
Control Transfer in Operating System Kernels

Richard P. Draves

May 13,1994

CMU-CS-94-142

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Thesis Committee:
Rick Rashid, Chair

Brian Bershad
Eric Cooper

Alan Demers, Xerox PARC

Copyright © 1994 Richard P. Draves, Jr.

This research was sponsored in part by the Defense Advanced Research Projects Agency, Information
Science and Technology Office, under the title “Research on Parallel Computing,” ARPA Order No. 7330,
issued by DARPA/CMO under Contract MDA972-90-C-0035. Support was also provided by a Fannie and
John Hertz Foundation Fellowship and by Microsoft Corporation.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the Fannie and John Hertz Foundation,
Microsoft Corporation, or the U.S. Government.

Keywords: operating system, kernel, control transfer, execution model, Mach, continuation

Abstract

Control transfer is the fundamental activity in an operating system kernel. The resource

management functionality and application programmer interfaces of an operating system may be

delegated to other system components, but the kernel must manage control transfer. The current

trend towards increased modularity in operating systems only increases the importance of control

transfer.

My thesis is that a programming language abstraction, continuations, can be adapted for use in

operating system kernels to achieve increased flexibility and performance for control transfer. The

flexibility that continuations provide allows the kernel designer when necessary to choose

implementation performance over convenience, without affecting the design of the rest of the

kernel. The continuation abstraction generalizes existing operating system control transfer

optimizations.

This dissertation also makes two practical contributions, an interface for machine-independent

control transfer management inside the kernel and a recipe for converting an existing operating

system kernel to use continuations. The control transfer interface exposes enough functionality to

let continuation-using code be machine-independent without sacrificing performance. It provides

more functionality than the current state of the art, while still hiding the machine-dependent details

of control transfer, such as switching register state and changing address spaces. The recipe

provides a set of techniques and advice for converting existing code and writing new code with

continuations. Taken together, these contributions form a blueprint for putting continuations into

practice.

I have implemented continuations in the Mach 3.0 kernel from Carnegie Mellon University. This

dissertation reports the performance improvements observed in that environment.

Acknowledgments

I would like to thank the people who have made this dissertation possible. My wife Martha

provided me with motivation and encouragement; her support was crucial. My advisor Rick Rashid

provided the environment and challenged me to grow. Brian Bershad’s early feedback greatly

improved this work. I would also like to thank the other members of my thesis committee: Eric

Cooper and Alan Demers. Alfred Spector gave me invaluable guidance in my first years at CMU.

The Mach project brought together a great group of researchers. I would like to single out Michael

Young for tirelessly answering a neophyte’s questions and David Golub for his help with the

machine-dependent hacking.

My fellow students made CMU SCS so hard to leave: Stewart Clamen, Tom Mathies, Marc

Ringuette, Jay Sipelstein, Bennet Yee, Scott Draves, and everyone else who remembers BBQ night

at G’s.

Finally, I would like to thank my coworkers at Microsoft for their patience and understanding: Joe

Barrera, Bill Bolosky, Bob Fitzgerald, Alessandro Forin, Mike Jones, Steve Levi, and Gilad

Odinak.

i

Contents

Chapter 1 Introduction 1
1.1 Motivation..2
1.2 Contributions..3
1.3 Structure of the Dissertation..5

Chapter 2 Control Transfer and Continuations 7
2.1 Control Transfer in Operating Systems..7

2.1.1 Process-Based Organization...9
2.1.2 Interrupt-Based Organization...10
2.1.3 Other Organizations...12

2.2 Generalizing with Continuations..12
2.2.1 V System: Finish-Up Functions..14
2.2.2 Taos: Stack-Less Threads..15
2.2.3 LRPC: Direct Cross-Address Space Control Transfer.............................15
2.2.4 Windows NT: Deferred Procedure Calls...16
2.2.5 Ada: Rendezvous Optimization..17
2.2.6 Other Optimizations...17

2.3 Control Transfer in Programming Languages...18
2.3.1 Abstract Continuations..18
2.3.2 First-Class Continuations...19
2.3.3 Continuation-Based Multiprocessing..20
2.3.4 Functional Continuations...21

2.4 Conclusions..22

Chapter 3 Control Transfer Management 23
3.1 Current Practice..24

3.1.1 BSD Unix..25
3.1.2 Windows NT...25
3.1.3 Sprite ..26
3.1.4 Mach 2.5 ...26

3.2 Continuations..26
3.2.1 Simple Example...26
3.2.2 Implementation..28
3.2.3 Optimizations..30

3.3 Interface Requirements..30

ii

3.3.1 Portability... 31
3.3.2 Stack Management.. 32

3.3.2.1 Controlling Stack Allocation.. 33
3.3.2.2 Non-Blocking Stack Allocation.. 35
3.3.2.3 Avoiding Deadlock... 37
3.3.2.4 Exposing Stack Handoff.. 39
3.3.2.5 Avoiding Stack Overflow... 39

3.3.3 Context Switch.. 40
3.3.3.1 Multiprocessors... 40
3.3.3.2 Multiple Address Spaces.. 42

3.3.4 Kernel Entry and Exit.. 42
3.3.4.1 Multiple Exit Paths.. 42
3.3.4.2 Saving User Context.. 43

3.3.5 Summary.. 43
3.4 Control Transfer Interface... 44

3.4.1 Using the Interface.. 46
3.4.1.1 thread_block.. 46
3.4.1.2 thread_handoff... 50

3.4.2 Portability... 51

Chapter 4 Using Continuations 53
4.1 When to Use Continuations... 54

4.1.1 Candidate Code Paths.. 54
4.1.2 Software Engineering Costs... 55
4.1.3 Microkernel Operating Systems... 56

4.2 How to Use Continuations.. 57
4.2.1 MockIPC Introduction... 58

4.2.1.1 Overview... 58
4.2.1.2 Before Continuations... 61
4.2.1.3 With Handoff... 62

4.2.2 First Technique: Continuations as Structured Gotos............................... 65
4.2.3 Second Technique: Minimizing Code Impact.. 67
4.2.4 Third Technique: Modular Continuations... 68
4.2.5 Fourth Technique: Stack Handoff and Continuation Recognition............ 69
4.2.6 Fifth Technique: Asynchronous Continuation Recognition...................... 73

4.3 Using Continuations in Mach.. 74
4.3.1 Mach Kernel Overview.. 75
4.3.2 Message Receive... 77
4.3.3 Exceptions.. 78
4.3.4 Internal Kernel Threads... 80
4.3.5 Scheduling.. 82
4.3.6 Thread Halting.. 83
4.3.7 VM Faults... 84
4.3.8 External Pager Interactions.. 85

Chapter 5 Performance 89
5.1 Experimental Environment.. 89
5.2 Dynamic Frequency of Continuation Use... 90
5.3 Time Savings Due to Continuations.. 91

iii

5.3.1 RPC Improvements..92
5.3.2 Runtime Cost of Continuations...93
5.3.3 Exception Handling Improvements...94

5.4 Space Savings Due To Continuations..94

Chapter 6 Conclusions 97
6.1 Contributions..97
6.2 Future Impact...99
6.3 Final Remarks...100

Appendix A Mach IPC 101
A.1 Major Concepts..102
A.2 Sending and Receiving Messages: mach_msg..103
A.3 Message Format...105
A.4 Port Rights...108
A.5 Memory...110
A.6 Message Send...111
A.7 Message Receive..115
A.8 Atomicity ...119
A.9 Caveats..120
A.10 Bootstrapping...120

A.10.1 mach_reply_port...120
A.10.2 mach_thread_self..121
A.10.3 mach_task_self...121
A.10.4 mach_host_self...121

Appendix B The Control Transfer Interface 123
B.1 Low-Level Stack Management..123

B.1.1 stack_attach ..123
B.1.2 stack_detach...124

B.2 High-Level Stack Management...124
B.2.1 stack_alloc..124
B.2.2 stack_alloc_try..124
B.2.3 stack_free...124
B.2.4 stack_collect...124
B.2.5 stack_privilege..125

B.3 Context Switch...125
B.3.1 current_thread...125
B.3.2 stack_handoff..125
B.3.3 call_continuation...125
B.3.4 switch_context..125
B.3.5 load_context..126

B.4 Kernel Exit...126
B.4.1 thread_syscall_return..126
B.4.2 thread_exception_return..126
B.4.3 thread_bootstrap_return..126
B.4.4 thread_set_syscall_return..126

Bibliography 127

iv

v

List of Figures

Figure 2-1: Interrupt-Based vs Process-Based... 11

Figure 2-2: Continuation-Based Control Transfer.. 13

Figure 3-1: One Kernel Stack Per Thread.. 24

Figure 3-3: System Call Implementation with Continuation............................... 29

Figure 3-4: thread_block helper functions... 47

Figure 3-6: Implementing thread_handoff... 50

Figure 4-1: MockIPC Send and Receive... 61

Figure 4-2: MockIPC Queue Primitives... 62

Figure 4-3: MockIPC Handoff .. 63

Figure 4-4: First Technique: MockIPC Receive with Continuations.................. 66

Figure 4-5: Second Technique: MockIPC Receive with Continuations.............. 68

Figure 4-6: Third Technique: MockIPC Receive with Continuations................ 70

Figure 4-7: Fourth Technique: MockIPC Handoff with Continuation
Recognition... 72

Figure 4-8: Fifth Technique: Continuation Recognition without Handoff......... 73

Figure 4-9: The stack-alloc thread.. 82

vii

List of Tables

Table 3-1: Control Transfer Interface .. 45

Table 3-2: Thread Management Operations.. 46

Table 4-1: MockIPC Functions... 59

Table 4-2: MockIPC Helper Functions... 60

Table 4-3: MockIPC Synchronization Functions... 60

Table 5-1: Frequency of Stack Discarding with Continuations........................... 91

Table 5-2: Frequency of Continuation Recognition and Stack Handoff............. 91

Table 5-3: RPC and Exception Times... 92

Table 5-4: RPC Component Costs on the DS3100 ... 93

Table 5-5: Thread Management Overhead on the DS3100 95

1

Chapter 1

Introduction

My thesis is that a programming language abstraction, continuations, can be adapted for use in

operating system kernels to achieve increased flexibility and performance for control transfer. The

continuation abstraction generalizes many operating system control transfer optimizations. The

framework that I’ve developed puts continuations to work in existing operating systems written in

conventional programming languages.

Control transfer is the fundamental activity in an operating system kernel, the part of the operating

system that must run in the processor’s privileged mode. As the privileged part of the system, the

kernel manages control transfer between non-privileged address spaces. In contrast, other operating

system functionality, such as resource management and application programmer interfaces, can be

moved outside the kernel into other operating system modules. The current trend towards increased

modularity in operating systems only increases the importance of control transfer in the kernel.

A continuation contains the saved state that represents a suspended computation or thread.

Continuations were originally a mathematical abstraction invented to help define programming

language control transfer semantics [Strachey & Wadsworth 74; Milne & Strachey 76]. Some

modern programming languages have exposed first-class continuations, a general-purpose control

transfer construct based on this abstraction. First-class continuations provide the programmer with

tremendous power and flexibility in control transfer.

Applying the continuation abstraction to control transfer in operating system kernels, I have

developed a framework that allows the state of a blocked thread to be represented in two different

2 CHAPTER 1

ways. When a thread blocks, the programmer can choose to use the natural machine-dependent

representation for the continuation, saving the thread’s register context and stack frames, or the

programmer can choose to use a compact machine-independent representation, saving a

continuation function and a structure with the important state variables. This framework replaces

first-class continuations in conventional systems programming languages, such as C and C++, that

lack native support for continuations. The flexibility of having a choice of thread state

representations and the accessible nature of the machine-independent representation permits the

optimization of common control transfer situations.

I have implemented continuation-based control transfer in the Mach 3.0 kernel. Compared to

previous versions of Mach 3.0, the new system consumes 85% less space per thread—kernel

stacks have effectively become a per-processor resource instead of a per-thread resource. The

performance of control transfer operations important to the emulation of other operating systems

on Mach improved; cross-address space remote procedure calls execute 14% faster and exception

handling runs over 60% faster. The new system has been ported to many CPU architectures,

including MIPS, Intel x86, Alpha, VAX, 88K, 68K, i860, ns532, HP PA, and Power PC.

1.1 Motivation

Because of the fundamental nature of kernel control transfer, its overheads and performance are an

important determinant of an operating system’s overall performance. The space overhead of the

data structures that support control transfer, such as kernel stacks, and the latency of control

transfer paths can both be significant. User-level thread packages can mitigate many control

transfer performance problems, but they can only be partial solutions because they do not address

kernel control transfer issues.

Control transfer is the fundamental activity in an operating system kernel because it provides the

foundation for thread management, inter-process communication, page-fault handling, and

exception handling. Only the kernel, as the privileged component of the operating system, can

change in which address space a processor is executing. Only the kernel can trap and dispatch

device interrupts, system calls, exceptions, and page faults.

Control transfer latency is a performance issue in several types of application environments. Others

have already extolled the advantages of distributing system functionality across multiple address

spaces [Rashid et al. 89; Bershad 90]; with such a distributed system communication and control

transfer between address spaces becomes correspondingly more important. As another example,

efficient page-fault handling becomes important when using virtual memory primitives from user

CHAPTER 1 3

level [Appel & Li 91]. Efficient exception handling becomes important when emulating one

operating system with another [Black et al. 91].

Space overhead is also a performance issue in some application environments. This is certainly not

obvious, given the exponentially decreasing cost of memory. However, in the marketplace for

consumer devices, even a small amount of wasted or unnecessary memory puts a product at a

disadvantage. It will either cost more or be less capable than competing devices. For small portable

devices, power consumption and packaging issues make large memories problematic. The

combined effect of these considerations means that memory remains a precious resource for

portable consumer devices.

On high-end platforms with large main memories, space overhead can still be a performance issue.

Caching in the memory hierarchy makes memory reference locality very important. If the kernel

uses less memory on performance-critical paths, then it will probably suffer fewer cache and TLB

misses on those paths. Furthermore, multiprocessors with cache-coherent memory perform better

with per-processor data structures, which reduce cache contention. One effect of using

continuations is that kernel stacks effectively become a per-processor resource instead of a per-

thread resource. On multiprocessors that allow this, it becomes possible to allocate kernel stacks

out of non-cache-coherent memory.

User-level threads are an important technique, but they do not go far enough. For example, the

Mach project tried multiplexing user-level C threads [Cooper & Draves 88] on top of kernel-level

threads [Golub et al. 90]. This reduced the kernel’s memory usage (the primary goal of that work)

and improved user-thread to user-thread control transfer latency, but because we hadn’t attacked

the source of the problem—control transfer in the kernel—the user-level threads package left most

of the problem unsolved. A user-level solution works well for numerical multiprocessor programs,

which tend to have little involvement with the kernel, but multithreaded programs like servers tend

to be kernel-intensive, because of inter-process communication, page faults, and exceptions.

Scheduler activations [Anderson et al. 92] allow user-level threads to retain the advantages of

kernel-level threads. In effect, scheduler activations provide a more powerful control transfer model

for the user-level thread runtime. In contrast, continuations provide a more powerful control

transfer model for the kernel itself.

1.2 Contributions

My dissertation makes four main contributions. First, I have taken a programming language

abstraction and successfully applied it in a hostile environment, operating system kernels written in

4 CHAPTER 1

conventional programming languages. Second, I have generalized many existing operating system

control transfer optimizations with a single unifying abstraction. Third, I have developed an

interface for the machine-independent management of control transfer in the kernel. This interface

offers more flexibility and performance than the existing alternatives. Fourth, I have developed a

set of techniques for converting existing code and writing new code with continuations. Taken

together, these contributions form a blueprint for putting continuations into operating systems

practice.

In this dissertation, I provide a framework for using continuations in operating system kernels

written in conventional programming languages. There is no question that the first-class

continuations found in some programming languages constitute a more elegant expression of the

continuation abstraction. Unfortunately, first-class continuations have two drawbacks in a kernel

environment. First, operating system kernels today are written in systems programming languages

such as C and C++, not modern programming languages. Producing an implementation of first-

class continuations suitable for use in kernels, which have severe efficiency and concurrency

constraints, is an unsolved research problem. Second, my framework provides some important

optimizations that are not possible with first-class continuations. These optimizations operate when

a thread blocks with a continuation function, which is an easily accessible machine-independent

representation of the blocked thread’s state. Because first-class continuations are opaque objects,

they inhibit these optimizations.

Continuations generalize many existing operating system control transfer optimizations. For

example, LRPC [Bershad et al. 90] provides a direct control-transfer path from a client address

space to a server address space and back. Continuations not only allow the same direct path in

cross-address space RPC, but also allow the same techniques to apply in other situations, such as

exception and page-fault handling. As another example, the V kernel [Cheriton 88] avoids context-

switches by using “finish-up” functions to specify the actions that a blocked thread will take when

it resumes. Continuations not only allow this optimization, but also allow a thread to block with

saved register context and stack frames when a function pointer can not conveniently represent the

state of the thread.

In support of continuations, I have developed an interface for the machine-independent

management of control transfer inside the kernel. The basic problem in control transfer

management is to provide excellent performance in the face of problems such as wide variations in

hardware “support” and synchronization issues on multiprocessors. The conventional solution is a

ContextSwitch primitive that saves the register state of the current thread, changes address spaces

if necessary, and restores the register state of the new thread. My interface provides additional

CHAPTER 1 5

functionality. It allows kernel stacks to be detached from and reattached to threads. It also provides

a fast stack-handoff primitive that changes address spaces while avoiding the register saving and

restoring overhead of a full context-switch. These features enable the space and time performance

gains that arise from using continuations.

I have developed a methodology for using continuations effectively. This includes advice for

selecting the important control transfer paths, depending on the performance goals, and for

selecting from a set of coding techniques that I provide, depending on the structure of those control

transfer paths. The advice and techniques apply both to converting existing kernel code to use

continuations and writing new code with continuations.

1.3 Structure of the Dissertation

In Chapter 2 I survey control transfer from both operating system and programming language

perspectives. Existing operating systems either have taken a process-based approach that uses

context-switches for all control transfer, or have taken an interrupt-based approach that disallows

context-switches inside the kernel. Meanwhile, the programming language community has

developed continuations as a unifying abstraction for control transfer. User-level thread

management based on first-class continuations has been successfully demonstrated. From this, I

draw the conclusion that continuations are the appropriate unifying abstraction for control transfer

in operating systems.

In Chapter 3 I examine the management of control transfer in the kernel. I discuss the design and

implementation of a machine-independent interface for control transfer management which

addresses issues such as wide variations in hardware “support” and synchronization on

multiprocessors, while offering more flexibility than existing alternatives.

In Chapter 4 I provide a set of techniques and advice for using continuations. This chapter answers

the practical questions about using continuations in an operating system kernel: “When should they

be used?” and “How are they used?” Using MockIPC, an extended example based on Mach IPC, I

demonstrate five general-purpose techniques for using continuations. I also briefly review the use

of continuations in the Mach 3.0 kernel.

In Chapter 5 I examine the performance of continuations in the Mach 3.0 kernel. I show that

99.9% of all control transfer operations use continuations. As a result, the new system consumes

85% less space per thread, compared to previous versions of Mach 3.0. Effectively, kernel stacks

have become a per-processor resource instead of a per-thread resource. In addition, there are

6 CHAPTER 1

latency improvements in the most frequent control transfer paths: cross-address space remote

procedure calls execute 14% faster and exception handling runs over 60% faster.

Finally, in Chapter 6 I make some concluding remarks. In two appendices I provide more details on

the actual Mach 3.0 interfaces that are relevant to the dissertation. Appendix A reviews the

Mach 3.0 IPC system call interface and Appendix B presents a detailed view of the internal control

transfer management interface.

7

Chapter 2

Control Transfer and

Continuations

One can approach control transfer and continuations from both operating system and programming

language perspectives. From an operating system perspective, a continuation-based framework for

control transfer provides a way of optimizing the kernel environment to achieve the performance of

event-driven kernels while preserving the software-engineering benefits of a multi-threaded

programming style. In addition, continuations generalize a number of specific operating system

optimizations. From a programming language perspective, first-class continuations provide a very

powerful and general programming construct suitable for expressing operating system concepts

such as multiprocessing and preemption. In this context, my framework for using continuations

provides a pale approximation of this for traditional systems programming languages that do not

support first-class continuations.

2.1 Control Transfer in Operating Systems

An operating system kernel has the responsibility of responding to device interrupts, system calls,

and exceptions in such a way that it implements the user-level abstractions of threads and

processes. Saving and restoring user-level CPU state on a per-thread basis accomplishes a large

part of this, but does not address the question of an execution model for the kernel itself. Existing

operating systems adopt one of two solutions: a process-based approach in which the kernel itself

8 CHAPTER 2

takes advantage of the process and thread abstractions to simplify its structure, or an interrupt-

based approach in which the kernel handles interrupts, system calls, and exceptions on an equal

basis in a purely event-driven manner.

An operating system is fundamentally an event-driven program with no life of its own. The

operating system executes in response to interrupts or requests from other parties, such as

hardware devices and software applications. Although an operating system may of its own volition

occasionally execute “maintenance” code, this is the exception, not the rule.

Roughly speaking, the operating system kernel is the “privileged” part of the system. On

processors that distinguish between a system mode and a restricted user mode, the kernel runs in

the processor’s system mode. Although some operating system components or applications may

also execute in system mode for reasons of convenience or efficiency, this definition excludes them

from the kernel.

Some functionality, such as filesystem implementations or network protocol stacks, may or may

not belong to the kernel, depending on the design of the operating system. For example, in a

Mach 3.0 system most filesystem and network code executes in user mode, either in a system

process or as part of an application. However, in most Unix implementations the equivalent code

resides in the kernel, and executes under the same constraints as other kernel code.

The stimuli that trigger execution of the operating system kernel may be classified as follows:

• Device interrupts. Most processors support an interrupt mechanism to let hardware devices get

the attention of the operating system software, along with a corresponding way for the

operating system to block interrupts temporarily. Because a device interrupt occurs without the

cooperation of the currently executing code, the initial interrupt processing must save any CPU

state that the interrupt handler’s own execution might modify.

• System calls. Unprivileged software must sometimes request a service from the operating

system kernel. In this case, the executing code has the opportunity to prepare in advance for

the system call that it will make. This means that the system call processing in the kernel can in

general save less register state, because the calling code can save and restore the remaining

registers if it so wishes.

• Exceptions. Occasionally the processor may encounter an exceptional condition, such as a

page-fault or an arithmetic error, and transfer to an exception handler in the kernel. Depending

on the processor and the type of exception, it may or may not be possible to resume execution

CHAPTER 2 9

of the code that triggered the exception. From the kernel’s point of view, exception processing

resembles interrupt processing because exceptions are not anticipated, and the exception

handler must save any CPU state that it might modify if it is possible to resume from the

exception.

