

sentation of rotation in the same way as in [20]. The two-step algorithm is as follows:
Algorithm two-step WLS’s
Step O Initialization

(0.1) read in measurement matrices W

(0.2) read in weight matrices 'y

Step1 WLS-R

(1.1) register W (V) from W and t
(1.2) apply PCAMD to update R and V
(1.3) go to (1.2) if not converged, otherwise advance to Step 2
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Step2 WLS-t

2.1) register W (D from W, R and V
(2.2) apply PCAMD to update the translation t
(2.3) stop if converged, otherwise go to step 1.

We have not explicitly discussed the normalization problem in our WLS approach. The nor-
malization problem occurs because the measurement matrix is rank-deficient, and as such,
there are infinite solutions to the minimization problem (EQ 6) unless an additional con-
straint is imposed. We have used the first coordinate as the world coordinate system in our

implementation, i.e., the first rotation matrix is identity and the first translation is zero.
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6 Experiments

In this section, we present results of applying our algorithm to synthetic data and to real
range image sequence of objects. We demonstrate the robustness of our approach using syn-

thetic data, and present the reconstructed models from real range images.

6.1 Synthetic Data

Our synthetic data set consists of a set of 20 points whose connectivity is assumed to be
known as shown in Figure 3 in Section 3. The object size is approximately the same as a unit
sphere. We study the effectiveness of our approach when the input data is corrupted by noise
and mismatching occurs. Correspondence is assumed to be known. The minimization of
weighted squares distance between reconstructed and given measurement matrices leads to

the recovery of vertex coordinates and transformations.

To study the error sensitivity on reconstruction using our algorithm, four nonsingular views
of the object are taken where each measurement is corrupted by a Gaussian noise of zero-
mean and variable standard deviation. Figure 7 shows that our algorithm converges in a few
steps. Two separate steps in Figure 7 are counted as one iteration in our algorithm. The cases

with standard deviations ¢ of 0.0, 0.1, and 0.2 are studied.

If a point appears only once in the whole sequence, then its reconstruction depends on the
amount of noise. When this point appears in more views, its reconstruction using our inte-
gral method is averaged over all the views. Figure 8 gives the reconstructed errors of a point
which appeared 12 times in 16 views. When only two views are matched, the reconstructed
point is deviated from its original position by 0.58 and 0.69 when standard deviation G is
0.1 and 0.2, respectively. When 12 views are matched, the error decreases to 0.19 and 0.27

respectively.

When the observed points are corrupted by noise, the sequential method results in erroneous

recovered shape and transformation. The errors propagate as new views are introduced and
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vary with different matching orders. However, our integral approach gives appreciably
smaller reconstruction error by distributing the errors in all views, regardless the order of
matching. In Figure 9, we use a different starting view in a sequence of 12 images for differ-

ent matching order.

6.2 Real Range Image Sequence

We have applied our integral approach to real range images. All range images used in our
experiments were taken using a light-stripe range finder which has a resolution of 0.2mm.
The objects were placed on a rotary table about 1 meter in front of the range finder. To
obtain the ground truth of the transformation, rotation axis and rotation center of the rotary

table are calibrated using a known geometry calibration cube.

Figure 10 shows nine views of a sequence of a free-form object, a peach. Figure 11 shows
the result of our system, two wireframe and two shaded views of a recovered object model.
The peach model does not depend on a priori motion estimation, nor on the ordering of
matching. The same object model peach has also been reconstructed in [13] where only 3
views are combined after transformation is recovered. Figure 12 shows the comparison
between the reconstructed models both with and without applying the PCAMD. The recon-
structed models are shown at a particular viewing direction where the last view of the
sequence appears. The model with the PCAMD gets better averaging and has a smaller mar-
gin of error. To demonstrate the improvement resulting from the application of the PCAMD,
cross-section segments of reconstructed models and range data (merged from multiple

views using known transformation) are shown in Figure 13.
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Figure 10 A sequence of images of a free-form object (peach)

24

2
i A o £

iy

(a)

i

(b)

Figure 11 Two views of a reconstructed peach model: (a) wireframe display; (b) shaded display
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Figure 12 Comparison between sequential reconstruction and WLS method: (a) sequential method
using 8 views; (b) sequential method using 10 views; (¢) WLS method using 10 views
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Figure 13 Comparison using cross-section display of model (solid line) and range data (dots)
(a) sequential method; (b) PCAMD after 5 steps; (c) PCAMD after 10 steps (arrows show the
places where the improvement is significant)

Another set of experiments is conducted to reconstruct a more complex object, a toy sharpei
dog. Figure 14 shows the sequence of images. Figure 15 shows deformable surfaces of four
different views. The occluded part of object is interpolated in the deformable surface mesh
of each view. The reconstructed object models in different resolutions are shown in Figure
16. To compare the result of the PCAMD with that of the sequential method, we show the
cross-section contours of reconstructed models in Figure 17, and error at each mesh node in

Figure 18. We compare reconstructed models with the merged range data (using known
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transformation) in Figure 17. It can be observed that the integral method (Figure 17b) pro-
vides much better results than the conventional sequential method (Figure 17a), yet not as
perfect as those with known transformation (Figure 17c) due to the least-squares nature of
the PCAMD algorithm. In Figure 18, the mean error and maximum error for integral

method are 2.7 and 9.2 as opposed to 3.7 and 16.8 for sequential method.

Figure 14 A sequence of images of a free-form object (Sharpei)