Unprivileged software executes in processes. As originally conceived [Saltzer 66], a process is a

program in execution and as such combines an address space and a thread of control. The thread of

control executes instructions, makes system calls, and takes exceptions. The operating system may

multiplex the execution of multiple processes, but this is transparent to the processes involved.

Many operating systems extend the process concept to allow multiple threads of control. Programs

that take advantage of this generalization must cope with unpredictably interleaved execution and

possible actual concurrency on multiprocessor hardware. From the operating system’s point of

view, however, supporting multiple threads in a single address space does not change anything

fundamental: the techniques for multiplexing execution and handling system calls and exceptions

apply unchanged.

2.1.1 Process-Based Organization

Many operating systems organize the kernel’s own execution around the same process and thread

abstractions that the operating system implements for applications. Some examples include BSD

Unix [Leffler et al. 89], Windows NT [Custer 93], OS/2 [Letwin 88], Sprite [Ousterhout

et al. 88], Amoeba [Tanenbaum et al. 90], and Taos [McJones & Swart 89]. With this approach,

the kernel enjoys the software engineering advantages of multi-threaded programming, with an

accompanying performance cost.

The process-based organization gives threads an existence inside the operating system kernel.

When the thread requests a service of the kernel, either explicitly with a system call or implicitly

with an exception, the thread “enters” the kernel and proceeds to service its own request. While

inside the kernel, a thread can access pageable memory, be preempted, and block for locks or other

data structures to change state.

Device interrupt handlers, on the other hand, operate in a very restricted execution environment.

Interrupt handlers must always run to completion without blocking, except for temporary

preemption by higher-priority interrupts. If multiple interrupt handlers are active, their executions

nest strictly.

10 CHAPTER 2

This process-based approach has significant software-engineering advantages. Threads executing

inside the kernel employ the same multi-threaded programming techniques as threads executing

outside the kernel, with some additions to synchronize with device interrupts. The implementation

of one system service may in turn use other system services without regard for their

implementation, enabling good modularity and code reuse. The device interrupt handlers, which

suffer from a much more constrained execution environment, should form only small part of the

kernel.

From a performance viewpoint, the process-based approach suffers from two drawbacks. First,

every thread needs its own stack for execution inside the kernel. Because interrupt handlers execute

in a nested fashion, they can “borrow” the kernel stack of the currently executing thread, but if a

thread blocks it needs its own kernel stack to preserve its execution state. Second, a context-switch

between threads requires more effort, because kernel-level register state must be saved and restored

as well as user-level register state.

2.1.2 Interrupt-Based Organization

An alternative execution model embraces the essential event-driven nature of the kernel and places

interrupts, system calls, and exceptions on an equal footing. Some examples include V [Cheriton

88], QuickSilver [Haskin et al. 88], and QNX [Hildebrand 92]. This interrupt-based approach

produces a light-weight implementation at the expense of significantly constraining the

implementation, to the extent that it becomes very difficult for the kernel to provide some types of

functionality.

The interrupt-based organization does not use threads inside the kernel. Instead of threads entering

the kernel and doing things for themselves, the kernel executes and does things to threads. The

notion of a “current thread” is non-existent (or at least very weak) in an interrupt-based kernel.

When the kernel finishes executing in response to an interrupt, system call, or exception, the exit

path restores the user-level register state of the thread at the head of the ready queue. This may or

may not be the same thread that was executing when the kernel was entered.

Figure 2-1 gives interrupt-based and process-based implementations of the same two read and

write system calls. The read system call dequeues and returns a character from a “clist .” The

write system call adds a character to the clist . The interrupt-based code explicitly shuffles

threads between the scheduler’s ready queue and a queue of waiting threads. It manipulates a

thread’s register state to set its return value from the read system call. In contrast, the process-

based code uses sleep and wakeup scheduling primitives that implicitly affect the ready queue.

The read system call returns a character in the normal fashion.

CHAPTER 2 11

Interrupt-Based Process-Based
void read(thread *thd) {

if (clist empty) {
remove thd from readyq;
enqueue thd in waiters;

} else {
dequeue c from clist
thd->rv = c;

}
}

void write(char c) {
if (threads waiting) {

dequeue thd from waiters;
enqueue thd in readyq;
thd->rv = c;

} else {
enqueue c in clist;

}
}

char read() {
while (clist empty) {

sleep(in waiters queue);
}
dequeue c from clist;
return c;

}

void write(char c) {
enqueue c in clist;
if (threads waiting) {

wakeup(from waiters queue);
}

}

Figure 2-1: Interrupt-Based vs Process-Based

The interrupt-based implementation has several performance advantages. First, the kernel only

needs one kernel stack for each processor instead of a kernel stack per thread. This reduces the

memory overhead and improves the locality of the kernel. Second, the kernel never context-

switches directly, so blocking system calls are less expensive. State is saved once at kernel entry

time, instead of once at kernel entry and again inside sleep . Finally, the interrupt-based

organization makes little optimizations easier. For example, in the read /write example the

write system call can hand a character directly to a waiting thread; the character doesn’t have to

be enqueued and immediately dequeued.

However, interrupt-based implementations also suffer from software engineering disadvantages.

Most interrupt-based systems do not support demand-paged virtual memory, because the kernel

can not access pageable memory in a natural way. Kernel-mode computations are not preemptible

or otherwise subject to the scheduling algorithms. Heap memory allocation and locking for

multiprocessors become more difficult. Considering Figure 2-1 again, it is clear that the interrupt-

based organization makes simple code complex.

The developers of the V system experienced these disadvantages. Because V uses an interrupt-

based organization “everything had to be handcrafted, and was difficult to maintain” [Cheriton 91].

The Munin distributed shared memory system [Carter et al. 91] uses a V kernel, substantially

modified to support paged virtual memory. Because of the difficulties caused by kernel-mode page

faults, Munin modified V’s original execution model [Carter 93]. In Munin, when the kernel takes

a page fault, the current kernel stack is placed in an exception queue and a new kernel stack is

allocated.

12 CHAPTER 2

2.1.3 Other Organizations

A few operating systems use variations on the basic process-based and interrupt-based

organizations. One such variation uses dedicated server threads inside the kernel to field requests

for kernel services. Another dynamically spawns threads inside the kernel to handle interrupts. One

can imagine further variations along these lines, but the essential distinction between multi-

threaded and event-driven programming paradigms remains valid.

The Minix kernel [Tanenbaum 87] contains a small number of threads dedicated to performing

different tasks. Most of these threads manage hardware peripherals; a special system thread

implements much basic operating system functionality. A light-weight message-passing mechanism

allows applications to communicate with each other and with internal kernel threads. The kernel

turns device interrupts into messages sent to the appropriate device thread.

At heart, Minix uses an interrupt-based organization. The message-passing code executes on a

dedicated kernel stack as described in the previous section; this may be regarded as the “true”

Minix kernel. The internal kernel threads execute in the kernel address space but otherwise operate

like independent user threads.

The SunOS 5.0 kernel [Eykholt et al. 92; Khanna et al. 92] extends the process-based organization

to encompass device interrupts. In this system, device interrupts spawn “interrupt threads” that

terminate when interrupt processing is complete. This removes some of the awkward restrictions on

interrupt handlers that exist in most process-based kernels. The SunOS kernel does continue to

block interrupts of equal and lower priority until an interrupt thread terminates, so interrupt threads

can not for example access pageable memory.

2.2 Generalizing with Continuations

Using continuations, I have developed a control transfer framework that generalizes the process-

based and interrupt-based kernel organizations. The continuation technique starts with a multi-

threaded programming model, like the process-based organization, but then gives programmers the

possibility of optimizing important control transfer situations to achieve the performance of an

interrupt-based organization. This continuation-based framework improves upon a number of

related control-transfer optimizations:

• Finish-up functions in V [Cheriton 88].

• Stack-less threads in Taos [McJones & Swart 89].

CHAPTER 2 13

• Direct cross-address space control transfer in LRPC [Bershad et al. 90].

• Deferred procedure call in Windows NT [Custer 93].

• Rendezvous optimization in Ada [Habermann & Nassi 80].

After introducing continuation-based control transfer for operating system kernels, I examine each

of these related optimizations in more detail in subsequent subsections.

Continuations

My framework for using continuations gives programmers a choice of representations for a

blocked thread’s continuation. A continuation saves the state of a thread’s computation; it controls

the thread’s subsequent execution. In the normal case, the thread’s continuation consists of stack

frames and register context saved on the kernel stack. However, the programmer may also specify

an explicit continuation function. In this case, the thread resumes execution by calling its

continuation function, discarding its previous execution context.

Explicit Continuation Implicit Continuation
void read() {

while (clist empty) {
sleep(in waiters queue,

read);
// NOTREACHED

}
dequeue c from clist
thread_syscall_return(c);

}

void write(char c) {
enqueue c in clist;
if (threads waiting) {

wakeup(from waiters queue);
}

}

char read() {
while (clist empty) {

sleep(in waiters queue,
NULL);

// resume here
}
dequeue c from clist;
return c;

}

void write(char c) {
enqueue c in clist;
if (threads waiting) {

wakeup(from waiters queue);
}

}

Figure 2-2: Continuation-Based Control Transfer

Figure 2-2 illustrates this choice with the read /write example of the previous section. The

sleep primitive now takes an additional argument, a continuation function. If this is NULL, then

the sleep function returns normally when the thread unblocks. If the continuation function is not

NULL, then sleep does not return. In this particular example, read is called again instead.

The implementation that sleeps with an explicit continuation function also enables internal stack

discarding and stack handoff optimizations. While the thread calling read is blocked with a

continuation function, its kernel stack is not needed and can be discarded. If it context-switches to

another thread that blocked with a continuation function and hence has no kernel stack, the kernel

14 CHAPTER 2

stack can be directly transferred to the resuming thread with a stack handoff. If the predominate

control transfer paths use explicit continuations, then the aggregate performance will approximate

that obtainable with an interrupt-based organization because most of the time a single kernel stack

will suffice for the system’s threads and the context-switch overhead of saving and restoring

registers will be avoided.

The use of explicit continuation functions also enables continuation recognition optimizations.

Continuation recognition occurs when an executing thread examines and possibly modifies the

continuation of a blocked thread. In the read /write example of Figure 2-1, the interrupt-based

code was able to hand a character directly from the writing thread to the reading thread.

Continuation recognition could achieve the same optimization in the explicit continuation code of

Figure 2-2 by having the writing thread check for a read continuation in the blocked reader.

(Although in this example, the benefit would not be worth the bother.)

2.2.1 V System: Finish-Up Functions

The V system [Cheriton 88], an experimental message-passing operating system from Stanford

University, uses an interrupt-based organization, augmented with continuation functions (known as

“finish-up” functions in the V source code) [Cheriton 91]. Although the finish-up functions make

the interrupt-based organization somewhat easier to deal with, they do not alleviate its fundamental

software engineering problems or change its performance characteristics. My continuation-based

control transfer framework improves upon V’s approach by starting with a more powerful multi-

threaded programming model and then allowing threads to block with a continuation function.

The V kernel uses an interrupt-based organization. Machine-independent code uses no “get current

thread” function; instead, a thread-descriptor pointer is explicitly passed to those functions that

need it.1 Inside the kernel, the AddReady function adds a thread to the ready queue (a single queue,

sorted by priority). RemoveQueue removes a thread from whatever queue it might be in, including

the ready queue. Upon return from the kernel to user space, the function ActivateReadyqHead

removes a thread from the head of the ready queue, and the kernel switches to its address space. At

this point, the kernel checks for a finish-up function associated with the thread. If the thread has a

finish-up function, the kernel calls it. Otherwise the kernel restores the thread’s registers and

returns to user mode.

1In the V system’s terminology, the executable entities are processes. A group of processes that share an
address space form a team.

CHAPTER 2 15

The finish-up function allows V to associate with a thread code that will access the thread’s user

address space. For example, copying a message out to a user-mode buffer is easily done in a finish-

up function. Without finish-up functions, the V kernel would need more code to explicitly manage

changes to the current address space.

2.2.2 Taos: Stack-Less Threads

Taos [Schroeder & Burrows 90; McJones & Swart 89], an operating system designed for the

Firefly, DEC SRC’s experimental multiprocessor workstation [Thacker et al. 88], uses a process-

based organization. In addition, Taos allows threads to discard their kernel stacks when blocking if

they will execute in user space immediately after being rescheduled. Because Taos implements the

blocking component of mutex and condition variables in the kernel, this is an important

optimization for threads blocked on user-level events. In addition, the cross-address space RPC

path, implemented in assembly language, does a stack handoff. (SRC’s RPC path is so heavily

optimized that the stack contains no useful context because all values are kept in registers.) Even

with the optimizations for these two cases, there are still many places in the Taos kernel where

threads block using the process model and consume a kernel stack.

Measurements from a five processor, 96 megabyte Firefly at DEC SRC, for example, showed that

886 threads were using 212 kernel stacks. Most of the stacks were being used by threads internal

to the kernel (28), waiting for a timer to expire (106), waiting for a network packet (20), or waiting

to handle an exception (38).

Continuation-based control transfer generalizes the optimizations found in Taos. Continuations

allow kernel stacks to be discarded in more situations, and the stack management functionality in

the control transfer interface allows machine-independent code to take advantage of stack handoff.

In addition, continuations enable the general-purpose latency-reducing technique of continuation

recognition.

2.2.3 LRPC: Direct Cross-Address Space Control Transfer

LRPC [Bershad et al. 90; Bershad 90], a light-weight cross-address space procedure call technique

prototyped in the context of the Taos operating system, supplies a very direct control-transfer path

between client and server address spaces. LRPC bypasses all scheduling and context-switch

overhead in the kernel. Threads using LRPC have user-mode execution stacks cached for their use

in the address spaces that they frequently visit. When a thread makes a cross-address space call, it

traps into the kernel and returns to user-mode in the server address space with an upcall running on

its execution stack there. The return path from server address space to client is equally direct.

16 CHAPTER 2

A continuation-based cross-address space procedure call can achieve a very similar direct control-

transfer path. Instead of having execution stacks waiting in server address spaces, the server has a

pool of server threads. Because the server threads are blocked with a continuation function and do

not have kernel stacks, they really exist for their user-mode stacks. When a client thread traps into

the kernel, a stack handoff to a waiting server thread avoids scheduling and context-switch

overhead and continuation recognition avoids leaving the fast path to call a general-purpose

continuation function. Because this leaves the client thread blocked with a continuation function,

the return path operates equally efficiently. The major difference occurs in the entry to the server

address space: this is a return from a system call instead of upcall as with LRPC. However,

support for upcalls could remove even this difference.

Furthermore, the continuation-based approach generalizes easily to optimize situations other than

cross-address space procedure call. The same efficient stack handoff control-transfer path with

continuation recognition can be used in situations such as exception and page-fault processing.

Continuation-based RPC also maintains the logical separation between a client’s thread and a

server’s. Threads remain fixed in their address space, eliminating many of the protection,

debugging and garbage collection problems that occur when threads migrate between address

spaces [Bershad 90].

2.2.4 Windows NT: Deferred Procedure Calls

Windows NT [Custer 93], Microsoft’s general-purpose commercial operating system, uses a

process-based organization. To reduce the amount of code executed at interrupt level and improve

the system’s real-time characteristics, interrupt handlers in Windows NT defer much of their

processing with a Deferred Procedure Call (DPC) mechanism. In essence, the DPC mechanism

allows an interrupt handler to block with a continuation function.

Interrupt handlers in Windows NT use DPC objects to defer processing until after the processor’s

interrupt request level (IRQL) is reduced. Interrupt handlers execute with an elevated IRQL, which

blocks out interrupts of equal and lower priority. If an interrupt handler performs extended

computations at an elevated IRQL, the system’s responsiveness suffers. To avoid this, an interrupt

handler can initialize a DPC object with a function and queue the DPC. When the processor’s

IRQL lowers to allow interrupts, the Windows NT kernel automatically executes any queued DPC

functions. Because they borrow the kernel stack of the current thread, like interrupt handlers, DPC

functions execute in a similarly constrained execution environment.

The DPC mechanism effectively allows an interrupt handler to block with a continuation function.

However, DPC functions do not execute as independent threads. With a more powerful

CHAPTER 2 17

continuation-based organization, Windows NT could execute DPC functions in interrupt threads

and remove the current restrictions on their execution environment without losing performance.

2.2.5 Ada: Rendezvous Optimization

The Ada programming language contains built-in multiprocessing primitives that can sometimes

benefit from control transfer optimizations. One such optimization for the Ada rendezvous

operation [Habermann & Nassi 80] amounts to a stack handoff to a virtual server thread. In

contrast, continuation-based control transfer not only makes explicit the notion of stack handoff

but allows the use of stack handoff in much more general situations.

In Ada’s execution model, a process consists of a set of threads2 that communicate via a

rendezvous mechanism. A server thread exports some number of entry statements. Client threads

call entries using the normal procedure call syntax. Server threads execute accept statements for

entries; in the body of the accept statement formal parameters are bound to the client’s actual

arguments. If the entry call happens before the accept then the client waits and if the accept

occurs before an entry call then the server waits. After the rendezvous, or execution of the body of

the accept , the client and server threads resume normal concurrent execution.

Although Ada semantics have the server thread execute the body of the accept statement, the

compiler can arrange for the client thread to execute the accept body with identical results. If the

server thread does nothing outside the accept —after the rendezvous it loops back and reenters the

accept —then the need for the server thread as a distinct executable entity vanishes. With this

optimization, entry calls effectively become monitor calls.

When the server thread has been optimized away, the rendezvous operation can be viewed as a

stack handoff to a virtual server thread. To start the rendezvous, the client thread does a stack

handoff to the virtual server thread. The virtual server thread executes the body of the accept on

the client’s stack. Finally, the virtual server thread does a stack handoff back to the client thread.

2.2.6 Other Optimizations

With the ability to return out of the kernel to a context other than the one that was active at the

time the kernel was entered, continuations can be used to implement a rich collection of control

transfer mechanisms in a general way. For example, the upcalls required by the x-kernel

[Hutchinson et al. 89] and Scheduler Activations [Anderson et al 92] can be implemented by

keeping a pool of blocked threads in the kernel, each with a default “return-to-user-level”

2The Ada terminology is task.

18 CHAPTER 2

continuation. To perform an upcall, the default continuation is replaced with one that transfers

control out of the kernel to a specific address at user level. Asynchronous I/O [Levy &

Eckhouse 89] behaves in a similar fashion; on scheduling an asynchronous I/O, a thread provides

the kernel with a continuation to be called when the I/O completes.

2.3 Control Transfer in Programming Languages

The notion of a continuation arose in the study of programming languages [Strachey &

Wadsworth 74]. Theoreticians invented the continuation abstraction as a way of expressing the

semantics of control transfer. A continuation represents the control state of a computation; it

answers the question “What will happen next?” Some modern programming languages support

first-class continuations, a programming construct that allows the programmer to “capture” and

manipulate the continuation of an arbitrary expression in the language. Using first-class

continuations, one can implement multiprocessing [Wand 80], coroutines [Haynes et al. 84;

Haynes et al. 86], timed preemption [Haynes & Friedman 84; Haynes & Friedman 87; Dybvig &

Hieb 89], and user-level threads [Cooper & Morrisett 90]. Recent work of interest to operating

systems in the areas of control delimiters [Sitaram & Felleisen 90] and functional continuations

[Felleisen et al. 88] addresses short-comings of the usual first-class continuation formulations in

the areas of modularity and embedding.

2.3.1 Abstract Continuations

Denotational semantics [Milne & Strachey 76] ascribes meanings to programs in such a way that

the meaning of a program fragment depends only on the meanings of its constituents. It uses

valuations, or functions mapping program fragments to values (meanings) in domains, which are

recursively-defined sets of functions on values, locations, stores, environments, etc. The valuation

functions themselves are defined recursively on the structure of program fragments such as

expressions and commands.

Denotational semantics uses continuations to express control transfer in expressions and

commands. For example, consider a compound command C0; C1. The meaning of the compound

command is a function defined in terms of the meanings of the two constituent commands C0 and

C1. However, a simple composition can not express the idea that C0 may contain a non-local jump

or exit and under some circumstances C1 will never be executed. To handle this possibility, the

function that is the meaning of a command takes as one argument a command continuation; the

command continuation is itself a function that represents the subsequent execution of the program.

(In Milne’s formulation, a command continuation is a function from stores to answers.) Then the

meaning of a compound statement like C0; C1 can be defined by applying the meaning of C0 (a

CHAPTER 2 19

function) to an argument, an intermediate command continuation that is defined by applying the

meaning of C1 to the command continuation of the entire compound statement.

In the same way, denotational semantics uses expression continuations to define the valuation

function for expressions. An expression continuation is a function from expression values to

command continuations. The expression value input is needed because expressions, unlike

commands, return values and hence the continuation for an expression must accept a value.

2.3.2 First-Class Continuations

Some modern programming languages, such as Scheme [Steele 78; Clinger & Rees 92] and ML

[Appel & Jim 89], provide support for first-class continuations. Programmatic continuations give

the user direct access to the abstract continuations that underlie the semantics of the programming

language. A programmatic continuation is “first-class” if it has indefinite extent and lifetime: it

may be passed as an argument, returned as a function’s value, stored in a global data structure,

and invoked multiple times. This flexibility makes first-class continuations a control transfer

primitive of great power.

In Scheme support for first-class continuations takes the form of a built-in function, call-with-

current-continuation (abbreviated here call/cc). Scheme packages a continuation as a

functional object that may be called with a single argument. However, the call of a continuation

does not return. Instead, it restores the control context that existed at the time that the continuation

was created with call/cc .

For example,

(define example
(lambda (x)

(call/cc (lambda (k)
(+ 1 (* 2 (k x))))))

(+ 5 (example 3)) ⇒ 8

defines example to be a function of one argument x . The application of call/cc packages its

own continuation as a functional object and then calls its argument, passing it the continuation,

which in this case is bound to k . When k is called, its application control context (… (* 2 …)) is

discarded and control transfers to the context in which the continuation was created: (+ 5 …) .

The representation of continuations in Scheme and ML makes them opaque objects. These

languages do not supply any operations to examine, manipulate, or modify a continuation.

20 CHAPTER 2

Smalltalk and MPL

Smalltalk [Goldberg & Robson 83] supports a simple form of continuations. The Smalltalk

interpreter stores its state in Contexts; the execution of a non-primitive message creates a new

Context. A Context includes an instruction pointer, a stack and stack pointer, and a pointer to a

parent Context. Smalltalk Contexts are first-class objects; they support methods that manipulate

their contents and are garbage-collected. However, the interpreter prevents a Context from being

returned from more than once.

The Modular Programming Language, a precursor of Mesa [Geschke et al. 77], supported similar

execution contexts with a general transfer primitive [Lampson et al. 74]. Lampson

demonstrated that higher-level control disciplines could be expressed using contexts and

transfer .

2.3.3 Continuation-Based Multiprocessing

First-class continuations can implement multiprocessing, timed preemption with engines, and user-

level threads. These techniques all use continuations to represent the state of a computation;

call/cc saves the state of the current computation and invoking a continuation context-switches

to another computation.

Wand [Wand 80] describes continuation-based multiprocessing. With his technique, the “kernel”

consists of a function that manipulates a ready queue hidden inside a closure (and hence protected

from the rest of the program). The kernel supports two operations: enqueue a process on the ready

queue, and dequeue and dispatch a process. A process consists of a command continuation;

because Scheme does not support command continuations directly the kernel uses a thunk that

invokes a continuation from call/cc with a specified value. To dispatch a process, the kernel

calls the thunk which in turn invokes a continuation.

A coroutine implementation in terms of continuations uses a similar technique [Haynes et al. 84;

Haynes et al. 86]. A coroutine can suspend itself and transfer control to another coroutine. The

transfer operation takes a value that is returned as the result of the resuming coroutine’s suspended

transfer operation. Implementing this with continuations, a coroutine consists of a function that

manipulates a saved continuation hidden inside a closure. The continuation represents the

suspended execution state of the coroutine. This resembles Wand’s multiprocessing, except that

instead of a kernel with a queue of continuations each coroutine maintains its own private

execution state.

CHAPTER 2 21

Engines [Haynes & Friedman 84; Haynes & Friedman 87], a control construct that provides timed

preemption, can also be implemented with continuations [Dybvig & Hieb 89]. An engine is a

functional wrapper around some code. When an engine is invoked, it is given some number of

“ticks” that limit the code’s execution. If the code finishes executing, then the engine returns the

code’s return value and the number of unused ticks. If the code does not finish, then the engine

returns a new engine that may be used to continue executing the code. An implementation with

continuations represents the code inside an engine with a continuation. To limit the code’s

execution, the implementation needs preemption via a continuation-based interrupt facility: when

an interrupt occurs, the handler has access to the interrupted code in the form of a continuation.

Combined with Wand’s technique, engines can implement a time-shared multiprocessing system.

A user-level threads implementation in ML [Cooper & Morrisett 90] demonstrates that the

continuation-based multiprocessing and preemption techniques described above can implement a

traditional threads interface. The ML user-level threads interface provides facilities similar to

Mach’s C-Threads [Cooper & Draves 88]: a fork operation to create a new thread, an exit

operation to allow a thread to terminate itself, and mutex and condition variables for

synchronization among threads.

2.3.4 Functional Continuations

Functional continuations and control delimiters supply an alternative formulation for first-class

continuations that dynamically restricts continuation-based control transfer [Felleisen et al. 88].

This scoping mechanism provides the isolation that one desires in an operating system. In fact, the

OS6 operating system and its implementation language BCPL used a similar dynamic scoping for

control transfer [Stoy & Strachey 72].

A functional continuation differs from the abortive continuations produced by call/cc in that the

invocation of a functional continuation does not discard the current evaluation context. Instead, the

functional continuation can return a value to its caller. However, the control operation that

produces functional continuations does discard its current evaluation context, unlike call/cc , so

the functional continuation must be used to make control “return.”

For example,

(define example2
(lambda (x)

(control (lambda (k)
(+ 1 (* 2 (k x))))))

(+ 5 (example2 3)) ⇒ 17

22 CHAPTER 2

because k gets bound to the functional continuation (lambda (x) (+ 5 x)) , then (k 3)

evaluates to 8, the body of control evaluates to 17, and this is the final result because control

discards its evaluation context.

The control delimiter run evaluates its argument in an independent control context. An application

of control inside run only discards its evaluation context back to the boundary created by run ,

and the created functional continuation only reaches back to that boundary. This means that there

is no way for code executing inside an application of run to escape, or transfer outside of the run

application.

The OS6 operating system, an early experimental single-user, single-address space, single-threaded

system written in BCPL, contains a very similar run primitive for executing programs. Programs

in OS6 are just BCPL thunks (functions without arguments). The run primitive constrains the

execution of a subprogram so that no matter what happens, the subprogram returns properly to its

parent’s run invocation. This isolates the parent from the vagaries of the child’s execution.

2.4 Conclusions

Given that continuations were invented as a technique for expressing control transfer in a very

general setting, it should not be surprising that continuations can generalize a number of specific

operating system control transfer optimizations.

From an operating systems perspective, my framework for using continuations most strongly

resembles a combination of the stack-less threads of Taos with the finish-up functions of V,

although neither of those systems uses continuation recognition. By allowing a thread to block with

either an explicit continuation function or an implicit continuation consisting of saved stack frames

and register state, continuations combine the software engineering advantages of a multi-threaded

process-based kernel organization with the performance advantages of an event-driven interrupt-

based organization.

From a programming language perspective, this technique most strongly resembles functional

command continuations. In those terms, the user-kernel boundary forms a natural control delimiter.

Blocking with a continuation function discards the current execution context in the same way that

the control primitive discards the current evaluation context back to the last control delimiter.

The major inconvenience with a traditional systems programming language such as C is that the

programmer must explicitly supply functional continuations.

23

Chapter 3

Control Transfer Management

The efficient, portable use of continuations in an operating system kernel requires special attention

to the low-level management of control transfer. By this, I mean the code that implements control

transfer and manages the supporting data structures, principally threads, register context save

areas, and kernel stacks. The control transfer paths that are of interest here include transitions

between threads inside the kernel and transitions between threads running at user-level and kernel

code. The chapter concludes with a description of an interface for control transfer management that

provides additional flexibility and opportunities for optimization in support of continuations. This

development proceeds as follows:

• I start with a review of current practice. Most systems use a kernel stack per thread and have a

single context-switch primitive to switch between threads.

• Next, I examine in detail the control transfer needs of continuations. Continuations can be

implemented using fixed kernel stacks and a context-switch primitive, but some important

optimizations require more flexible control transfer support.

• From these and other considerations, I synthesize requirements for an interface for control

transfer management.

• Finally, I present an interface that meets these requirements. Like the pmap interface in Mach

[Rashid et al. 87; Tevanian 87], the design of this interface derives from the requirements of

the machine-independent code that uses it; the interface does not attempt to abstract or

generalize hardware support for control transfer.

24 CHAPTER 3

I also include some examples of the interface’s use and a discussion of its portability. I defer to

Appendix B a complete description of the details of the interface.

3.1 Current Practice

Most current operating system kernels allocate a kernel stack for each kernel-supported thread.

Figure 3-1 illustrates the situation. (Section 2.1.2 discusses alternatives to this design.)

Kernel Address Space

Threads

Kernel
Stacks

Figure 3-1: One Kernel Stack Per Thread

This arrangement requires a context-switch for the kernel to switch from running one thread to

running another. That is, the kernel must save the register context of the currently running thread

and restore the saved register context of another thread. The register context can be pushed on the

kernel stack, with a pointer to it kept in the thread structure, or it can be saved directly in the

thread structure. The kernel must also manipulate the MMU to switch to a new address space if the

two threads belong to different processes.

Because each thread has its own kernel stack and register context save area, it is in principle

always possible to suspend the currently executing thread and switch to another thread. In practice,

this level of concurrency may be undesirable. However, if a thread running inside the kernel wishes

to block because memory is temporarily unavailable, or because an IO operation (perhaps due to a

page fault) has not completed, or because a lock that it wishes to acquire is held by another thread,

the thread can block and its state will be saved and restored properly.

The details of the context-switch operation, which saves and restores register context and changes

the MMU context, depend on the hardware architecture. The following subsections review how

CHAPTER 3 25

several recent operating systems package the context-switch functionality internally.1 All of these

systems attempt to hide the machine-dependent details while exposing the important functionality,

because they have been ported to multiple CPU architectures. Broadly speaking, they offer similar

levels of functionality—virtual memory with multiple address spaces, file systems, networking, etc.

3.1.1 BSD Unix

BSD4.3 [Leffler et al. 89] is a version of Unix [Ritchie & Thompson 78] developed at the

University of California at Berkeley and used in both research and production environments. For

its context-switch primitive, BSD4.3 uses swtch() . This operation selects a new process and

context-switches to it. One drawback of this specification is that the code to select the next process

to run is duplicated in each machine-dependent implementation of swtch() .

Because BSD4.3 does not run on multiprocessors and its scheduling code disables interrupts,

swtch() does not address concurrency issues.

A more recent version, BSD4.4, uses essentially the same interface with the name changed to

cpu_swtch() . The swtch() function, which calls cpu_swtch() , handles in addition the

machine-independent calculation of CPU usage.

3.1.2 Windows NT

Windows NT [Custer 93] is a commercial operating system from Microsoft. It uses

KiSwapContext(new-thread, ready-flag) to implement context-switch. Two things

distinguish KiSwapContext from BSD’s swtch . First, KiSwapContext has less knowledge of the

machine-independent scheduling data structures. Second, the operation provides for multiprocessor

operation.

KiSwapContext receives the next thread to run as an argument, so it doesn’t need any knowledge

of the kernel’s scheduling policy. Before doing anything else, KiSwapContext puts the current

thread back in the ready queues if ready-flag is TRUE, but it uses an upcall to the machine-

independent KiReadyThread to do this.

A single lock controls access to the scheduling data structures in Windows NT. KiSwapContext

drops the lock during its execution, after it has switched to the new thread’s stack but before the

new thread’s register context is restored. This prevents another processor from picking up the

1This discussion relies on my examination of the source code for each of these systems.

26 CHAPTER 3

previous thread and starting to run it while its stack is still in use, but it has the drawback that

KiSwapContext “knows” the locking strategy for the machine-independent data structures.

3.1.3 Sprite

Sprite [Ousterhout et al. 88] is a research operating system from the University of California at

Berkeley. Sprite implements context-switch with Mach_ContextSwitch(old-process, new-

process) . Unlike KiSwapContext , Sprite’s global scheduling lock is held throughout a call to

Mach_ContextSwitch . This means that the machine-dependent implementation of

Mach_ContextSwitch has no knowledge of the machine-independent data structures or locking

strategies. The disadvantage of this approach is that the global scheduling lock is held throughout a

potentially lengthy operation.

3.1.4 Mach 2.5

Mach 2.5 [Accetta et al. 86], an early version of the Mach operating system from Carnegie Mellon

University, uses switch_thread_context(old-thread, new-thread) . This interface

takes a different approach to handling multiprocessor concurrency. After switching to the new

thread’s stack, but before restoring its register context, switch_thread_context makes an

upcall to the machine-independent thread_continue(old-thread) . This function adjusts the

scheduling state of the old thread, putting it back in the ready queues if necessary. This technique

avoids holding any locks across the call to switch_thread_context .

Unlike BSD’s swtch , NT’s KiSwapContext , and Sprite’s Mach_ContextSwitch ,

switch_thread_context does not change address spaces. Machine-independent scheduling

code uses separate calls to Mach’s pmap module (responsible for MMU management) to change

address spaces before calling switch_thread_context .

3.2 Continuations

In this section I examine the control transfer needs of continuations. First I arrive at an example of

continuation-using code, and then I consider possible implementations. Continuations could be

implemented using a kernel stack per thread and a context-switch primitive, but some important

optimizations—stack discarding and stack handoff—require more flexible control transfer support.

3.2.1 Simple Example

Continuations give the kernel programmer a choice of thread state representations. When a thread

blocks voluntarily, the programmer can choose the natural machine-dependent representation,

saving the thread’s register context and stack frames, or the programmer can choose a compact

CHAPTER 3 27

machine-independent representation, saving a continuation function and the important state

variables. When a blocked thread has a continuation function, it resumes by executing the function.

To make this work, the programmer must have blocking primitives that provide this choice.

Examples of such primitives include sleep , which blocks the calling thread for a specified period

of time, wait , which blocks the calling thread until another thread calls wakeup on it, and yield ,

which blocks the calling thread and moves it to the rear of the ready queue. The support for

continuations could take the form of alternative primitives, such as sleep_with_continuation

and wait_with_continuation , but it is simpler to add a continuation argument to sleep and

wait and yield and other such primitives and specify that a null value for the continuation means

that the thread blocks in the normal manner, saving register context and stack frames.

Another requirement for making this work is that the programmer must have a way to return or

exit from a continuation function. For example, if the implementation of a system call blocks with

a continuation function, then the continuation function needs a way to reach the system call exit

path, the machine-dependent instructions that restore the user’s saved register context and return

the system call’s status code. One obvious possibility is that the control transfer mechanism that

calls the continuation function could set up the stack frame so that a return from the continuation

function branched to the system call exit path, with the return value from the continuation

becoming the system call’s status code.

Unfortunately, most kernels have at least two exit paths, one for system calls and one for

exceptions and interrupts. The entry and exit paths for asynchronous entrances into the kernel,

such as page faults, device interrupts, and arithmetic exceptions, save and restore the machine’s

entire user register context. In contrast, the system call entry and exit paths typically save and

restore fewer registers, and the system call exit path returns a status code.

The best way to handle the possibility of multiple exit paths from a continuation function is to

provide multiple exit primitives, such as return_from_system_call and return_from_-

exception , that the continuation function can call. By convention then, continuation functions

never return directly. (They don’t have a valid return address!) Instead, they make calls to other

functions that also never return. Eventually, an exit primitive transfers control back out of the

kernel.

Putting this all together, Figure 3-2 shows a system call implementation that uses continuations.

The system call example takes two arguments. It uses the first argument and then calls wait ,

supplying a continuation function, after saving away the second argument. The call to wait does

28 CHAPTER 3

not return. Instead, when the thread wakes up the continuation function, example_cont ,

executes. The continuation function retrieves and uses the second argument and then returns a

status code to the user with return_from_system_call .

example(arg1, arg2) {
use arg1;
current_thread()->save_arg = arg2;
wait(example_cont);
// NOTREACHED

}

example_cont () {
arg2 = current_thread()->save_arg;
use arg2;
return_from_system_call(SUCCESS);
// NOTREACHED

}

Figure 3-2: System Call with Continuation

3.2.2 Implementation

A traditional control transfer framework, with a dedicated kernel stack per thread and a context-

switch primitive, would suffice to implement continuations. Although in practice this would not be

desirable, it is nevertheless useful to consider the possibility to establish a base for subsequent

optimizations.

Looking again at Figure 3-2, there are three operations to consider:

1. Context-switching away from a thread blocking with a continuation.

2. Context-switching to a thread blocked with a continuation.

3. Returning from a continuation back to user-level.

A control transfer interface like Windows NT’s KiSwapContext and the other interfaces

discussed in Section 3.1 could be tweaked to implement these operations. Figure 3-3 shows how

this would work.

Context-switching away from a thread blocking with a continuation is easy, because the context-

switch does not have to save the blocking thread’s register state. Instead, the context-switch just

saves the continuation function in the thread structure.

CHAPTER 3 29

Thread

user context
save area

example_cont(){
 ...
 ...
}

Kernel Stack

Blocked

Thread

user context
save area

call frame

call frame

example

example(arg1, arg2){
 ...
 ...
 wait(example_cont);
}

Kernel Stack

Running

pc

sp

Thread

user context
save area

example_cont

example_cont(){
 ...
 ...
}

Kernel Stack

Running

sp

pc

co
nt

in
ua

tio
n

Figure 3-3: System Call Implementation with Continuation

Context-switching to a thread blocked with a continuation is also easy, because the context-switch

does not have to restore saved register state. If the saved continuation function is not null, then the

context-switch knows the thread blocked with a continuation. Instead of restoring register state, it

builds a stack frame for the continuation function at the base of the thread’s kernel stack, and just

branches to the continuation function. The return address in the stack frame can be left null or set

to a debugging function, because the continuation function should never return.

Finally, returning from a continuation to user-level is easy. The return primitives can just branch to

the normal kernel exit paths. If user register state is saved at the base of the kernel stack, then the

return primitive will need to reset the stack pointer so that the exit path finds the saved register

state.

One subtle complication occurs in the system call entry and exit paths. Current calling conventions

divide the register set into caller-saved and callee-saved registers. The system call entry and exit

paths do not save or restore the caller-saved registers; if they should be saved they are the

30 CHAPTER 3

responsibility of the user. (For complete safety, the exit path should zero the caller-saved registers,

to prevent sensitive values from leaking out of the kernel.) The entry and exit paths may also avoid

saving and restoring the callee-saved registers, because the compiler will naturally save and restore

them as the system call executes. This means part of the user’s register context is sprinkled through

stack frames on the kernel stack. Unfortunately, when a continuation function executes this state

will be lost.

One simple solution to this problem defines a variation of the system call entry and exit paths, for

continuation-using system calls, that explicitly saves and restores callee-saved registers.

3.2.3 Optimizations

Although it is possible to implement continuations within a control transfer framework that

dedicates a kernel stack to each thread, in practice this would not be satisfactory. Implemented

properly, continuations can achieve the performance benefits of having a single kernel stack per

processor. This requires support for stack discarding and stack handoff optimizations.

Stack discarding occurs when a thread blocks with a continuation function, as in Figure 3-3. While

the thread is blocked in this manner, its kernel stack is not needed and can be deallocated. Of

course, before the thread can run again it needs a new kernel stack. Stack discarding represents one

example of a space-time tradeoff—the kernel recovers the memory consumed by idle kernel stacks,

at the expense of frequent stack allocation and deallocation operations.

Stack handoff improves upon stack discarding by eliminating the stack allocation and deallocation

operations, in most cases. Stack handoff occurs when a thread blocks with a continuation function

and the next thread to run is blocked with a continuation. In this case, the blocking thread has a

stack that it no longer needs and the resuming thread is in need of a stack. Stack handoff transfers

the blocking thread’s kernel stack directly to the resuming thread.

3.3 Interface Requirements

In this section, I discuss requirements for an interface for control transfer management. These

requirements stem from the previous two sections, in which I reviewed current practice and

examined the control transfer needs of continuations. This discussion leads directly to the interface

design presented in Section 3.4.

Portability and efficiency are important overall requirements. The control transfer interface must

be implementable on a very wide variety of processor hardware, including multiprocessors, and

implementations for current and foreseeable RISC processors must be very efficient. My goal for

CHAPTER 3 31

portability is that the control transfer interface must be at least as portable as current practice, a

simple context-switch primitive.

More specifically, the requirements fall into the following categories:

• Stack Management. The control transfer interface must support stack discarding and stack

handoff. Stack allocation and deadlock prevention considerations complicate this requirement.

• Context-Switch. The control transfer interface must support transfers between threads.

Multiprocessor considerations complicate this requirement. The control transfer operations

must support multiple multi-threaded address spaces.

• Kernel Entry and Exit. The control transfer interface must support multiple kernel entry and

exit paths.

The following subsections discuss these requirements in more detail, and Section 3.3.5 summarizes

with a final detailed list of requirements.

3.3.1 Portability

I’ve implicitly assumed in this chapter that the best way to structure control transfer management

for portability divides the implementation into two pieces, machine-independent code and machine-

dependent code, with a control transfer interface between them. Done properly, this approach has

the advantage that porting to a new machine requires no changes to machine-independent code, but

only another implementation of the control transfer interface. In addition, the machine-independent

algorithms and data structures can change without coordinated modifications to the many machine-

dependent implementations. These software-engineering benefits are tremendously important when

different groups control different ports of the software.

However, another approach to portability has been very successful and must also be considered.

For example, GNU Emacs, a widely-used text editor and programming environment, does not

define an interface to the operating system that ports of GNU Emacs must implement.2 Instead

Emacs uses many preprocessor symbols to control conditional compilation in a unified source tree.

Ideally, these preprocessor symbols each control Emacs’ adaptation to one “feature” of the

underlying system. Some examples include BROKEN_TIOCGETC, DONT_DEFINE_SIGNAL, and

HAVE_GETPAGESIZE. In this environment, porting becomes a matter of creating a configuration

2 This discussion relies on my examination of the source for GNU Emacs version 18.59 as maintained at
CMU SCS.

32 CHAPTER 3

header file that defines the right subset of these preprocessor symbols. Using this approach, the

Emacs 18.59 source tree supports 46 operating systems and 74 hardware platforms.

The Emacs approach has some advantages. Porting can be easy if the existing set of preprocessor

symbols suffices to define the new environment. A configuration tool can examine the new

environment and automatically produce a configuration header file. Furthermore, by defining new

preprocessor symbols and modifying the Emacs source code, a port can customize Emacs

arbitrarily.

The Emacs approach also has some very significant disadvantages. First, the software slowly

grows in complexity as it accumulates ports. Emacs 18.59 uses more than 450 preprocessor

symbols, with roughly 1500 preprocessor #if statements. This means that many preprocessor

symbols have very few uses. The relatively clean “feature” preprocessor symbols unfortunately

constitute a minority. Furthermore, the density of preprocessor #if statements is high—roughly one

in every twenty lines of code. This is more than twice the density of #if statements in the machine-

independent Mach 3.0 source. (This comparison is generous to Emacs, because almost all of the

#if statements in the Mach 3.0 source control features unrelated to porting.) Finally, because the

Emacs approach does not cleanly separate machine-dependent and machine-independent code, it

requires continual effort on the part of Emacs developers to incorporate and maintain modifications

made for new ports.

Given these considerations, I believe that the best approach to portability starts with a clean

interface that separates machine-independent and machine-dependent code.3 A few judiciously-

chosen “feature” preprocessor symbols can make an interface more flexible, but relying on

conditional compilation for portability ultimately results in too much complexity and maintenance

difficulties.

3.3.2 Stack Management

Stack allocation, stack discarding, and stack handoff determine the most interesting requirements

for a control transfer interface that can support continuations effectively. Several issues surround

kernel stack allocation, including special requirements for kernel stack memory and what happens

when kernel memory for stacks is not immediately available. Stack handoff is an obvious

optimization to avoid stack discarding and allocation operations. Stack handoff becomes more

3One could argue that the Emacs implementors started with exactly this approach, using the Unix system
call interface as their basis for portability. If so, variations among versions of Unix and ports to non-Unix
platforms have since obscured this design.

CHAPTER 3 33

interesting when one considers the possibility of exposing this functionality directly, with its own

semantics.

In fact, stack discarding and stack handoff could be implemented under the covers of a context-

switch primitive like NT’s KiSwapContext . KiSwapContext would have to free the current

kernel stack if the thread was blocking with a continuation, and allocate a new kernel stack if the

new thread lacked one because it was blocked with a continuation. This means that

KiSwapContext would have to be cognizant of kernel stack allocation. KiSwapContext would

have to report failure if it couldn’t allocate a needed stack. It could transparently optimize

discarding one stack and allocating another by reusing the current kernel stack.

The following examination of the issues surrounding stack allocation and stack handoff

demonstrates that this possibility is unattractive; it pushes too much complexity into the multiple

machine-dependent implementations of context-switch and it misses an opportunity to expose

useful functionality with stack handoff.

3.3.2.1 Controlling Stack Allocation

The control transfer interface should give machine-dependent code the option of full stack

management, with control of stack allocation and deallocation. The interface should not require

that machine-dependent code assume this burden. In most cases, a standard machine-independent

stack-management implementation is quite satisfactory. The standard kernel stack management

uses normal kernel virtual memory primitives to allocate and free stacks.

Some CPU architectures need special stack management. This happens when kernel stack memory

requires special attributes or address ranges. The usual incentive in these cases is better memory

system performance. Examples include the MIPS architecture, where special kernel stack

allocation can reduce TLB misses, and multiprocessor 88K systems, where special kernel stack

allocation can reduce memory cache overhead.

Reducing TLB Overhead

The MIPS architecture [Kane 88] uses a software-managed TLB. Some kernel stack memory

references occur when TLB misses are not permitted; this happens during TLB miss handling and

when changing the current address space. This constraint has two solutions:

• Kernel stacks can be allocated in normal, mapped kernel virtual memory (the kseg2 region of

the address space). The current kernel stack must be wired in the TLB, using one or more of

34 CHAPTER 3

the eight reserved TLB entries. Context-switches must unwire the old stack and wire the new

stack.

• Kernel stacks can be allocated in non-mapped physical memory (the kseg0 region). With this

alternative, kernel stack accesses do not require TLB entries. This is more efficient, because

more TLB entries are available for other uses and context-switching is faster, but in most

implementations it restricts kernel stack size to one page (4K bytes) because the kernel

manages physical memory with page-level granularity.

Many operating systems for the MIPS architecture (e.g., Ultrix, Windows NT, Sprite, and

Mach 2.5) allocate kernel stacks in mapped kseg2 memory because they have multi-page stacks.

However, some systems can take advantage of unmapped kseg0 memory. For example, Mach 3.0

can operate with 4K kernel stacks, because it is a microkernel system that runs less code in the

kernel address space. To realize the performance benefit of allocating stacks in unmapped kseg0

memory, the kernel needs to avoid using the normal kernel virtual memory primitives for stack

allocation.

The Alpha architecture [Sites 92] also uses a software-managed TLB. As in the MIPS case, the

ability to bypass the normal stack allocation mechanism yields improved performance.

Reducing Cache Overhead

A multiprocessor system based on the 88K architecture [Motorola 90a] provides another example.

The MC88200 memory management unit [Motorola 90b] allows memory to be non-coherent, or

private to a processor, via a bit in TLB entries. Because accesses to such memory bypass the

normal cache-coherency protocols, cache misses are handled two cycles faster. In addition, the

cache-coherency protocol potentially stalls other processors for one cycle while their cache tags are

accessed. With this architecture, it is advantageous to allocate kernel stacks in non-coherent

memory and use explicit cache operations to synchronize stack memory only when necessary. Two

things make this possible:

• Kernel stacks are used by only one processor at a time; there is no concurrent sharing of kernel

stack memory. This is true of most operating system implementations, not just Mach 3.0.

• Kernel stacks are normally a per-processor resource, with one stack allocated for the use of

each processor. This is due to the extreme prevalence of stack-handoff operations when

continuations are used. (See Section 5.2 for performance numbers characterizing this effect in

CHAPTER 3 35

Mach 3.0.) When a relatively rare cross-processor stack migration occurs, explicit

synchronization can be performed.

Therefore, a multiprocessor 88K implementation like the Luna 88K will also wish to bypass a

machine-independent stack allocation mechanism.

Summary

Implementations of the control transfer interface for some CPU architectures will want to assert

control over stack allocation, but these will be in the minority. Most implementations would be

happy to use standard machine-independent stack management code. How can the control transfer

interface provide this flexibility for some machine-dependent code without burdening all machine-

dependent code?

One solution defines two versions of the control transfer interface. The complete interface assumes

machine-dependent control of stack memory allocation and deallocation and a subset interface

assumes a machine-independent implementation. Client code uses the complete interface, without

worrying about the implementation of stack allocation. Those architectures that don’t actually need

this control implement only the subset, and standard machine-independent code fills in the rest.

3.3.2.2 Non-Blocking Stack Allocation

The control transfer interface should provide for non-blocking stack allocation. This subsection

presents the need for non-blocking allocation and outlines a recovery mechanism, based on a stack-

alloc thread, that the kernel can use when the non-blocking allocation fails to allocate a stack.

Stack handoff optimizes away most stack allocation operations, but occasionally the context-

switch path must allocate a new kernel stack. This occurs during a switch from a thread that must

hold onto its stack (because the thread is not blocking with a continuation) to a thread that does not

have a stack (because it is blocked with a continuation). In this case, a stack must be allocated for

the new thread’s use. However, the context-switch path can’t use a normal stack allocation

primitive, because it might make use of the VM subsystem to allocate memory:

• The VM subsystem might block if there is no memory available. This would lead to a call back

into the context-switch path, and infinite recursion would result.

• The stack allocation probably occurs at a point in the context-switch path that holds scheduling

or thread locks, because it is modifying the state of a thread. From a locking hierarchy and

36 CHAPTER 3

performance point of view, calling out to virtual memory code that will be taking its own locks

is unwise.

For these reasons, the context-switch code needs a way to allocate stacks that won’t block and

won’t take any virtual memory locks. However, this means that the stack allocation call might fail.

Therefore the kernel also needs a mechanism to cope with the temporary inability to allocate a

stack.

The solution to this problem comes in two parts. The first part, a requirement for the control

transfer interface, is a non-blocking alternative for stack allocation that can report failure. The

second part, which comes into play when stack allocation fails, is a kernel thread dedicated to

making possibly-blocking stack allocation calls.

One easy way to implement a non-blocking stack allocation primitive uses a small cache of unused

kernel stacks. Then stack allocation only fails when the cache is empty. (Of course, a “correct”

implementation of non-blocking stack allocation could always fail. This would work, but it would

produce suboptimal performance.)

Because of locking considerations it is also desirable that stack deallocation avoid calling into the

VM subsystem or other foreign modules and taking random locks. With a stack-cache

implementation of stack allocation, this is easy: deallocating a stack just adds the stack to the

cache.

This analysis exposes another requirement for the control transfer interface. For the reasons

outlined above, as well as the performance benefit of avoiding VM allocation and deallocation,

implementations of the control transfer interface will likely keep a cache of unused stacks. This

means that the control transfer interface should expose some way of hastening the recovery of this

unused memory when the kernel virtual memory system runs out of physical memory. With this

addition, caching page-sized (or larger) kernel stacks will not cause memory availability problems.

As a consequence of non-blocking stack allocation, it must be possible to defer stack allocation to a

context that can make blocking stack allocation calls. Strictly speaking, this mechanism is not part

of the control transfer interface, but it is so closely related that it should be discussed here.

An obvious method for deferring stack allocation uses a distinguished stack-allocation thread,

whose sole purpose is to perform blocking stack allocation calls. When the scheduling code’s non-

blocking stack allocation call fails, it can put the stack-less thread on a queue for the stack

allocation thread and pick another thread, which hopefully won’t need a stack to run.

CHAPTER 3 37

This mechanism is not optimal, because while a stack-less thread is sitting in the stack-allocation

thread’s work queue more stacks may become available (because some other threads block and

give up stacks). Meanwhile, if the stack allocation thread is blocked in the VM subsystem, the

stack-less thread will be left unrunnable for longer than necessary. However, this situation should

be quite rare.

3.3.2.3 Avoiding Deadlock

The description of the stack-allocation thread in the previous subsection left unanswered an

obvious question: who allocates the stack-allocation thread’s stack? The control transfer interface

must address this problem with some mechanism that will ensure that certain “stack-privileged”

threads always have a stack available to them.

Stack-Privileged Threads

In fact, there are several threads for which a stack allocation attempt should always succeed. In

addition to the stack-allocation thread, the idle threads (if the scheduler uses idle threads) and other

internal threads in the virtual memory system’s pageout path must be stack-privileged.

The stack-allocation thread is the most obvious example—it is very likely that when the scheduling

code selects the stack-allocation thread to run, a stack handoff to the stack-allocation thread will

not be possible. (Because the stack-allocation thread is made runnable only when stacks need to be

allocated, and more stacks are only needed when stack handoff is not possible because the current

thread is blocking and keeping its stack.) At this point, if there is no stack for the stack-allocation

thread, then it will be added to its own work queue of threads waiting for a stack and deadlock with

itself.

Idle threads, assuming the scheduler uses them, are another example. (Typically there is one idle

thread per processor in a multi-processor system.) When the scheduling code fails to allocate a

stack for the thread it wishes to run next, it must back off and select another runnable thread. If it

selects the idle thread, this means that there are no other runnable threads. The scheduler can’t

select another thread at this point, so a context-switch to the idle thread must succeed. This implies

that a stack allocation attempt for the idle thread must succeed.

All threads involved in creating more free pages when the system is running out of available

memory also fall into this category. In the case of Mach 3.0, these are the pageout daemon thread,

the threads in the default pager that service “internal” memory objects [Young 89, p. 34, p. 64],

and the device-reply thread, which is used when the default pager writes out dirty pages. These are

the same threads that are “VM-privileged” and can dip into the virtual memory system’s reserved

38 CHAPTER 3

memory pool [Young 89, p. 80; Draves 91, p. 209]. If any of these threads were denied a stack and

consequently placed on the stack-allocation thread’s work queue, the system could deadlock

because the stack-allocation thread might block waiting for free pages and a thread necessary to

produce those free pages would be waiting for the stack-allocation thread. (The stack-allocation

thread itself can not be VM-privileged, or a burst of threads needing stacks could exhaust the

reserved memory pool. Only threads necessary to the pageout of internal memory objects by the

default pager can be VM-privileged.)

Implementing Stack-Privilege

The control transfer interface must guarantee that stack-privileged threads always have a stack

available to them. One good way to accomplish this reserves a stack for each stack-privileged

thread.

Actually, disallowing stack discarding for stack-privileged threads would be a very simple solution.

It would not impose any other constraints on the control transfer interface. However, context-

switches to and from idle threads and possibly other stack-privileged threads are relatively

frequent. For performance reasons, it is desirable that the control transfer interface support stack-

privileged threads with a mechanism that allows them to participate in stack handoff as much as

possible, while still preserving correctness.

A better solution reserves a stack for each stack-privileged thread, but allows the stack-privileged

threads to participate in stack handoff and use non-reserved stacks in normal operation. This is

easy to manage; a field in the thread structure holds a pointer to the reserved stack, or null if the

thread is not stack-privileged.4 The scheduling code has the responsibility of not using stack

handoff when the current thread is stack-privileged and using its reserved stack. Otherwise the

stack-privileged thread would lose access to its reserved stack. However, stack-privileged threads

can participate in stack handoff using other stacks.

This solution creates two requirements for the control transfer interface. First, if the non-blocking

stack allocation does not have any cached stacks available, then it should use the reserved stack if

the thread is stack-privileged. Second, the stack discarding operation should not actually free a

reserved stack from a stack-privileged thread. (In this case, the stack discarding operation should

perform any other cleanup necessary to break the normal links between the stack-privileged thread

and the reserved stack that it is using.)

4An equivalent but less convenient formulation would set aside a reserved pool of kernel stacks, without
specifically assigning each reserved stack to a VM-privileged thread.

CHAPTER 3 39

This stack-privilege algorithm could be improved to permit a stack-privileged thread to handoff its

reserved stack to another stack-privileged thread. Consider two stack-privileged threads TA and

TB and their respective reserved stacks SA and SB. Before the stack handoff, TA is running on SA

and TB is blocked with a continuation, so SB is not in use. To preserve the invariant that both

threads have a reserved stack available to them, the stack handoff need only swap the reserved

stacks. After the stack handoff, TA is blocked with a continuation and is not using its reserved

stack, which is now SB, and TB is running on its reserved stack, which is now SA. However, this

situation arises infrequently enough that the optimization does not seem to be worth the increased

implementation complexity.

Another minor improvement would permit a stack-privileged thread to handoff its reserved stack to

another thread, if a replacement reserve stack could be allocated out of the cache of unused stacks.

Again, this is probably not worth implementing.

3.3.2.4 Exposing Stack Handoff

Stack handoff is most useful if it does not happen under the covers of a context-switch. So far, I’ve

presented stack handoff as an optimization in context-switch for stack discarding and subsequent

allocation. This is an important optimization; without it continuations would not be very useful.

However, stack handoff can be more than just an optimization.

A stack-handoff primitive that changes address spaces and the “current thread” without calling the

new thread’s continuation effectively lets a computation cross address space boundaries. For

example,

// thread A is running
thread B = get waiting thread;
stack-handoff(thread A, thread B);
// now thread B is running

The code now has the option of calling thread B’s continuation or going off to do something else

entirely. Section 4.2.5 and Section 4.2.6 examine the application of this form of stack handoff to

achieve continuation recognition, another valuable optimization. In brief, a single optimized

function can replace two more general functions, one in the blocking thread and one in the

resuming thread.

3.3.2.5 Avoiding Stack Overflow

Exposing the stack handoff operation creates another requirement for the control transfer interface,

to avoid stack overflow. This section discusses how stack overflow could occur and how it can be

prevented.

40 CHAPTER 3

A sufficiently long sequence of stack handoff operations, if uninterrupted by a return to user mode,

will result in stack overflow. Actually, the real problem isn’t stack handoff; it is the continuation

calls associated with stack handoff. Consider what could happen: thread A blocks with a

continuation, the scheduler selects thread B to run and performs a stack handoff to B, and then

calls thread B’s continuation. Thread B runs inside the kernel and blocks again with a continuation,

resulting in a stack handoff to thread C and a call to thread C’s continuation. Thread C runs inside

the kernel and blocks again with a continuation, resulting in a stack handoff to thread D and a call

to its continuation, etc. Because the continuations do not return, each thread’s continuation

function uses up more of the stack that is passed from thread to thread. No matter how big a stack

the kernel uses, a sufficiently long sequence of continuation calls will overflow the stack.

To prevent this problem, the control transfer interface should contain an operation to call a

continuation function. This primitive should call its continuation argument, after resetting the

current stack pointer to the base of the stack. In other words, it should create the same stack frame

for the continuation function as the stack-allocation operation would.

3.3.3 Context Switch

The control transfer interface should include some variant of the traditional context-switch

primitive, for use when threads block without a continuation and stack handoff is not possible.

Two issues complicate this requirement. First, multiprocessor machines are vulnerable to a race

condition that can result in a thread running simultaneously on two processors. Second, some

provision for changing address spaces must be included, either as a separate primitive or as part of

context-switch.

3.3.3.1 Multiprocessors

On multiprocessors, there is a window of vulnerability between when a thread decides to context-

switch and when the new thread is running. This creates a requirement for the control transfer

interface, to allow machine-independent code to context-switch safely on multiprocessors without

undue dependencies between machine-independent and machine-dependent code.

The obvious context-switch code for a uniprocessor, when moved to a multiprocessor, opens up a

window in which two processors can be using the same stack. This occurs when a wakeup happens

on a thread which is just in the process of blocking, and another processor starts running the thread

before it has finished blocking on the first processor.

For example, a naive implementation might look like:

CHAPTER 3 41

swtch() {
if (!setjmp(self)) {

add self to run queues;
danger-point:

get new thread from run queues
longjmp(new thread);
/*NOTREACHED*/

}
}

where setjmp saves registers and returns zero, and longjmp restores registers that were saved by

a previous setjmp , making the setjmp return again but with a non-zero value.

On a multiprocessor, this code is not correct. At the label danger-point , another processor

might pick the current thread out of the run queues and longjmp to it. This would result in the

thread executing on two processors at once, with the likelihood that the processors would clash in

their use of the stack.

There are many possible solutions to this problem, all of which defer some change in scheduling

state until after the switch to the next stack. For example:

• Sprite’s Mach_ContextSwitch assumes that the current thread will take a lock on the

scheduling data structures, which is released by the next thread after the context-switch. This

has the advantage that Mach_ContextSwitch knows nothing about the machine-independent

data structures and algorithms.

• Windows NT’s KiSwapContext addresses this problem by holding a global lock on the

scheduling data structures that is released after the switch to the next stack but before restoring

the next thread’s register context.5

• Mach 2.5’s switch_thread_context uses an upcall to the machine-independent scheduling

code, after switching to the next stack but before restoring the next thread’s register context, to

put the old thread on the run queues. This has the advantage that scheduling locks are not held

through the context-switch path.

Another possibility effectively combines the Sprite and Mach 2.5 techniques. The context-switch

operation can make available to the new thread a pointer to the previously running thread. At this

5In fact, to take NT’s global scheduling lock one must first prevent interrupts and then acquire a spin-
lock. The spin-lock is released after switching to the next stack but before restoring the next thread’s
register context. The next thread then “lowers IRQL” to allow interrupts again. This is all hidden inside
KiSwapContext ; it only makes a difference when the next thread did not block with
KiSwapContext .

42 CHAPTER 3

point the new thread can safely put the previous thread back in the run queues, or otherwise

finalize the previous thread’s scheduling state. This insulates the context-switch code from the

machine-independent scheduling implementation; the scheduling code may or may not hold a lock

across the context-switch code, depending on its needs.

3.3.3.2 Multiple Address Spaces

In addition to context-switching between two threads, the control transfer interface must also

support switching between address spaces. The context-switch operation and the stack handoff

operation should both automatically change the current address space when the two threads

involved belong to different address spaces.

Mach 2.5 takes a different approach, in which address space switches use a primitive in a different

interface. This approach cleanly separates the interfaces to two machine-dependent modules,

control transfer and MMU management.

However, putting all machine-dependent components of a context switch or stack handoff into one

operation allows them to be optimized together with a minimum of procedure call overhead. This is

especially important for stack handoff, because in practice it occurs much more frequently than

context-switch. This doesn’t preclude separate operations to manipulate the MMU context.

3.3.4 Kernel Entry and Exit

The control transfer interface must provide for entry to the kernel from user processes and exit

back to a user process. Of course, all operating system kernels support entry and exit. The

interesting aspect of these features concerns their interaction with continuations and kernel stack

management.

3.3.4.1 Multiple Exit Paths

As I discussed in Section 3.2.1, the programmer must have a way to return or exit from a

continuation function. For example, if the implementation of a system call blocks with a

continuation function, then the continuation function needs a way to reach the system call exit path,

the machine-dependent instructions that restore the user’s saved register context and return the

system call’s status code.

For good reason, most kernels have at least two entry/exit paths, one for synchronous entrances,

such as system calls, and one for asynchronous or unexpected entrances, such exceptions and

interrupts. In the case of synchronous entrances, the kernel typically saves and restores a subset of

the machine’s user register context. A system call need only save callee-saved registers, and even

CHAPTER 3 43

some of this responsibility may be delegated to the system call stub linked with the user program or

to the compiler-generated function prologues in the kernel. In addition the system call exit path

returns a status code. In contrast, the asynchronous paths typically save and restore the entire user

register context, which may be significantly more expensive.

System call, exception, and interrupt handling may all result in control transfers that benefit from

continuations, so the control transfer interface must support exits from a continuation function in

each of these contexts.

3.3.4.2 Saving User Context

The stack management functionality interacts with the saving and restoring of user register context.

This does not affect the control transfer interface per se, but it does create a requirement for

implementations of the control transfer interface: user register context can not be tightly tied to the

kernel stack. When the thread discards its kernel stack, it should not discard saved user register

context.

For best performance, this means that the trap handler should write user register values into a save

area associated with the thread, instead of writing them to the base of the thread’s kernel stack. If

this is inconvenient or impossible (perhaps the hardware “helpfully” saves register context in the

wrong place), the implementation can always copy the user register context off the stack during a

stack discard or stack handoff operation.

A related issue concerns callee-saved registers during a system call. As I discussed in

Section 3.2.2, a common optimization avoids saving and restoring these registers explicitly in the

system call entry and exit paths because the C compiler saves and restores these registers

automatically as the kernel executes. However, this optimization is incompatible with stack

discarding, so any system calls that may possibly make use of stack discarding must use longer

entry and exit paths.

3.3.5 Summary

The requirements for a control transfer interface that will support continuations, stack discarding,

and stack handoff can be summarized as follows:

• Machine-dependent code should have the option of controlling stack memory allocation, but

not be required to supply this functionality.

44 CHAPTER 3

• A variant of the stack allocation operation should allow a non-blocking allocation attempt that

doesn’t try to acquire locks in other modules, such as the virtual memory subsystem. Stack

deallocation also should avoid calling out to other modules.

• The interface should support an operation that garbage-collects any unused but cached stacks.

• The stack allocation and discarding operations should support the notion of stack-privileged

threads and reserved stacks.

• Stack handoff should be directly exposed, with an operation that merely changes the current

address space and thread before returning.

• The interface should supply an operation that calls a continuation function while resetting the

stack, to prevent overflow due to stack handoff.

• The context-switch operation should support multiprocessors without creating dependencies

between machine-independent and machine-dependent code.

• The context-switch and stack handoff operations should automatically change address spaces

when the two threads involved belong to different processes.

• The control transfer interface must support multiple kernel entry and exit paths.

These requirements lead directly to the actual interface specification.

3.4 Control Transfer Interface

I have developed a control transfer interface that provides additional flexibility and opportunities

for optimization in support of continuations by meeting the requirements of the previous section. In

doing this, I have adopted Tevanian’s philosophy for developing Mach’s pmap interface for virtual

memory functionality:

“The pmap interface is not an attempt to abstract all of the functionality provided

by popular MMU designs. Instead, it is an interface to the page-based

functionality needed by the machine-independent algorithms. Each primitive in the

interface provides a specific function as required by machine-independent code.”

[Tevanian 87, p. 43]

I’ve applied this approach to control transfer. Rather than abstract hardware support for processes

and context-switching, I’ve specified the operations that the machine-independent code actually

CHAPTER 3 45

needs, and left it up to the machine-dependent implementation to map those operations onto the

hardware. The result is a conceptually simple yet powerful interface.

stack_attach(thread, stack, cont) give thread a new stack
stack_detach(thread) remove and return thread’s stack
stack_alloc(thread, cont) allocate and attach thread’s stack
stack_alloc_try(thread, cont) non-blocking stack_alloc
stack_free(thread) detach and free thread’s stack
stack_privilege(thread) make the thread stack-privileged
stack_collect() garbage-collect unused stacks
stack_handoff(curthd, nextthd) switch to a new thread on same stack
switch_context(curthd, cont, nextthd) switch to a new thread and stack
call_continuation(cont) call the continuation function
current_thread() return pointer to current thread
thread_syscall_return(retval) exit kernel from system call
thread_exception_return() exit from exception or interrupt

Table 3-1: Control Transfer Interface

The new interface allows machine-independent thread management and inter-process

communication code to change address spaces, to manage the relationship of kernel stacks and

threads, and to create and call continuations. Table 3-1 lists the operations. (Table 3-1 omits some

details. See Appendix B for a complete description of the interface.)

The interface does not include any functions for examining a blocked thread’s continuation

function. It is stored in the kernel’s machine-independent thread data structure, and can be

examined directly by any other thread running in kernel mode.

The control transfer interface uses a compile-time “feature” conditional to give implementations the

option of controlling stack management. Machine-dependent implementations can choose between

two variants of the interface:

• Machine-dependent code can take over full responsibility for stack management by defining

MACHINE_STACKS in a header file. In this case, machine-dependent code must define

stack_alloc , stack_alloc_try , stack_free , and stack_collect .

• If machine-dependent code does not define MACHINE_STACKS, then it must define the

stack_attach and stack_detach functions. In this case, machine-independent code

defines stack_alloc , stack_alloc_try , stack_free , and stack_collect using the

46 CHAPTER 3

kernel’s standard virtual memory interface and the stack_attach and stack_detach

operations.

This is the only use of the MACHINE_STACKS conditional in machine-independent code; all clients

of the control transfer interface rely solely on the stack_alloc /stack_free version of the

interface.

The following subsections further describe the interface, by giving example implementations of two

basic scheduling primitives, and discuss the interface’s portability.

3.4.1 Using the Interface

The implementation of Mach’s higher-level thread management operations makes a nice example

of the use of the control transfer interface. The thread management operations manipulate the

scheduling data structures—the run queues, the wait queues, state information associated with each

thread—in addition to using the interface for actual control transfers. Table 3-2 presents the

Mach 3.0 thread management operations that are relevant here.

The following subsections describe these operations and sketch their implementation in terms of the

control transfer interface primitives. These subsections omit some unimportant details of the actual

implementation of thread_handoff and thread_block .

thread_handoff(oldthd, cont, nextthd) handoff to a thread, if possible
thread_block(cont) selects and runs a new thread

Table 3-2: Thread Management Operations

3.4.1.1 thread_block

The thread_block function blocks the current thread and chooses another thread for execution.

By default, the current thread is left runnable. It is also possible for the current thread to enter a

waiting state, but this example does not describe that mechanism.

The caller has the option of specifying a continuation function. thread_block ’s behavior

depends on the value of this argument:

• If a continuation is specified, then the current thread is left blocked without a stack and the

thread_block call does not return. Instead, when the thread resumes the continuation is

called. In this case, thread_block uses the more efficient stack_handoff path if possible

but sometimes it is forced to use switch_context , which changes stacks.

CHAPTER 3 47

• If the continuation argument is NULL, when the thread resumes its thread_block call

returns. In this case, thread_block always uses switch_context .

thread_continue(prev_thread) {
cur_thread = current_thread();
thread_dispatch(prev_thread);
// call_continuation not necessary here
(*cur_thread->cont)();
/*NOTREACHED*/

}

thread_dispatch(prev_thread) {
if (prev_thread->cont) {

// detach and free thread’s stack
stack_free(thread);

}

if (prev_thread->state == RUNNING) {
// return old_thread to run queue
thread_setrun(prev_thread);

}
}

Figure 3-4: thread_block helper functions

Statically, most calls to thread_block do not supply a continuation. Dynamically, however,

most calls to thread_block do use a continuation and thread_block does make use of

stack_handoff —see Section 5.2.

thread_block(cont) {
old_thread = current_thread();

retry:
// select a runnable thread from the ready queue
next_thread = thread_select();

if (next_thread->cont) {
if (cont &&
 old_thread not using reserved stack) {

// handoff changes current_thread()
stack_handoff(next_thread);
// now current_thread() == next_thread

old_thread->cont = cont;
if (old_thread->state == RUNNING)

// return to ready queue
thread_setrun(old_thread);

call_continuation(next_thread->cont);
/*NOTREACHED*/

} else {
// allocate a new stack
if (!stack_alloc_try(next_thread,
 thread_continue)) {

add next_thread to stack-alloc queue;
wakeup stack-alloc thread;
goto retry;

}
}

}

// go to sleep - returns only if cont is NULL
prev_thread = switch_context(old_thread, cont,
 next_thread);
// old_thread is running again

thread_dispatch(prev_thread);
}

Figure 3-5: Implementing thread_block

48 CHAPTER 3

Figure 3-5 shows the implementation of thread_block , and Figure 3-4 depicts its helper

functions. The thread_continue function executes when a thread blocked without a stack

resumes execution on a new stack. The thread_dispatch function, called from thread_block

and thread_continue after a context switch, disposes of the previously running thread. This

implementation illustrates several aspects of the control transfer interface.

Stack Handoff

The stack_handoff function changes the identity of the currently executing thread. That is,

current_thread() returns a different value after stack_handoff . In addition,

stack_handoff changes the current address space if the current thread and the next thread reside

in different address spaces. Because stack_handoff does not call the next thread’s continuation

function directly, thread_block must do this with call_continuation .

The thread_block implementation can only make use of stack_handoff if the next thread

blocked with a continuation and the current thread is also blocking with a continuation function.

Furthermore, thread_block must check that the current thread is not running on a reserved

stack.

Calling Continuations

The call_continuation function calls its function pointer argument. The usage

call_continuation(continuation);

is equivalent to

(*continuation)();

except that call_continuation also resets the stack pointer to the base of the stack.

When thread_block calls the new thread’s continuation after stack_handoff , it must use

call_continuation to prevent stack overflow. Otherwise the continuation function could chew

up some stack space and eventually call thread_block again, resulting in another stack handoff and

more stack space consumption, repeating until eventually the kernel stack would overflow.

In thread_continue , on the other hand, call_continuation is not necessary: thread_-

continue is already executing at the base of the current stack, because the stack was just

attached to the thread via stack_alloc_try .

CHAPTER 3 49

Stack Management

The stack_alloc_try function takes a thread and a continuation as arguments. It makes a non-

blocking attempt to allocate a kernel stack and attach it to the thread, returning a boolean value to

indicate success or failure. If successful, the thread and stack are initialized such that when the

thread resumes (via switch_context), the thread executes the continuation function on its new

stack. The continuation function takes as an argument the previously executing thread.

In thread_block ’s implementation, the continuation function is always thread_continue .

thread_continue in turn calls the thread’s “true” continuation function, after disposing of the

previously executing thread.

The stack_free function takes a thread as an argument. It discards the thread’s stack. In this

example, the thread_dispatch function calls stack_free on the previously executing thread

if that thread blocked with a continuation function, and hence doesn’t need its stack.

Although the thread_block implementation doesn’t use them directly, the control transfer

interface contains two more stack management operations, stack_alloc and stack_collect .

When stack_alloc_try fails to allocate a stack, thread_block puts the thread on a work

queue for a special internal stack-allocation thread to pick up. This thread can use the potentially

blocking stack_alloc call to allocate a stack. The virtual memory system calls

stack_collect when the kernel needs more free physical memory; stack_collect should free

any unused stacks cached in the stack management implementation.

Context-Switch

The switch_context function performs a context-switch to another thread, changing address

spaces if the current thread and the next thread belong to different address spaces. In addition to

the current and next threads, switch_context takes as an argument the continuation function for

the current thread. If this is not NULL, then switch_context need not save register state for the

blocking thread. Otherwise switch_context must save the callee-saved registers in preparation

for a future switch_context that will resume the blocking thread.

The only tricky aspect of this concerns the treatment of the previously running thread.

switch_context returns a pointer to the previously running thread. The thread_block

implementation calls thread_dispatch on the previous thread, to discard the thread’s stack (if it

blocked with a continuation function) and otherwise finalize its scheduling state. The other

possibility is that switch_context doesn’t return; in this case, when the thread resumes it

50 CHAPTER 3

executes a continuation function (the argument to stack_alloc or stack_alloc_try) on a

new stack and this continuation function receives the previously running thread as an argument.

This technique is very similar to the way first-class continuations work in programming languages

such as Scheme [Steele 78; Clinger & Rees 92]. In Scheme, call-with-current-

continuation captures a continuation that represents the future execution of the current

expression. The expression can either return a value normally or call the continuation with a return

value as an argument. In our case, the return value is the previously running thread, the current

expression is a call to switch_context , and the continuation is either the return context of

switch_context or an explicit continuation function.

3.4.1.2 thread_handoff

The thread_handoff function blocks the current thread with a continuation and hands control to

a specific next thread. Figure 3-6 presents the thread_handoff implementation. It essentially

just a stack handoff plus the appropriate updating of scheduling state. There are two important

points to note:

• thread_handoff may fail (return FALSE). This can happen when the next thread is in an

inappropriate scheduling state (for example, another processor just started running the next

thread, or the next thread is not allowed to run on the current processor due to processor set

constraints) or when the current thread is stack-privileged and running on its reserved stack

(see Section 3.3.2.3).

• If successful, thread_handoff returns normally except that the value of

current_thread() has changed, and the current address space has changed if the threads

are in different tasks. It does not call the new thread’s continuation.

boolean_t
thread_handoff(old_thread, cont, next_thread) {

// current_thread() == old_thread

if (old_thread using reserved stack ||
 next_thread can’t run)

return FALSE;
next_thread->state = RUNNING;

// stack_handoff changes current_thread()
stack_handoff(next_thread);
// now current_thread() == next_thread

old_thread->state = WAITING;
old_thread->cont = cont;
return TRUE;

}

Figure 3-6: Implementing thread_handoff

CHAPTER 3 51

Because thread_handoff returns without calling the new thread’s continuation,

thread_handoff ’s caller can perform continuation recognition—it can check the continuation

and decide if it wants to call it or take a faster, specialized path instead. See Section 4.2.5 for an

example of this optimization.

3.4.2 Portability

In practice, the control transfer interface has met my requirement for portability, that it be at least

as portable as a simple context-switch primitive. Two things validate this claim. First,

implementations for a substantial number of architectures exist as part of Mach 3.0. Second, there

is a relatively straightforward (albeit inefficient) way of transforming an existing context-switch

implementation to a full implementation of the control transfer interface.

The control transfer interface has been ported to a variety of CPU architectures. I originally did

implementations for the Intel 80386/80486 and MIPS R3000 processors. Subsequent

implementations by other people include the Intel 860, Motorola 88100, Motorola 68030/68040,

Sun Sparc, DEC VAX, DEC Alpha, and National Semiconductor 32532 processors. Currently,

only the MIPS and Alpha implementations define the MACHINE_STACKS conditional and

implement custom stack management.

Given an existing context-switch implementation, it is normally fairly easy to produce a full

implementation of the control transfer interface. Potential difficulties arise in two places. First, the

existing trap handling code might save user register context on the thread’s kernel stack. The

stack_attach , stack_detach , and stack_handoff functions can work around this problem

by copying the user register context between the kernel stack and another save area in the thread

structure. Second, the processor may have a special context-switch instruction that must be used to

change address spaces. The stack_handoff operation can work around this by constructing a

dummy context, identical to the current context, and performing a hardware context-switch

internally. These techniques result in undesirable performance for stack_handoff , but they are

available when one desires a quick implementation of the control transfer interface.

53

Chapter 4

Using Continuations

After one has in place a framework for using continuations in an operating system kernel, some

important questions remain: “When should they be used?” and “How are they used?” Using

MockIPC, an extended example based on Mach IPC, I discuss five general-purpose techniques for

using continuations. I also briefly review the use of continuations in the Mach 3.0 kernel. This

experience leads me to conclude that with relatively little effort one can modify an operating system

kernel to make productive use of continuations.

The question of when to use continuations is best answered via an analysis of cost versus benefit.

In an operating system kernel written in a traditional systems programming language such as C

there is a software engineering cost associated with using continuations. Because of the lack of

language support, using continuations requires some extra effort on the part of the kernel

programmer. It is important to identify those areas that will benefit sufficiently to make

continuations an appropriate optimization. The answers can vary, depending on whether the

performance goal is decreasing the latency of important control transfer paths or minimizing the

space overhead in the operating system kernel.

I present five general-purpose techniques for using continuations, along with advice on when to

apply these techniques. Three of these techniques provide different styles for using continuations.

These techniques offer a range of tradeoffs between performance, modularity, and code impact.

The remaining two techniques concern continuation recognition, an optimization that reduces the

latency of dynamically frequent control transfer paths. One approach to continuation recognition

54 CHAPTER 4

relies on stack handoff and is appropriate in synchronous, RPC-like settings. The other approach

applies more broadly, allowing one thread to optimize another thread’s execution.

Finally, in this chapter I review how I modified the Mach 3.0 kernel to use continuations. Because

of Mach’s message-passing microkernel structure, interprocess communication was the first

candidate for continuations. In all, I modified six areas of the Mach kernel using the techniques

described here; most of the Mach kernel source code remained unaffected.

4.1 When to Use Continuations

The following steps should drive the process of deciding whether continuations are an appropriate

optimization for a particular operating system kernel:

• Identify performance objectives. If performance is not a concern, then continuations are

probably not appropriate. Continuations can reduce the space consumed by kernel stacks and

reduce the latency of selected control transfer paths.

• Find candidate code paths. In general, the “most frequent” code paths are appropriate

candidates for continuations, but a more detailed answer depends on the performance

objectives.

• Evaluate software engineering costs. Two factors contribute to the software engineering cost:

implementing the control transfer interface as discussed in the previous chapter, and converting

or rewriting the candidate code paths to use continuations. The latter factor largely depends on

how those code paths fit into the modular organization of the kernel.

Once continuations have been used to achieve a performance improvement, it often becomes

worthwhile to use continuations in more marginal situations. For example, converting internal

kernel “worker” threads to use continuations requires almost no additional effort to achieve an

incremental performance improvement. In these cases, the marginal benefit of using continuations

exceeds the marginal cost, because the one-time cost of implementing the control transfer interface

has already been paid.

4.1.1 Candidate Code Paths

The appropriate candidates for continuations and continuation recognition are the “most frequent”

code paths in the operating system kernel. If the kernel contains no “most frequent” paths, then

continuations are probably not an appropriate optimization.

CHAPTER 4 55

The definition of “most frequent” varies depending upon the performance objective and the

application load. If the objective is reducing memory consumption, then the important control

transfer paths are those in which most threads are blocked most of the time. If the objective is

reducing control-transfer latency with stack handoff and continuation recognition, then the

important paths are those which occur frequently at run-time and dominate the kernel’s control

transfer execution overhead.

These two definitions can produce different candidate code paths. For example, suppose almost all

threads spend large amounts of time blocked in path A, while the few remaining threads context-

switch furiously amongst themselves via path B. If memory savings is the objective, then one

would focus attention on path A and the consequent savings from stack discarding. If latency is the

objective, then one would focus attention on path B to realize the benefits of stack handoff and

continuation recognition.

Continuation recognition, which reduces control transfer latency, has prerequisites in addition to

dynamic frequency of the control transfer path. Handoff control transfer paths can most easily take

advantage of continuation recognition. In these cases, a thread A that is blocking with a

continuation specifies a direct control transfer to a resuming thread B that blocked with a

continuation, and then goes on to execute an optimized code path instead of calling thread B’s

continuation. However, handoff control transfer is not necessary for continuation recognition.

More generally, continuation recognition is possible whenever one thread’s activity impinges on a

blocked thread, and the executing thread A can take advantage of precise knowledge of the blocked

thread B’s state. As a simple example, thread A might be retrieving or changing thread B’s user

register state, which it can access directly if thread B is in certain known states. In other cases, the

executing thread A might have some knowledge or information about the state of the system that is

important to the blocked thread B but wasn’t available to it when it blocked. Then continuation

recognition allows thread A to modify thread B’s continuation in light of the new system state.

4.1.2 Software Engineering Costs

Two contributions to software engineering cost must be evaluated when one considers

continuations. First, one must implement the control transfer interface that makes using

continuations possible. Section 3.4 discusses this one-time effort; I won’t consider it further here.

Second, one must convert or rewrite candidate code paths using the techniques of Section 4.2.

Ill-considered use of continuations can lead to the following problems:

56 CHAPTER 4

• Excessive code duplication. Continuation functions can duplicate fragments of code found in

other functions.

• Inter-module implementation dependencies. Continuation functions are easiest to write given

global knowledge of the kernel implementation, and without care they can introduce

dependencies between unrelated modules.

• Loss of generality. Continuation-using functions are easiest to write when they make

assumptions about the context in which they will be called. Adding continuations can turn a

general-purpose function into a function optimized for a specific purpose. This hampers future

code reuse.

Continuations work best when the blocking thread needs to save only a few words of state

information. With continuations, any state needed across a blocking operation must be manually

saved and restored. This is both burdensome for the programmer and expensive in terms of

performance. The thread structure must be larger to accommodate the state (or an annex structure

must be allocated and deallocated) and unnecessary cycles may be spent saving the state in some

cases.

Continuations also work best when the blocking kernel operation occurs entirely inside a single

code module. Control transfers that occur inside deeply-nested call chains can be very awkward.

The continuation must replace or execute pieces of multiple functions. This is always ugly, and it

is especially difficult if the call chain spans multiple code modules.

On the other hand, the techniques explored in the next section make blocking with a continuation

inside shallow call chains quite acceptable. In performance-critical control transfer paths, deeply-

nested call chains are undesirable in any case because of the function call overhead.

4.1.3 Microkernel Operating Systems

Continuations can be a particularly effective optimization for “microkernel” operating systems. In

these systems, the kernel exports a small interface and implements only a few abstractions. This

maximizes the performance benefits and minimizes the software engineering costs of using

continuations. Although continuations can also improve the performance of “monolithic” operating

systems, in such systems it is more difficult for a focused optimization to achieve across-the-board

improvements.

Microkernel operating systems do well with continuations because it is easy to identify a stable set

of “most frequent” control transfer paths. For example, in a communication-oriented microkernel

CHAPTER 4 57

most application loads will stress the interprocess communication paths in the kernel. In the case of

Mach 3.0, there are roughly 60 different points where a thread can block in the kernel, and most of

those points have many different continuations. However, over 99% of the blocking operations

occur in only six ways, and these “hot spots” are mostly independent of the work-load.

In contrast, “monolithic” operating systems such as Mach 2.5 don’t benefit as much from

continuations. There are over 180 places in Mach 2.5 where a thread can block, and there are no

real hot spots. X Window System [Scheifler & Gettys 90] applications stress the socket control

transfer paths, file system applications block in the buffer cache, terminal programs exercise the

character IO and serial line code, etc. For many particular application loads, like a network file

server, one can find “most frequent” control transfer paths that might justify the use of

continuations. However, across a broad spectrum of applications such hot spots are harder to find

in a monolithic kernel.

4.2 How to Use Continuations

In this section, I use an extended example to explain how to actually use continuations. I present

five techniques, including three alternatives for using continuations and taking advantage of stack

discarding, and two methods for using continuation recognition. Although for didactic simplicity

the presentation uses variations on a single example derived from Mach 3.0’s interprocess

communication code, the techniques discussed here have general applicability.

The three alternatives for using continuations offer a range of tradeoffs. The first technique uses

continuations as “structured gotos.” The result can actually be quite elegant and efficient, but it

tends to produce very specialized functions optimized for a single calling context. The second

technique adds some arguments and glue code to a blocking function, so that it can also block with

a continuation. This produces somewhat ugly code, but it is a simple modification that preserves

the original functionality and organization of the code while adding support for continuations. The

third technique produces the most “modular” code. It allows a function’s callers to specify a

continuation, without requiring that they have knowledge of the function’s implementation or that

the function have knowledge of its callers.

The remaining techniques offer two different approaches to using continuation recognition. The

fourth technique combines stack handoff and continuation recognition to achieve very efficient

handoff control transfer paths. This combination blurs the distinction between the blocking thread

and the resuming thread, with the result resembling a control transfer path with a single

“migrating” thread. The fifth technique uses continuation recognition without an explicit stack

58 CHAPTER 4

handoff. With this technique, an executing thread examines and modifies the continuation of a

blocked thread to optimize the blocked thread’s subsequent execution.

4.2.1 MockIPC Introduction

The background for this section is a message-passing interprocess communication system that I

call MockIPC. In semantics and implementation, MockIPC resembles Mach 3.0 IPC, but it is

greatly simplified to omit distracting and unimportant details. The resemblance to Mach IPC makes

MockIPC more realistic, but this resemblance does not limit the generality of the techniques

described here. For example, Section 4.3 describes how these techniques were applicable in areas

of the Mach kernel other than interprocess communication.

4.2.1.1 Overview

In MockIPC, messages are sent to and received from ports, which are protected message queues. A

single system call, mock_msg, can send a message to a port, or receive a message from a port, or

send a message to one port and receive a message from a different port. In fact, this is the most

common usage of mock_msg: client programs send a request message and receive a reply message;

server programs send a reply message and receive another request message. Both the sending and

receiving operations can block (the sending operation if the message queue is full, the receiving

operation if the message queue is empty), but the receiving operation blocks much more frequently

than the sending operation. At any given time, most threads are blocked in a receive operation.

The following characteristics of MockIPC are important here:

• The blocking receive operation is a good candidate for continuations. Because most threads are

blocked most of the time waiting for a message, stack discarding can reduce the kernel’s

memory requirements.

• Because of its dynamic frequency, a message handoff from a sending thread to a waiting

receiving thread is a good candidate for continuation recognition. Continuation recognition can

reduce the latency of this operation, because the sending thread can modify the receiver’s

continuation to avoid redundant or unnecessary effort.

• In the implementation, the receive operation is not too deeply nested. (It happens in

ipc_mqueue_receive , called from mock_msg_receive , called from mock_msg.) This

means that the software engineering cost of using continuations in MockIPC is modest.

The blocking message send operation is similarly nested, but it would be slightly harder to code

with continuations, because the continuation for a send operation might include a receive operation,

CHAPTER 4 59

in which case more state variables would have to be saved and restored. In any case, if blocking

send operations are infrequent there is little reason to optimize them with continuations.

The MockIPC code presented here resembles Mach 3.0’s IPC implementation. Mach IPC has

functions with the same or similar names (mach_msg, ipc_mqueue_receive , etc) that do very

similar things. MockIPC has been simplified from Mach IPC in the following ways:

• Omitted IPC options and features. (See Appendix A for a description of Mach IPC.)

• Simplified locking, with no concern for deadlock.

• Limited error handling.

• No concern for the termination or deactivation of threads and ports.

• No reference counting or garbage collection.

Probably the most relevant difference is that MockIPC uses different synchronization primitives.

To simplify the example, MockIPC uses mutexes and condition variables instead of the equivalent

Mach kernel functionality.

mock_msg System call entry point. Sends and/or receives a message.
mock_msg_send The message-send half of a system call.
mock_msg_receive The message-receive half of a system call.
ipc_mqueue_send Internal primitive for sending a message. The destination port is

specified in the message itself.
ipc_mqueue_receive Internal primitive for receiving a message from a message queue.

The message queue is initially locked and is unlocked upon return.
ipc_mqueue_copyin Internal primitive for converting a user’s handle into a message

queue, which is returned locked.

Table 4-1: MockIPC Functions

The important functions in MockIPC, whose implementation I explore, are listed in Table 4-1.

mock_msg is the system call entry point; mock_msg_send and mock_msg_receive are helper

functions that are only called from mock_msg. In contrast, ipc_mqueue_send ,

ipc_mqueue_receive , and ipc_mqueue_copyin are also called from other parts of the kernel

to manipulate message queues. Their use in varied and unpredictable contexts helps keep MockIPC

from being a trivial example.

60 CHAPTER 4

The unimportant functions in MockIPC, whose implementation I do not explore, are listed in

Table 4-2. For our purposes, these functions are just placeholders that indicate code motion and

prevent variables from being “dead.”

ipc_kmsg_get Allocate a kernel message structure and copy into it a message from
the current user address space.

ipc_kmsg_copyin Translate port handles in the message to pointers to the actual port
data structures.

ipc_kmsg_copyout Translate port pointers in the message to handles.
ipc_kmsg_put Copy a message to the current user address space and deallocate the

kernel message structure.
ipc_kmsg_destroy Deallocate a kernel message structure.
ipc_entry_lookup Lookup a port handle.

Table 4-2: MockIPC Helper Functions

The synchronization functions, which are listed in Table 4-3, are a slight variation on the

traditional mutex and condition variable primitives for concurrent programming [Birrell 89;

Nelson 91, chapter 4; Cooper & Draves 88]. The variations occur in the functions for blocking on

a condition, twait and thandoff . Both functions take a timeout argument that limits the

potential duration of the wait. If the wait terminates, either because of a signal or the timeout

expiring, the twait /thandoff call returns the time remaining in the timeout. (This is zero if the

timeout expired.) As is usual, the thread can’t make any assumptions about why the wait

terminated. It must always recheck the shared state before taking action.

lock Lock a mutex, if necessary waiting until the mutex is available.
unlock Unlock a mutex.
signal Wakeup a thread waiting on the condition variable.
twait Wait with timeout on the condition variable, with the mutex released

while blocked. Returns the time remaining.
thandoff Combined signal /twait operation, to block on a condition while

waking up a specified thread.

Table 4-3: MockIPC Synchronization Functions

thandoff adds the additional wrinkle of a directed context-switch. It allows a thread to wait on a

condition variable and specify a particular thread to wake up, effecting a direct transfer of control

to the specified thread. For this example, condition variables are just queues of threads, and the

CHAPTER 4 61

queue primitives (empty , first , dequeue , enqueue) can operate on condition variables while

the lock governing the condition is held. thandoff is used by dequeueing a thread from one

condition variable and then at a later time handing off to that thread while waiting on another

condition variable.

4.2.1.2 Before Continuations

Before delving into the various ways of using continuations in MockIPC, it will be useful to

establish a baseline for comparison. Figures 4-1 and 4-2 give the implementation, without

continuations, of mock_msg, mock_msg_send , mock_msg_receive , ipc_mqueue_send ,

ipc_mqueue_receive , and ipc_mqueue_copyin .

mock_msg(msg, option, snd_size, rcv_size, rcv_name, timeout) {
if (option & SEND) {

rc = mock_msg_send(msg, snd_size, timeout);
if (rc != SUCCESS)

return rc;
}

if (option & RECEIVE) {
rc = mock_msg_receive(msg, rcv_size, rcv_name, timeout);
if (rc != SUCCESS)

return rc;
}

return SUCCESS;
}

mock_msg_send(msg, snd_size, timeout) {
kmsg = ipc_kmsg_get(msg, snd_size);
ipc_kmsg_copyin(kmsg);

rc = ipc_mqueue_send(kmsg, timeout);
return rc;

}

mock_msg_receive(msg, rcv_size, rcv_name, timeout) {
mqueue = ipc_mqueue_copyin(rcv_name);
// mqueue is locked

kmsg = ipc_mqueue_receive(mqueue, timeout);
// mqueue is unlocked
if (kmsg == NULL)

return TIMED_OUT;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);
return SUCCESS;

}

Figure 4-1: MockIPC Send and Receive

The implementation is quite straightforward. A few points to note:

• Although it isn’t coded quite this way, mock_msg really just returns mock_msg_receive ’s

return code directly. That is, mock_msg’s call of mock_msg_receive is “tail recursive” and

mock_msg_receive has the same continuation (in the language sense) as mock_msg. This

means that the apparent three-level call chain (mock_msg to mock_msg_receive to

ipc_mqueue_receive) has the complexity of a two-level call chain; the call mock_msg to

mock_msg_receive adds no complexity.

62 CHAPTER 4

• ipc_mqueue_send always consumes the kmsg that it is handed, either by enqueueing it or

destroying it.

• The locking in mock_msg_receive is a little unorthodox. ipc_mqueue_copyin returns the

message queue in the locked state, and ipc_mqueue_receive takes a locked message queue

and returns with it unlocked.

• When ipc_mqueue_send and ipc_mqueue_receive block with twait , they can make no

assumptions about the state of the message queue—whether it is empty, full, or partly full—

when they wakeup. This is why they both use twait inside a while loop.

ipc_mqueue_send(kmsg, timeout) {
mqueue = kmsg->dest_port->mqueue;
lock(mqueue->lock);

while (mqueue->count >= mqueue->limit) {
if (timeout == 0) {

unlock(mqueue->lock);
ipc_kmsg_destroy(kmsg);
return TIMED_OUT;

}

timeout = twait(mqueue->lock, mqueue->full, timeout);
}

mqueue->count++;
enqueue(mqueue->queue, kmsg);
signal(mqueue->empty);

unlock(mqueue->lock);
return SUCCESS;

}

ipc_mqueue_copyin(rcv_name) {
table = current_task()->name_table;

lock(table->lock);
mqueue = ipc_entry_lookup(table, rcv_name);
lock(mqueue->lock);
unlock(table->lock);
return mqueue;

}

ipc_mqueue_receive(mqueue, timeout) {
while (empty(mqueue->queue)) {

if (timeout == 0) {
unlock(mqueue->lock);
return NULL;

}

timeout = twait(mqueue->lock, mqueue->empty, timeout);
}

kmsg = dequeue(mqueue->queue);
mqueue->count--;
signal(mqueue->full);

unlock(mqueue->lock);
return kmsg;

}

Figure 4-2: MockIPC Queue Primitives

4.2.1.3 With Handoff

Without using continuations or continuation recognition, one approach to optimizing MockIPC

uses thread handoff. A handoff is a directed control transfer, or a control transfer in which the

CHAPTER 4 63

blocking thread transfers to a specific resuming thread. Handoffs can take advantage of optimized

scheduling code [Black 90a]. A handoff MockIPC implementation provides an appropriate

comparison baseline for the use of continuation recognition.

mock_msg(msg, option, snd_size, rcv_size, rcv_name, timeout) {
if (option == (SEND|RECEIVE)) {

// RPC path - attempts handoff

kmsg = ipc_kmsg_get(msg, snd_size);
ipc_kmsg_copyin(kmsg);

rcv_mqueue = ipc_mqueue_copyin(rcv_name);
// rcv_mqueue is locked

snd_mqueue = kmsg->dest_port->mqueue;
lock(snd_mqueue->lock);

// check handoff conditions
// - there is a receiving thread to wakeup
// - we block because our queue is empty

if (empty(snd_mqueue->empty) ||
!empty(rcv_mqueue->queue) ||
(timeout == 0)) {
// can’t handoff - abort

unlock(snd_mqueue->lock);
unlock(rcv_mqueue->lock);

rc = ipc_mqueue_send(kmsg, timeout);
goto after_msg_send;

}

// queue the message

snd_mqueue->count++;
enqueue(snd_mqueue->queue, kmsg);

// dequeue the receiving thread
rcv_thread = dequeue(snd_mqueue->empty);
unlock(snd_mqueue->lock);

// do scheduling handoff; combined wakeup and twait
timeout = thandoff(rcv_thread,

rcv_mqueue->lock, rcv_mqueue->empty,
timeout);

// rcv_mqueue is locked again after wakeup

kmsg = ipc_mqueue_receive(rcv_mqueue, timeout);
if (kmsg == NULL)

return TIMED_OUT;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);
return SUCCESS;

}

if (option & SEND) {
rc = mock_msg_send(msg, snd_size, timeout);

after_msg_send:
if (rc != SUCCESS)

return rc;
}

if (option & RECEIVE) {
rc = mock_msg_receive(msg, rcv_size, rcv_name, timeout);
if (rc != SUCCESS)

return rc;
}

return SUCCESS;
}

Figure 4-3: MockIPC Handoff

Figure 4-3 shows the use of handoff without continuations in MockIPC. In this example, the

handoff code exists as an optimized, inline path in mock_msg. The bulk of the MockIPC code, in

64 CHAPTER 4

mock_msg_send and mock_msg_receive , does not depend on the existence of this optimized

path; the handoff code could be removed if it proved troublesome and MockIPC would continue to

function. On the other hand, the handoff path does depend on the specific implementation of

mock_msg_send and mock_msg_receive and in fact the handoff path reproduces fragments of

that implementation.

Handoff is possible when the following conditions hold:

• mock_msg is used to both send and receive a message.

• A thread is waiting to receive the message sent in the first half of mock_msg.

• The receive half of the mock_msg will block.

In this situation, mock_msg uses thandoff to perform the directed control transfer. If the proper

conditions do not hold, then the handoff path cleans up and jumps to the generic mock_msg code.

Note that the handoff code performs exactly the same message-queue operations as the separate

send and receive functions, although in a different order. In particular, before blocking the handoff

path performs the following message-queue operations:

1. locks rcv_mqueue (in ipc_mqueue_copyin)

2. locks snd_mqueue

3. checks the state of snd_mqueue

4. checks the state of rcv_mqueue

5. increments the message count in snd_mqueue

6. enqueues a message in snd_mqueue

7. dequeues a thread from snd_mqueue

8. unlocks snd_mqueue

9. enqueues a thread in rcv_mqueue (in thandoff)

10. unlocks rcv_mqueue (in thandoff)

 After unblocking, the handoff path:

11. locks rcv_mqueue (in thandoff)

12. checks the state of rcv_mqueue

13. dequeues a message from rcv_mqueue

14. decrements the message count in rcv_mqueue

15. unlocks rcv_mqueue

CHAPTER 4 65

These operations are all required in this version of the handoff path, to maintain the consistency of

the message-queue data structures. (They are unlocked during thandoff .) As you will see,

continuation recognition can eliminate about half of these operations.

It’s worth noting that handoff in MockIPC could be implemented in other ways. For example,

mock_msg_send and ipc_mqueue_send could be modified not to wakeup any threads, but

instead dequeue from a condition variable and return a thread that should be woken up.

mock_msg_receive and ipc_mqueue_receive would then take this thread as an argument

that if non-NULL would allow handoff to occur inside ipc_mqueue_receive .

However, such an implementation would not be as amenable to the handoff-style continuation

recognition of Section 4.2.5. It would keep the sending code and the receiving code segregated,

without the opportunity to optimize them together as a unified code path.

4.2.2 First Technique: Continuations as Structured Gotos

The first method that I’ll present for converting a blocking operation to use continuations assumes

that the functions involved are only used in a single context. In the case of MockIPC, the

assumption is that mock_msg, mock_msg_receive , and ipc_mqueue_receive are only used

in the context of a system call. The drawback stemming from this assumption is that the

transformed functions lose their general-purpose nature, because they can no longer be called in

other contexts. The good news is that this method produces relatively efficient, clean code.

The basic idea is to break up the functions along the control transfer path into pieces, with the

splitting points being function calls, returns, and blocking operations. If function A calls function B

which blocks, then four functions result: A-before-call-to-B, B-before-block, B-after-block, and

A-after-call-to-B. Function calls replace function returns. More complicated situations produce a

network of functions, with function calls performing state transitions.

Figure 4-4 demonstrates this technique, as applied to MockIPC’s receive operation. Here the

original code (see Figure 4-1) has mock_msg_receive which calls ipc_mqueue_receive

which can block. The transformed code has mock_msg_receive which calls

ipc_mqueue_receive , which can block and resume in ipc_mqueue_receive_continue ,

which calls mock_msg_receive_finish . (Actually, ipc_mqueue_receive_continue first

calls back to ipc_mqueue_receive , which calls mock_msg_receive_finish . This

implements the loop that is necessary when using twait .) Some points to note:

66 CHAPTER 4

mock_msg_receive(msg, rcv_size, rcv_name, timeout) {
mqueue = ipc_mqueue_copyin(rcv_name);
// mqueue is locked

save msg, rcv_size;

ipc_mqueue_receive(mqueue, timeout);
// NOTREACHED

}

ipc_mqueue_receive(mqueue, timeout) {
if (empty(mqueue->queue)) {

if (timeout == 0) {
unlock(mqueue->lock);
thread_syscall_return(TIMED_OUT);
// NOTREACHED

}

save mqueue;

(void) twait(mqueue->lock, mqueue->empty, timeout,
 ipc_mqueue_receive_continue);

// NOTREACHED
}

kmsg = dequeue(mqueue->queue);
mqueue->count--;
signal(mqueue->full);

unlock(mqueue->lock);
mock_msg_receive_finish(kmsg);
// NOTREACHED

}

ipc_mqueue_receive_continue(timeout) {
// mqueue is locked
retrieve mqueue;
ipc_mqueue_receive(mqueue, timeout);
// NOTREACHED

}

mock_msg_receive_finish(kmsg) {
retrieve msg, rcv_size;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);

thread_syscall_return(SUCCESS);
// NOTREACHED

}

Figure 4-4: First Technique: MockIPC Receive with Continuations

• None of the transformed functions return. Instead they call other functions, which also don’t

return. Ultimately thread_syscall_return is called, and it returns to user level.

• twait has acquired another argument, a continuation. If it is non-null, then when the wait

terminates and the blocking thread resumes, the thread resumes by executing the continuation

function. The twait continuation function takes as an argument the time-remaining value that

twait would normally return.

• ipc_mqueue_receive can directly call thread_syscall_return when a time-out

occurs, because it “knows” that it is called in a system call context. This means that the

mock_msg_receive_finish code need not check for a null kmsg, unlike the corresponding

code (before continuations) in Figure 4-1.

CHAPTER 4 67

A good compiler could take advantage of special declarations or pragmas telling it that these

functions never return. With this knowledge, it could avoid saving and restoring registers across the

function calls—the machine code generated for these function calls would become simple jumps.

4.2.3 Second Technique: Minimizing Code Impact

The second method for converting blocking code to use continuations preserves the generality of

the code—it is useable in multiple contexts—but the functions involved still have implementation

dependencies on each other. In the case of MockIPC, this means that the transformed

ipc_mqueue_receive remains useful outside of a system call context, but

mock_msg_receive still has knowledge of ipc_mqueue_receive ’s implementation. In effect,

this method provides a compromise between the implementation and context dependencies of the

first technique (in Section 4.2.2) and the modularity and encapsulation of the third technique (in

Section 4.2.4). The transformed code’s complexity also falls between these other two techniques.

The technique adds resume and continue arguments to the blocking function (in the case of

MockIPC, ipc_mqueue_receive). When called with a FALSE resume and NULL continue ,

the function retains its pre-continuations behavior. This preserves its generality. A non-NULL

continue argument requests that the function use continuations, and in fact directly specifies the

continuation with which it should block. (This is the source of the implementation dependency; the

function’s caller must have knowledge of the function’s implementation to supply a correct

continuation function.) The resume argument is not required, but it lets the continuation function

“get back inside” the blocking function to finish up. The resume argument avoids code duplication

while minimizing the changes to the blocking function.

Figure 4-5 demonstrates this technique with mock_msg_receive and ipc_mqueue_receive .

mock_msg_receive passes a continuation function, mock_msg_receive_continue , to

ipc_mqueue_receive . mock_msg_receive_continue also calls ipc_mqueue_receive ,

with resume being TRUE, to resume the computation after the blocking twait . Some points to

note:

• Because it is a continuation for twait , mock_msg_receive_continue accepts a timeout

argument. This is an implementation dependency. If ipc_mqueue_receive were to block in

some other way, or change its treatment of the timeout value from twait , then

ipc_mqueue_receive ’s callers would need to change.

• Because of the positioning of twait and the while loop in ipc_mqueue_receive , its

resume argument is not actually necessary—re-entering ipc_mqueue_receive from the top

68 CHAPTER 4

effectively resumes it. I included the resume argument here because in more general situations

it is a useful technique.

mock_msg_receive(msg, rcv_size, rcv_name, timeout) {
mqueue = ipc_mqueue_copyin(rcv_name);
// mqueue is locked

save mqueue, msg, rcv_size;

kmsg = ipc_mqueue_receive(mqueue, timeout,
FALSE, mock_msg_receive_continue);

mock_msg_receive_finish(kmsg);
// NOTREACHED

}

mock_msg_receive_continue(timeout) {
// mqueue is locked
retrieve mqueue;

kmsg = ipc_mqueue_receive(mqueue, timeout,
TRUE, mock_msg_receive_continue);

mock_msg_receive_finish(kmsg);
// NOTREACHED

}

mock_msg_receive_finish(kmsg) {
if (kmsg == NULL) {

thread_syscall_return(TIMED_OUT);
// NOTREACHED

}

retrieve msg, rcv_size;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);

thread_syscall_return(SUCCESS);
// NOTREACHED

}

ipc_mqueue_receive(mqueue, timeout, resume, continue) {
if (resume)

goto after_block;

while (empty(mqueue->queue)) {
if (timeout == 0) {

unlock(mqueue->lock);
return NULL;

}

timeout = twait(mqueue->lock, mqueue->empty, timeout, continue);
after_block:
}

kmsg = dequeue(mqueue->queue);
mqueue->count--;
signal(mqueue->full);

unlock(mqueue->lock);
return kmsg;

}

Figure 4-5: Second Technique: MockIPC Receive with Continuations

4.2.4 Third Technique: Modular Continuations

My third method for converting a blocking operation to use continuations encapsulates the

transformed function’s implementation. The transformed function can be used in multiple contexts

and it doesn’t expose any implementation details or dependencies to its callers. The disadvantage of

CHAPTER 4 69

this method is that the transformed code can be slightly cumbersome. This method is appropriate

when the blocking function resides in a module separate from its callers.1

The method adds a continue argument to the blocking function (in the case of MockIPC, this is

ipc_mqueue_receive). This is superficially similar to the technique of Section 4.2.3, which also

adds a continue argument. The difference is that here, the continue argument controls the

continuation of the blocking function itself, instead of the blocking operation inside the blocking

function. If the blocking function returns a value normally, then the continue function takes that

value as an argument. Another difference with respect to Section 4.2.3 is that here the blocking

function does not expose a resume argument, although it may use one internally. Both of these

differences hide the internal implementation details of the blocking function from its callers.

Figure 4-6 demonstrates this technique with mock_msg_receive and ipc_mqueue_receive .

The post-ipc_mqueue_receive code in mock_msg_receive moves into

mock_msg_receive_continue . mock_msg_receive_continue takes a kmsg as an

argument, because that is what ipc_mqueue_receive returns. Internally,

ipc_mqueue_receive uses ipc_mqueue_receive_helper and

ipc_mqueue_receive_continue , but these details are hidden from mock_msg_receive .

Some points to note, comparing this code with the previous example in Figure 4-5:

• This technique requires one more function. ipc_mqueue_receive_helper hides the

resume argument implementation from ipc_mqueue_receive ’s callers.

• This technique requires one more saved state variable, the continue argument to

ipc_mqueue_receive .

• mock_msg_receive and ipc_mqueue_receive are each responsible for saving and

restoring their own state: msg and rcv_size in mock_msg_receive , mqueue and

continue in ipc_mqueue_receive_helper .

4.2.5 Fourth Technique: Stack Handoff and Continuation Recognition

In this section, I demonstrate the use of continuation recognition for optimizing “handoff” control

transfer paths. A handoff is a directed control transfer, or a control transfer in which the blocking

thread transfers to a specific resuming thread. Handoffs can take advantage of optimized

scheduling code [Black 90a]. Continuation recognition allows another level of optimization in

1In fact, the twait function itself uses this technique to hide its internal implementation.

70 CHAPTER 4

handoff situations, because it creates an opportunity for the blocking thread to know what code the

resuming thread would execute.

mock_msg_receive(msg, rcv_size, rcv_name, timeout) {
mqueue = ipc_mqueue_copyin(rcv_name);
// mqueue is locked

save msg, rcv_size;

(void) ipc_mqueue_receive(mqueue, timeout,
mock_msg_receive_continue);

// NOTREACHED
}

mock_msg_receive_continue(kmsg) {
if (kmsg == NULL) {

thread_syscall_return(TIMED_OUT);
// NOTREACHED

}

retrieve msg, rcv_size;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);

thread_syscall_return(SUCCESS);
// NOTREACHED

}

ipc_mqueue_receive(mqueue, timeout, continue) {
return ipc_mqueue_receive_helper(mqueue, timeout,

 FALSE, continue);
}

ipc_mqueue_receive_helper(mqueue, timeout, resume, continue) {
if (resume)

goto after_block;

while (empty(mqueue->queue)) {
if (timeout == 0) {

kmsg = NULL;
goto exit;

}

if (continue != 0) {
save mqueue, continue;

(void) twait(mqueue->lock, mqueue->empty, timeout,
 ipc_mqueue_receive_continue);

// NOTREACHED
after_block:
} else {

timeout = twait(mqueue->lock, mqueue->empty, timeout, NULL);
}

}

kmsg = dequeue(mqueue->queue);
mqueue->count--;
signal(mqueue->full);

exit:
unlock(mqueue->lock);

if (continue != 0) {
(*continue)(kmsg);
// NOTREACHED

} else {
return kmsg;

}
}

ipc_mqueue_receive_continue(timeout) {
// mqueue is locked
retrieve mqueue, continue;

ipc_mqueue_receive_helper(mqueue, timeout, TRUE, continue);
// NOTREACHED

}

Figure 4-6: Third Technique: MockIPC Receive with Continuations

CHAPTER 4 71

With continuation recognition, a running thread can examine a blocked thread’s continuation, and

based on the results of this examination the running thread can perform some optimization. In this

case, the optimization changes the code that the blocked thread executes when it resumes via a

stack handoff. This is possible for a thread blocked with a continuation function, because the

continuation and other relevant state of the blocked thread are easily accessible in the thread

structure, instead of being hidden in opaque compiler-dependent stack frames.

Putting this idea into practice, there are two things to keep in mind. First, it is best to check for

handoff and recognition as soon as possible; this maximizes the opportunities for optimization.

Second, the running thread changes (and optimizes) the blocked thread’s execution by performing a

stack handoff to it and then not calling its continuation. This technique joins the two halves of the

control transfer path, the blocking code and the resuming code, and lets the control transfer path be

optimized as a whole inside one function.

Figure 4-7 demonstrates this for MockIPC. The handoff path checks that the waiting thread is

blocked with mock_msg_receive_continue ; this type of check is the defining feature of

continuation recognition. Once this is known, the code enters an optimized path that in fact never

calls mock_msg_receive_continue . Note that the position of the stack_handoff call is not

very important—it could be placed anywhere after recognition and before the protecting message-

queue locks are released.

In this case, the continuation function mock_msg_receive_continue (which is not shown

here) is taken from Figure 4-5 in Section 4.2.3. Continuation functions drawn from Figure 4-4 or

Figure 4-6 could have been used instead.

The complete handoff path performs the following eight message-queue operations:

1. locks rcv_mqueue (in ipc_mqueue_copyin)

2. locks snd_mqueue

3. checks the state of snd_mqueue

4. checks the state of rcv_mqueue

5. enqueues a thread in rcv_mqueue

6. dequeues a thread from snd_mqueue

7. unlocks snd_mqueue

8. unlocks rcv_mqueue

72 CHAPTER 4

mock_msg(msg, option, snd_size, rcv_size, rcv_name, timeout) {
if ((option & (SEND|RECEIVE)) == (SEND|RECEIVE)) {

// RPC path - attempts handoff

kmsg = ipc_kmsg_get(msg, snd_size);
ipc_kmsg_copyin(kmsg);

rcv_mqueue = ipc_mqueue_copyin(rcv_name);
// rcv_mqueue is locked

snd_mqueue = kmsg->dest_port->mqueue;
lock(snd_mqueue->lock);

// check handoff conditions
// - there is a receiving thread to wakeup
// (and it is blocked with the proper continuation)
// - we block because our queue is empty

if (empty(snd_mqueue->empty) ||
(first(snd_mqueue->empty)->cont != mock_msg_receive_continue) ||
!empty(rcv_mqueue->queue) ||
(timeout == 0)) {
// can’t handoff - abort

unlock(snd_mqueue->lock);
unlock(rcv_mqueue->lock);

rc = ipc_mqueue_send(kmsg, timeout);
goto after_msg_send;

}

// prepare current thread for blocking

snd_thread = current_thread();
save rcv_mqueue, msg, rcv_size;
snd_thread->cont = mock_msg_receive_continue;

snd_thread->timeout = timeout;
enqueue(rcv_mqueue->empty, snd_thread);

// stack handoff to receiving thread

rcv_thread = dequeue(snd_mqueue->empty);
stack_handoff(snd_thread, rcv_thread);

unlock(snd_mqueue->lock);
unlock(rcv_mqueue->lock);

retrieve msg, rcv_size;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);
thread_syscall_return(SUCCESS);
// NOTREACHED

}

if (option & SEND) {
rc = mock_msg_send(msg, snd_size, timeout);

after_msg_send:
if (rc != SUCCESS)

return rc;
}

if (option & RECEIVE) {
rc = mock_msg_receive(msg, rcv_size, rcv_name, timeout);
if (rc != SUCCESS)

return rc;
}

return SUCCESS;
}

Figure 4-7: Fourth Technique: MockIPC Handoff with Continuation Recognition

Comparing this with the 15 message-queue operations for the equivalent handoff path without

continuations and continuation recognition (listed in Section 4.2.1.3 on page 64), it is apparent that

continuation recognition eliminated 7 redundant operations. (Those numbered 5, 6, 10, 11, 12, 13,

and 14.) The main reason for this is that with continuation recognition, the message-queue data

structures never go through an intermediate state in which a message is queued.

CHAPTER 4 73

4.2.6 Fifth Technique: Asynchronous Continuation Recognition

Continuation recognition without an explicit stack handoff is also a valuable technique. With this

method, an executing thread examines and modifies the continuation of a blocked thread to

optimize the blocked thread’s subsequent execution.

Figure 4-8 demonstrates this in the case of MockIPC. The ipc_mqueue_send function checks the

queue of threads waiting to receive a message. If it finds a waiting thread, and that thread has the

continuation mock_msg_receive_continue , then ipc_mqueue_send performs a message

handoff. Instead of queuing the message, it hands it directly to the receiving thread and changes the

receiver’s continuation to mock_msg_receive_continue_fast . This alternate continuation

knows that it doesn’t have to dequeue a message, or otherwise look at the message queue.

ipc_mqueue_send(kmsg, timeout) {
mqueue = kmsg->dest_port->mqueue;
lock(mqueue->lock);

if (empty(mqueue->empty) ||
(first(mqueue->empty)->cont != mock_msg_receive_continue)) {

while (mqueue->count >= mqueue->limit) {
if (timeout == 0) {

unlock(mqueue->lock);
ipc_kmsg_destroy(kmsg);
return TIMED_OUT;

}

timeout = twait(mqueue->lock, mqueue->full, timeout);
}

mqueue->count++;
enqueue(mqueue->queue, kmsg);
signal(mqueue->empty);

} else {

receiver = dequeue(mqueue->empty);
// optimize receiver’s continuation
receiver->cont = mock_msg_receive_continue_fast;
receiver->kmsg = kmsg;
wakeup(receiver);

}

unlock(mqueue->lock);
return SUCCESS;

}

mock_msg_receive_continue_fast() {
retrieve kmsg, msg, rcv_size;

ipc_kmsg_copyout(kmsg);
ipc_kmsg_put(kmsg, msg, rcv_size);

thread_syscall_return(SUCCESS);
// NOTREACHED

}

Figure 4-8: Fifth Technique: Continuation Recognition without Handoff

The end result is that a complete send-receive pair performs the same eight message queue

operations listed in the previous section for the handoff path optimized with continuation

recognition. The main difference is that this code doesn’t take advantage of handoff scheduling. In

addition, because this technique splits the optimized path between two functions

(ipc_mqueue_send and mock_msg_receive_continue_fast in this example) some low-

74 CHAPTER 4

level optimizations such as common subexpression elimination may be inhibited. On the other

hand, this use of continuation recognition is more general, because it is not restricted to send-

receive pairs. For example, the performance of asynchronous message passing would improve with

this method, while the previous technique only improves synchronous RPC performance.

4.3 Using Continuations in Mach

This section reviews the use of continuations in the Mach 3.0 kernel. For each code path that I

modified, I summarize the cost/benefit analysis that led to the use of continuations in that code path

and I briefly discuss the implementation in terms of the techniques of the previous section. In all I

discuss six areas that I modified and one that I could have tackled but chose not to.

The original motivation for developing continuations as a control transfer technique was to reduce

the memory footprint of the Mach kernel by discarding the kernel stacks of threads waiting to

receive a message. This attempt led to continuations and the stack discarding optimization. My

subsequent efforts to improve the performance and portability of the technique led to stack handoff,

continuation recognition, and the control transfer interface.

Unfortunately, some historical factors have somewhat distorted the resulting implementation. In

particular, it took two years before support for the new control transfer interface existed for all the

CPU architectures to which Mach has been ported. In this interim period, machine-independent

code used continuations only under a KEEP_STACKS compile-time conditional. This limited the

extent to which the machine-independent code could be reorganized or rewritten to take advantage

of continuations. It favored the technique of Section 4.2.3 because of its minimal code impact.

Today the KEEP_STACKS conditional no longer exists, but its effects linger.

In retrospect, the following two areas of the Mach kernel offered performance improvements

sufficiently compelling to prompt the initial effort of using continuations:

• Interprocess communication. Because most threads are blocked most of the time waiting for a

message, optimizing IPC with stack discarding produced a significant reduction in space

overhead. The important RPC path was already optimized for low latency, so only a small

latency improvement was possible.

• Exception handling. The exception handling path contains some complexity that continuation

recognition can bypass. Because it was a relatively unoptimized part of the kernel, applying the

handoff continuation recognition technique to exception handling produced a significant

latency improvement.

CHAPTER 4 75

Once I’d already developed a framework for using continuations, the following areas offered small

performance improvements for very modest software engineering costs:

• Internal kernel threads. The kernel contains a number of internal “worker” threads that can

easily use a continuation when they wait for more work.

• Scheduling. When the scheduling system preempts a thread, or a thread voluntarily yields the

processor, it doesn’t have any kernel-level state and can easily use a continuation.

• Thread halting. In situations where the Mach kernel interface allows one thread to clobber

another thread, the victim thread must be in an appropriate “halted” state. Continuation

recognition can easily eliminate two context-switches from the synchronization normally

necessary to put a victim thread into the halted state.

The virtual memory system presented two possible uses for continuations:

• Page fault handling. The page fault handler can use continuations and stack discarding while

waiting for a page fault to be satisfied. This prevents the possibility of a positive feedback that

would cause the kernel to allocate more memory for kernel stacks precisely when the kernel has

little available physical memory.

• Extern pager interactions. The external pager interface, like the exception-handling interface, is

relatively unoptimized and has a number of complexities and inefficiencies that continuation

recognition could address.

In the following subsections, I first present a very brief overview of the Mach kernel abstractions

and implementation. I then explore each of the above seven areas in more detail.

4.3.1 Mach Kernel Overview

The Mach kernel provides a small set of abstractions that reflects the underlying hardware

facilities: memory, processors, and IO devices. User programs access kernel objects via a message-

oriented communication interface, in the same way they would access objects provided by user-

level servers. The kernel abstractions and interfaces are sufficiently general that user-level

subsystems can emulate other operating system interfaces, such as Unix [Ritchie & Thompson 78;

Golub et al. 90], MS DOS [Schulman 93; Malan et al. 91], and OS/2 [Letwin 88; Phelan

et al. 93], fairly efficiently.

The kernel supports the following abstractions:

76 CHAPTER 4

• Ports and messages. A port is a protected message queue. User programs manipulate ports

with opaque handles or references known as port rights.

• Tasks. The task is the unit of protection and resource allocation. Tasks have a virtual address

space. The kernel virtual memory primitives provide a great deal of flexibility for sparse

allocation and mapping, control of protection, and sharing.

• Threads. Threads provide schedulable execution contexts. Threads belong to tasks.

• Memory objects. User “external pager” servers can provide memory objects that may be

mapped into multiple address spaces. The kernel manages physical memory as a cache of

memory object contents. The kernel communicates with the appropriate server to perform

page-in and page-out operations on a memory object.

• Devices. The kernel represents IO devices as device objects with a common

open/read/write/ioctl/close message interface. For network interfaces, the kernel converts

incoming packets to messages that it sends asynchronously to ports supplied by user programs.

The kernel interfaces rely heavily on the message-oriented interprocess communication facility:

• User programs manipulate all kernel objects (with the exception of ports and messages

themselves) through the IPC interface, by sending a request message to the object and waiting

for a reply message.

• The kernel communicates with external pagers (servers for memory objects) via the IPC

interface. For example, it sends page-in requests to the memory object and the external pager

for the memory object responds with a message containing a page of data.

• The kernel handles exceptions such as an illegal memory reference with the IPC interface.

Tasks and threads can have exception servers. The faulting thread sends an exception request

message to its exception server and then waits for a reply message.

The kernel acts much like an ordinary server for kernel objects. However, in the kernel threads

service their own requests. That is, when a thread requests a service of the kernel (sends a message

to a kernel object, page faults, takes an exception), the thread enters the kernel address space and

handles its own request. This is unlike user-level servers, which must have a pool of threads to

handle incoming requests. The kernel does have internal “worker” threads, but they do not service

requests from user programs.

CHAPTER 4 77

Device interrupts do not execute in a thread context. Instead, a device interrupt handler “borrows”

the kernel stack of the currently executing thread. Because of this, interrupt handlers suffer from

many restrictions—they can’t do much other than wakeup a thread.

The kernel implementation supports multiprocessor architectures with fine-grained locking.

Typically each kernel object has one or more locks for its state. The kernel uses both simple spin

locks and reader-writer blocking locks. Spin locks are a feasible technique because the scheduler

does not preempt threads while they are inside the kernel, and threads holding a spin lock do not

access pageable memory or perform other possibly-blocking operations. The spin lock

implementation uses conditional compilation to compile-out spin lock overhead on uniprocessor

architectures.

Internally the kernel uses dynamic memory allocation for most of its needs, including the structures

that represent ports, messages, and other kernel objects. The memory allocation primitives inside

the kernel may block while the virtual memory system recovers physical memory.

Kernel code and most kernel data, including the structures that represent kernel objects, are not

pageable. However, threads executing inside the kernel may access pageable user memory.

Threads executing user code can not block directly; they must enter the kernel address first. This

may happen directly when the thread requests a service of the kernel, or indirectly as a result of a

clock interrupt and subsequent scheduling preemption. Inside the kernel, threads can block in many

ways: trying to acquire a reader-writer lock, allocating memory, page fault, or otherwise waiting

for some data structure to change state.

Appendix A documents Mach’s IPC interface. For further information on Mach’s interfaces and

implementation, see also [Tevanian 87; Young 89; Black 90b].

4.3.2 Message Receive

The IPC implementation uses continuations in two ways: continuations and stack discarding when

blocking to wait for a message, and in addition continuation recognition during cross-address space

RPC. The stack discarding was the original motivation for developing a framework for using

continuations; it provides a substantial space savings in this case. The IPC implementation

supports cross-address space RPC as a special, highly optimized case of message-oriented

communication. Stack handoff and continuation recognition were developed to recover the

performance that was lost to stack discarding.

78 CHAPTER 4

The message receive path is an attractive target for continuations and stack discarding because

most threads spend most of their time blocked waiting for a message. The performance numbers in

the next chapter verify this, but here I would like to consider why this is the case in Mach. (This

analysis applies to other communication-oriented microkernel systems.) Message receive

operations are prevalent because there are really only a few fundamental reasons for a thread to

wait for a long period of time, and these all manifest themselves as waiting for a message:

• Waiting for slow IO, such as a tty read.

• Sleeping until a specified time.

• Waiting in select -like operations, for one of several things to happen.

• Waiting in a server for a request from a client.

In the case of Unix APIs, the Unix process waits for a reply message from the Unix emulation

subsystem. Emulation subsystems and other native Mach applications use IPC to perform all of the

above actions.

The Mach IPC implementation uses two of the techniques explored in the MockIPC example. The

message-receive operation uses the minimal-code-impact technique of Section 4.2.3, and the

optimized RPC path uses the handoff continuation recognition technique of Section 4.2.5.

4.3.3 Exceptions

The Mach exception-handling interface uses Mach IPC messages to report exceptions to user-level

servers. When a thread running in a user address space encounters an exception condition, such as

a divide-by-zero or other integer and floating point exception, an invalid instruction, or a reference

to an invalid or protected memory address, then the kernel invokes the exception interface.

The exception interface allows an exception port to be associated with each thread and task. If a

thread has an exception port, then it is given a chance to handle the exception. If the thread’s

exception server fails to handle the exception, or if the thread doesn’t have an exception port, then

the kernel tries the task’s exception port. If the task’s exception server fails to handle the exception

or the task doesn’t have an exception port, then the kernel terminates the task. If an exception

server does handle the exception then the thread continues execution. (Presumably the exception

server altered the thread’s register state in the course of handling the exception so that the thread

does not immediately retake the same exception.)

CHAPTER 4 79

This means that a single exception might result in zero, one, or two upcalls to exception servers.

To perform an exception upcall, the kernel sends a message to the exception port. The message

contains three integers describing the type of exception and two ports representing the thread taking

the exception and the thread’s task. The thread then waits for a reply message. Eventually the

exception server sends a reply message containing a status code that indicates whether it handled

the exception.

Several things make exception handling a good candidate for continuations and continuation

recognition:

• Exception-handling latency is very important to some operating system emulation

environments. For example, a DOS emulation needs fast exception handling because DOS

applications access DOS services with “interrupt” instructions, access privileged registers, and

use privileged IO instructions, all of which result in control transfers to the DOS emulation

subsystem via the exception interface.

• There is very little state that needs to be saved while a thread waits for an exception reply

message. The only requirement is that the exception type information (three integers) must be

saved across an upcall to the thread’s exception port, because this information might be needed

again for a subsequent upcall to the task’s exception port.

• Continuation recognition has potential in this situation. First, it allows exception handling to

participate directly in the fast handoff RPC path, because that path can recognize the special

continuation for a thread blocked waiting for an exception reply message. Second, it avoids

some time-consuming processing of the exception request message, because it contains

references to two ports.

I developed the “structured gotos” technique of Section 4.2.2 while modifying the exception

handling code to use continuations. Internally, the kernel has an exception function that the

machine-dependent trap-handling code calls to initiate exception processing for the current thread.

Because exception is always called in an exception-handling context, exception can always

use thread_exception_return to resume user-level execution. This predictability makes the

“structured gotos” technique appropriate.

Exception handling takes advantage of continuation recognition as follows. The

exception_raise primitive delivers an exception request message to a particular exception port.

Before it even constructs the message, exception_raise locks the exception port and attempts a

stack handoff to a server thread waiting with the mach_msg_receive_continue continuation.

80 CHAPTER 4

If this succeeds, then exception_raise synthesizes the exception request message directly in the

external format needed by the exception server and copies the message out to the server’s user-

space buffer. If continuation recognition fails, exception_raise falls back to a slower path that

constructs the message in internal format and queues it to the exception port. Continuation

recognition bypasses the message parsing and translating that would normally be needed to receive

an exception request message. Because exception request messages carry two ports, they qualify as

“complex” messages (see Section A.3) that normally require some processing overhead.

The exception path leaves the thread blocked with an exception_raise_continue

continuation. When the exception server uses mach_msg to send its reply message and wait for

another request message, then the optimized handoff RPC path in mach_msg checks for

exception_raise_continue (as well as mach_msg_receive_continue) and resumes

execution of the fast exception-handling path. This use of continuation recognition bypasses the

normal ipc_mqueue_receive processing that exception_raise_continue must normally

perform to handle various exceptional conditions, but the request path savings are more significant.

4.3.4 Internal Kernel Threads

The Mach kernel contains a large number of internal “worker” threads—eight or more in some

configurations. These threads offer a good example of an opportunity to use continuations in which

the marginal benefit, although small, exceeds the marginal cost:

The worker threads, all of which use continuations, are:

• The idle thread. The Mach kernel contains one idle thread per processor; they execute as the

lowest priority threads in the system.

• The pageout daemon. The kernel wakes up the pageout daemon when the list of free physical

pages gets small. The pageout daemon creates new free pages, by reclaiming clean pages and

sending dirty pages out to external pagers to be cleaned [Draves 91].

• The stack-alloc thread. As described in Section 3.3.2.2, the stack-alloc thread allocates new

kernel stacks for other threads.

• The io-done thread. Because of locking considerations, device interrupts can not directly send

IPC reply messages when a requested device operation finishes. Instead, the device interrupt

wakes up the io-done thread and it sends the reply message.

CHAPTER 4 81

• The net-io thread. The net-io thread handles incoming network packets. It runs the packets

through registered packet filters [Mogul et al. 87; Yuhara et al. 94] and when a packet filter

indicates interest, sends packets (wrapped inside asynchronous IPC messages) out to

applications.

• The reaper thread. When a thread terminates itself, there are some technical problems with

letting the thread deallocate some of its own resources, such as its thread structure. Instead, the

thread queues itself and wakes up the reaper thread to perform the final rites.

• The action thread. Again, for technical reasons some processor and processor set operations

require the assistance of a third party. The action thread helps shut down processors and

reassign processors to processor sets.

• The sched thread. The algorithm that the scheduler uses to adjust thread execution priorities

has some undesirable properties. The sched thread runs periodically to examine and “fix” the

priorities of runnable threads.

For all of these threads, blocking with a continuation results in a small latency improvement when

they wakeup and block, because they can then participate in stack handoffs instead of context-

switches. For example, in one common scenario when a disk read finishes, the kernel transfers

from the idle thread to the io-done thread to an application thread. Using continuations for these

helper threads improves the latency of this path.

For some of these threads, using continuations results in a small space savings because they no

longer need dedicated kernel stacks. The idle thread, the pageout daemon, the io-done thread, and

the stack-alloc thread do not qualify, because they must be “stack-privileged” (see Section 3.3.2.3)

and have reserved kernel stacks, although this doesn’t prevent them from using continuations and

stack handoff. For direct or indirect reasons (because they might be needed to create free physical

pages), these threads must have a kernel stack available to them or the kernel could deadlock.

These marginal performance improvements came almost for free, with very little coding effort and

no long-term software engineering drawbacks. The worker threads all have no state to save when

they block waiting for more work, and their “work loop” functions are all special-purpose and not

called in any other context. This makes them trivial candidates for the “structured gotos” technique

for using continuations.

For example, Figure 4-9 depicts the changes necessary to create the stack-alloc thread from its

predecessor. (In previous versions of Mach, threads could be “swapped out” by having their kernel

82 CHAPTER 4

stacks made pageable. The swapin thread reversed this process.) The thread_block function

blocks the calling thread until another thread performs a wakeup on its wait condition (the

argument to assert_wait). The only real change was the replacement of an explicit loop with

iteration via the continuation supplied to thread_block .

Before After
void swapin_thread() {

for (;;) {
lock queue;
while (queue not empty) {

dequeue thread;
unlock queue;

swapin_stack(thread);

lock queue;
}
assert_wait(&queue);
unlock queue;

thread_block();
}

}

void stack_alloc_thread() {
stack_privilege(current_thread());
stack_alloc_thread_continue();
/*NOTREACHED*/

}

void stack_alloc_thread_continue() {
lock queue;
while (queue not empty) {

dequeue thread;
unlock queue;

stack_alloc(thread, thread_continue);

lock queue;
}
assert_wait(&queue);
unlock queue;

thread_block(stack_alloc_thread_continue);
/*NOTREACHED*/

}

Figure 4-9: The stack-alloc thread

4.3.5 Scheduling

Blocking operations that originate in the Mach scheduler provide another example where

continuations made an incremental performance improvement possible in return for little effort.

The Mach scheduler sometimes blocks a thread and leaves it in a runnable state. This can happen

involuntarily, when a thread is preempted because its scheduling quantum expired, or voluntarily,

because the thread made a thread_switch system call to yield the processor.

In practice, these scheduling operations are not very important to system performance. The

scheduling quantum is 100 milliseconds, very large in comparison to any latency improvements

from stack handoff. Stack discarding in these cases can save memory, but a machine without much

memory probably only has one user and very few simultaneously runnable threads. Most

applications do not use the thread_switch system call.

However, I decided to implement scheduling preemptions and thread_switch with continuations

because some conceivable application loads would benefit and using continuations required almost

no effort. When the scheduler is entered via a clock interrupt and decides to preempt the current

thread, the thread has no relevant kernel-level state that must be preserved. This means that the

CHAPTER 4 83

scheduler can simply use thread_exception_return as the thread’s continuation. When the

scheduler next runs the thread, thread_exception_return automatically does the right thing,

restoring the user-level register state that the clock interrupt handler saved and hence resuming the

thread’s execution. This was a one-line change.

Modifying thread_switch took only a bit more effort. thread_switch can’t use

thread_syscall_return directly as its continuation argument to thread_block , because

thread_syscall_return requires a status code argument. Instead, when thread_switch

calls thread_block to yield the processor, it supplies thread_switch_continue as its

continuation. This function in turn calls thread_syscall_return with a success status code

argument.

4.3.6 Thread Halting

When one thread terminates another thread, the victim thread must normally be given an

opportunity to put itself into a “clean” state. This operation proved to be a good opportunistic use

of continuation recognition.

In the Mach implementation, thread termination is actually just one example of halting another

thread at a “clean point.” The kernel calls that get and set the user register context of a thread also

halt the target thread in this manner, so that they can manipulate a complete snapshot of the target

thread’s register state. In the case of termination, the victim thread must not be removed from the

system while it holds any resources or is otherwise occupied inside the kernel.

Without continuations and continuation recognition, the clean point mechanism involves an explicit

synchronization with two context-switches between the threads. The requesting thread asks the

victim thread to halt itself, and then context-switches to it. The victim thread executes until it gets

to a clean point, such as just before returning to user space, and then marks itself as halted and

context-switches back to the requesting thread.

In most cases, this clean point mechanism has only a minor performance impact. The Unix

emulation subsystem uses set-context when creating a Unix process, and it uses thread termination

when destroying a Unix process. The get-context and set-context kernel calls are also used when

delivering Unix signals and when debugging. However, the overhead of the two context-switches

for halting at a clean point makes a relatively small contribution to the overall performance of these

activities.

84 CHAPTER 4

Although the performance improvement for most application loads is relatively small, continuation

recognition makes it sufficiently easy to eliminate the context-switch overhead of halting at a clean

point that this optimization becomes feasible. This situation is also interesting because it is

currently the only place in the Mach kernel that uses continuation recognition without a stack

handoff, the technique described in Section 4.2.6.

The clean point mechanism checks the target thread, to see if it is blocked with one of a few

common continuations such as thread_exception_return and mach_msg_receive_-

continue . In these cases, the mechanism bypasses the synchronization and the context-switches

that normally put the target thread in a halted state. If the target thread is blocked with

thread_exception_return , it can be directly marked as halted. If the target thread is blocked

with mach_msg_receive_continue , then the clean point code calls a cleanup function exported

by the IPC module to put the target thread into a halted state and change its continuation to

thread_exception_return .

4.3.7 VM Faults

In the Mach virtual memory system, threads can block to wait for a physical page to become

available or to wait for a physical page to finish a paging transition, such as page-in. These

blocking operations, in the context of a user page fault, would appear to be good candidates for

continuations because intrinsically very little state must be saved. In fact, the structure of the

virtual memory system made it a little unpleasant to use continuations in these cases, but I did it

anyway. The motivation for this was not the usual performance improvement; it was to prevent

pathological behavior in memory-poor environments.

The potential problem is a positive feedback that would tend to push the system into a poor

performance regime. When the system has few free physical pages, the kernel initiates paging and

threads will block more frequently in the virtual memory system. If these blocking operations did

not use continuations, then the kernel would have to allocate more kernel stacks at this point,

because the blocking threads would hold on to their kernel stacks instead of handing them off to

other threads. This would increase the demand for physical memory precisely at a time when it was

in short supply. In the worst possible scenario, this feedback could lead to unstable behavior, with

the system oscillating between two semi-stable states: one with a working set that just fits in

physical memory, little paging, and fairly good performance, and the other with a working set

(augmented with kernel stack pages) that doesn’t fit in physical memory, much paging, and poor

performance.

CHAPTER 4 85

In practice, I never observed anything like this. Nevertheless, I modified the virtual memory system

to use continuations to prevent such problems. Because of the structure and complexity of the

page-fault handler, the result is a little messy but it was very easy to implement.

The major functions involved in page-fault handling are vm_fault and vm_fault_page . The

vm_fault_page helper function does most of the work, including blocking. The two functions

contained about 1200 lines of C (including comments), with 12 arguments and 18 local variables

between them. Using the techniques of Section 4.2.3 and Section 4.2.4, it took about 100 lines of

additional “boilerplate” code, most of it to explicitly save and restore state variables in several

places, to add resume and continue arguments to vm_fault and vm_fault_page .

vm_fault uses the “modular” technique so that its callers are not dependent on its

implementation, but vm_fault does make assumptions about vm_fault_page ’s implementation.

The worst aspect of the implementation is that these blocking operations must save 60 bytes of

state, more than will fit in the normal 28 byte save area in the thread structure, so vm_fault must

allocate and free an “annex” structure to preserve state for vm_fault_continue .

4.3.8 External Pager Interactions

The Mach kernel’s interactions with external pagers normally resemble RPCs and could take

advantage of continuation recognition to reduce latency. I would expect the improvement to be

similar to the exception-handling path’s improvement—perhaps a factor of two or three over the

current system. However, I chose not to use continuations in this area. This section describes how

external pager interactions could take advantage of continuation recognition and why they currently

do not.

The external pager interface really consists of two interfaces: the kernel can send asynchronous

messages to an external pager, a normal process running outside the kernel, and the external pager

can send asynchronous messages to the kernel. However, in most cases the kernel initiates an RPC-

like interaction by sending a “request” message to the external pager and the external pager

responds with a “reply” message. As with the exception-handling interface, the messages from the

kernel carry a port argument. Some messages in both directions carry out-of-line memory to move

pages between the kernel and the external pager.

Continuation recognition could become an interesting optimization for application loads that made

heavy use of these RPC-like interactions. Because of the complexity of the messages in the external

pager interfaces and the complexity of the virtual memory system, there is much room for

optimization. So far, the Mach project has focused on achieving good virtual memory performance

by effective caching of data pages in memory, reducing the frequency of external pager

86 CHAPTER 4

interactions. But for some application scenarios, external pager performance would be very

relevant.

The interactions most likely to affect performance for some applications are:

memory_object_data_request—memory_object_data_provided

The kernel sends memory_object_data_request to request pages in a memory object.

The external pager responds with memory_object_data_provided to deliver the data

pages. Optimizing this interaction would improve the performance of normal paging and

mapped-file IO.

memory_object_data_request—memory_object_data_unavailable

The external pager can also respond with memory_object_data_unavailable , to

indicate that the memory object does not contain the requested data. For copy-on-write

memory operations, the kernel creates temporary memory objects that contain the modified

pages; when searching for a page it first checks the temporary object before moving down

the “shadow chain” towards the base memory object. The external pager for temporary

objects uses memory_object_data_unavailable to indicate that a temporary object

does not contain a paged-out modified page. This interaction affects the performance of

applications that use copy-on-write, sometimes modify copy-on-write pages, and are not

entirely memory-resident.

External pagers for normal memory objects can also use memory_object_data_-

unavailable to indicate that the kernel should zero-fill the requested pages.

memory_object_data_unlock—memory_object_lock_request

The kernel sends memory_object_data_unlock when a thread attempts to write a

page that the external pager has “locked.” The external pager sends memory_object_-

lock_request to grant write access to a previously “locked” page. This is a common

scenario in some distributed shared memory and garbage collection algorithms [Appel &

Li 91].

Some other external pager interactions have an RPC-like flavor, but are not as likely to affect

performance:

memory_object_init—memory_object_set_attributes

The kernel sends memory_object_init when a memory object is first mapped into an

address space by the kernel. The external pager should respond with a

CHAPTER 4 87

memory_object_set_attributes message. This interaction would only be a

performance issue for applications that created, mapped, and destroyed memory objects at

a high rate. Furthermore, it would be difficult to use continuations in this scenario because

the kernel sends memory_object_init and then waits for the memory object to change

state while deep inside the vm_map kernel call. The page-fault handler initiates the other

external pager interactions discussed here.

memory_object_data_request—memory_object_data_error

An external pager can respond to memory_object_data_request with a

memory_object_data_error message, to indicate that the pager can not supply data

that it should possess. This interaction is normally quite rare but it might be fall out

naturally if the other memory_object_data_request interactions were modified to use

continuation recognition.

Most external pager interactions do use continuations. As described in the previous section, when a

thread waits for a physical page state transition inside a user page fault it blocks with the

vm_fault_continue continuation. This includes waiting for responses to

memory_object_data_request and memory_object_data_unlock messages. On the other

side of the interaction, threads in an external pager wait for messages from the kernel inside the

mach_msg system call, with mach_msg_receive_continue as their continuation.

However, several factors make these control transfer paths challenging targets for continuation

recognition.

• First, the complexity of the virtual memory system and the page-fault handling algorithm in

particular make it a difficult job. Avoiding wholesale duplication of already very complex and

large functions would require a thorough restructuring.

• Second, the external pager interactions only approximate RPC control transfers. When an

external pager sends memory_object_data_provided , it might wake up zero, one, or more

threads. Getting the efficiency of scheduling handoffs in the common case of an interaction

between one faulting thread and one external pager thread, while preserving correctness in the

general case, would be a challenge. One approach would use the stack handoff-based

continuation recognition of Section 4.2.5 in the common case, augmented with the

continuation-modifying technique of Section 4.2.6 for the general case.

• Third, the implementation of external pagers would have to change to get the best performance.

Currently external pager threads use one mach_msg system call to send a message such as

88 CHAPTER 4

memory_object_data_provided , and then later make a second mach_msg call to wait for

further messages from the kernel. These would have to be combined into a single send/receive

mach_msg to enable a scheduling handoff to a thread waiting in the page-fault handler.

Considering the size of the implementation effort, and the fact that current applications do not need

great external pager performance, I decided to leave continuation recognition in the external pager

system for future work.

89

Chapter 5

Performance

In this chapter I examine the effect that continuations have on the performance of Mach 3.0. In

terms of space, I show that almost all control transfers in the kernel use continuations and are able

to leave the blocking thread without a stack. This effectively makes kernel stacks into a per-

processor resource. In terms of time, I also show that most control transfers use continuation

recognition. This reduces the latency of cross-address space communication and user-level

exception handling. These performance results lead me to conclude that one can apply

continuations to performance-critical paths and get good results with relatively little effort once the

underlying control transfer interface has been implemented.

5.1 Experimental Environment

I measured three versions of the Mach kernel: MK32, MK40 and Mach 2.5. Both MK32 and

MK40 are Mach 3.0 “pure” kernels in that they do not implement the Unix system call interface in

the kernel’s address space. The MK32 kernel does not use continuations, but includes

optimizations that reduce the overhead of cross-address space RPC [Draves 90]. The MK40 kernel

uses continuations as described in Chapter 4. Except for MK40’s use of continuations, the MK32

and MK40 kernels measured here were identical.1 Mach 2.5 is a hybrid kernel that implements the

BSD Unix interface in kernel space, does not include the RPC optimizations in MK32, and does

not use continuations.

1The MK40 kernel also implements optimizations unrelated to continuations. I added the unrelated
optimizations to the MK32 kernel reported here to ensure a fair comparison.

90 CHAPTER 5

All three kernels were measured on the DECstation 3100 (DS3100) and the Toshiba 5200/100.

The DS3100 is a MIPS R2000-based workstation with separate 64K direct-mapped instruction

and data caches and a four-stage write buffer. The write buffer takes at least six cycles to process

each write. It has a 16.67Mhz clock and executes one instruction per cycle, barring cache misses

and write stalls. The DS3100 was configured with 16 megabytes of memory and a 250 megabyte

Hitachi disk drive. The Toshiba 5200 is an Intel 80386-based laptop with a 20Mhz clock and a

32K combined instruction and data cache. The Toshiba 5200 was configured with 8 megabytes of

memory and a 100 megabyte Conner disk drive.

The Mach 3.0 kernel tests were run in an environment in which Unix system calls are implemented

as RPCs to a Unix server [Golub et al. 90]. I also measured an MS-DOS emulation environment

on the Toshiba 5200 [Malan et al. 91]. The MS-DOS emulation uses the 80386’s virtual-8086

mode. It implements privileged operations and MS-DOS (BIOS) system calls with a user-level

exception handler that catches the faults resulting from native-mode operations. The exception

handling thread runs in the address space of the emulated MS-DOS program.

5.2 Dynamic Frequency of Continuation Use

The value of continuations depends on the frequency with which they can be used. To determine

this, I counted the number of blocking operations that used continuations in three tests run on the

Toshiba 5200 running the MK40 kernel. The first test measured a short C compilation benchmark.

This test consists of a shell script which compiles nine source files, all small and with few include

files.2 The second test measured a Mach 3.0 kernel build where all the files resided in AFS, the

distributed Andrew File System [Satyanarayanan et al. 85]. The third test measured the MS-DOS

program Wing Commander, an interactive space combat simulation with animation and sound.

The short compilation and MS-DOS tests were run with the machine in single-user mode. The

kernel build was run in multi-user mode because AFS requires network services and a user-level

file cache manager. Table 4-3 summarizes the results. (On the DS3100, the frequencies for the

compile test and kernel build are similar. The DOS emulation runs only on the Toshiba.)

The table shows that about 99% of all control transfers use continuations and take advantage of

stack discarding. The most frequent operations are message receive and exception handling. The

other operations are page-fault handling, voluntary rescheduling [Black 90b], involuntary

preemptions, and blocking by internal kernel threads. The remaining blocking operations (which do

not use continuations) occur during kernel-mode page faults, memory allocation, and lock

2This is the same compilation test reported in [Golub et al. 1990].

CHAPTER 5 91

acquisition. MK40 implements these dynamically infrequent operations using the process model;

while blocked, the thread retains its kernel stack.

Toshiba 5200 running MK40 and Unix emulation
Operations Compile Test Kernel Build DOS Emulation

Using (22 secs) (4917 secs) (698 secs)
Stack Discard blocks % blocks % blocks %

message receive 3113 83.4 1391769 86.3 200167 55.2
exception 0 0.0 882 0.0 137367 37.9
page fault 34 0.9 3278 0.2 144 0.0
thread switch 0 0.0 114 0.0 4 0.0
preempt 288 7.7 78602 4.9 19101 5.3
internal threads 239 6.4 135756 8.4 5791 1.6
total stack discards 3674 98.4 1610401 99.9 362574 100.0
no stack discards 60 1.6 2117 0.1 7 0.0

Table 5-1: Frequency of Stack Discarding with Continuations

Table 5-2 shows that stack handoff occurs on nearly all control transfers. Moreover, continuation

recognition, which can occur during cross-address space RPCs and exceptions, happens in over

60% of all blocking operations.

Toshiba 5200 running MK40 and Unix emulation
Compile Test Kernel Build DOS Emulation
count % count % count %

total blocks 3734 100.0 1612518 100.0 362581 100.0
stack handoff 3614 96.8 1608320 99.7 362567 100.0
recognition 2247 60.2 1166449 72.3 311277 85.9

Table 5-2: Frequency of Continuation Recognition and Stack Handoff

5.3 Time Savings Due to Continuations

In this section I show that continuations improve the runtime performance of cross-address space

RPCs and exception handling. My RPC test measures the round-trip time for a cross-address space

“null” RPC, which sends the shortest possible message (a 24 byte message header) in each

direction and executes a minimal amount of user code. My exception handling test measures the

time for a user-level server thread to handle a faulting thread’s exception. The exception server

thread runs in the same address space as the faulting client thread and it does not examine or

change the state of the client thread, so the client thread retakes the exception. The times for the

92 CHAPTER 5

two tests, averaged over a large number of iterations and running on MK40, MK32 and Mach 2.5,

are shown in Table 5-3.

DS3100 Toshiba 5200
MK40 MK32 Mach 2.5 MK40 MK32 Mach 2.5

null RPC 95 110 185 535 510 890
exception 135 425 380 525 1155 1410

Table 5-3: RPC and Exception Times (in µsecs)

5.3.1 RPC Improvements

The RPC path in MK32 was already highly optimized relative to Mach 2.5 [Draves 90], so there

was little room for further improvement. Although it uses one kernel stack per thread, MK32

avoids the general scheduler code during RPC transfers. Instead, it context-switches directly from

the sending thread to the receiving thread with a scheduling handoff. In contrast, Mach 2.5 queues

messages and uses the general scheduling machinery to determine that the receiving thread is the

next to run.

MK40, using continuation recognition, permits the client and server threads to share context during

the transfer and achieves an additional 14% reduction in latency on the DS3100.

To examine the source of the improvement in RPC latency on the DS3100, I counted instructions,

loads, and stores for each component of the total RPC path, as shown in Table 5-4. In this case,

the performance gain comes from doing a stack handoff instead of a context-switch. Continuation

recognition provides only enough performance benefit to offset the cost of saving and restoring

state with a continuation.

Although the MK40 path uses 21% fewer instructions, it is only 14% faster. The reason for this

discrepancy is that the R2000’s write buffer limits the performance of the MK40 path; its 212

stores (at 6 cycles per store) must take at least 1272 cycles.

Despite the earlier optimizations, RPCs in MK40 are still 14% faster than in MK32. The

improvement is mostly due to the stack handoff that replaces the more expensive context switch.3

3The Toshiba 5200's RPC latency increased slightly in MK40 because of a performance “bug” that has
since been fixed. The trap handler on the 5200 saved user registers on the stack during kernel entry,
rather than in a separate machine-dependent data structure. As a result, the machine-dependent stack
handoff procedure copied the current thread's state from the stack and copied the new thread's state onto
the stack. In isolation, these copies cost approximately 50 µsecs per RPC.

CHAPTER 5 93

Table 5-4 illustrates the cost differential between stack handoff and context switch in terms of the

number of instructions, loads, and stores required on a DS3100. The table shows that a handoff,

which doesn’t require a complete context save and restore, is substantially more efficient than a

context switch.

MK40 MK32
instrs loads stores instrs loads stores

request path
syscall entry 64 7 25 67 8 20
msg copyin 41 6 6 41 6 6
sender 180 50 28 185 47 26
stack handoff 83 22 18
context switch 250 52 27
receiver 149 53 20 139 46 15
msg copyout 41 6 6 41 6 6
syscall exit 35 21 1 24 11 1

reply path
syscall entry 64 7 25 67 8 20
msg copyin 41 6 6 41 6 6
sender 164 41 27 173 41 25
stack handoff 83 22 18
context switch 250 52 27
receiver 105 40 15 96 34 10
msg copyout 41 6 6 41 6 6
syscall exit 35 21 1 24 11 1

user space
client code 21 3 5 21 3 5
server code 20 4 5 20 4 5
total 1167 315 212 1480 341 206

Table 5-4: RPC Component Costs on the DS3100

5.3.2 Runtime Cost of Continuations

There is a small runtime cost associated with the use of continuations in Mach. As Table 5-4

shows, entering and exiting the kernel takes slightly longer in MK40 than in MK32. This is due to

the interaction between continuations and architectural calling conventions. In MK32, the kernel’s

system call entry routine does not need to save any user registers on the stack. Registers that are

“caller-saved” have already been saved on the user-level stack, and those that are “callee-saved”

will be saved on the kernel-level stack as necessary by the system call’s compiler-generated prolog.

That prolog implicitly assumes the process model and that callee-saved registers will be restored on

return from the procedure that saved them. When continuations are used and stacks are discarded,

though, a callee-saved register will not be restored on return (since the return never occurs).

94 CHAPTER 5

Consequently, the kernel entry routine must save all callee-saved registers in an auxiliary machine-

dependent data structure, and the kernel’s exit routine must restore them. The DS3100, for

example, has 9 callee-saved registers to which the additional costs in Table 5-4 can be attributed.

For exceptions and interrupts, the kernel entry routine must preserve all user registers, not just

those that are callee-saved. This was necessary in MK32 as well, so the relative cost of

aggressively preserving callee-saved registers decreases in these cases.

5.3.3 Exception Handling Improvements

As Table 5-3 shows, exception handling in MK40 is two to three times faster than in MK32.

Unlike RPC, the exception handling path had not been optimized in MK32. Consequently,

exception handling in MK40 demonstrates a “best case” result for continuations. It also illustrates

an important point regarding the use of a general mechanism like continuations in an operating

system kernel. The need for a fast but portable cross-address space RPC mechanism motivated me

to develop a general interface for handling control transfer efficiently. Once I had that interface, I

was able to apply it easily to the exception handling path. In less than three days of work, I saw a

2-3 fold improvement in the runtime performance of exception handling. This also realized a space

savings due to stack discarding. Further, because these optimizations were implemented using

machine-independent code, they only had to be done once. My experience with using continuations

on other kernel paths has been similar.

5.4 Space Savings Due To Continuations

Continuations effectively change the kernel stack into a per-processor, rather than a per-thread,

resource. For the three test programs, the number of kernel-level threads varied from 24 to 43. (In

contrast, a general purpose multi-user server at Carnegie Mellon University typically supports one

to two hundred threads.) Using MK32, there would be as many kernel stacks as kernel-level

threads. Using MK40, the number of kernel stacks was, on average, 2.002. (I measured the number

of kernel threads and stacks used by sampling a counter at each clock interrupt, every 10

milliseconds.) Over 99% of the time only two stacks were in use: one for the currently running

thread and one for an internal kernel thread that never blocks with a continuation. This thread has

been moved outside the kernel in more recent versions of Mach 3.0 [Golub & Draves 91], leaving

only one stack in use in the normal case. Rarely, more stacks were used due to the fact that some

control transfers do not use continuations (see the bottom row in Table 4-3). In the worst of

circumstances, I saw the compile test and MS-DOS emulation use 3 stacks, and the kernel build

use 6. (I determined the maximum number of stacks in use by checking at every stack allocation,

not by sampling at clock interrupts.)

CHAPTER 5 95

Another way of evaluating the savings due to continuations is to consider the average amount of

kernel memory consumed by each thread. Table 5-5 shows the size in bytes of the per-thread data

structures maintained by the MK32 and MK40 kernels on the DS3100. On that machine,

continuations reduce the average size of a thread by 85%. On the Toshiba, there is a comparable

reduction.

MK40 MK32
min average max min average max

MI state 484 484 484 452 452 452
MD state 172 206 308 0 0 0
stack 0 0 0 336 4022 4432
total 656 690 792 788 4474 4884

Table 5-5: Thread Management Overhead on the DS3100 (in bytes)

The space required by a kernel-level thread includes machine-independent and machine-dependent

state, and possibly a stack. In MK40, the machine-independent state has grown to include space for

the continuation (a 4 byte function pointer), and a 28 byte scratch area, making it 32 bytes larger

than in MK32. The machine-dependent thread state includes, for example, user registers that are

saved when a thread enters the kernel. The number of registers saved depends on whether or not a

thread is using the floating point unit. On average, I have found that only about 1 in 4 threads uses

floating point. In MK32, the thread’s machine-dependent state is stored on the thread’s dedicated

kernel stack. In MK40, threads do not have a dedicated kernel stack, so the machine-dependent

state is kept in a separate data structure.

The space consumed by a stack includes the stack itself (4K bytes), and any data structures used

by the virtual memory (VM) system to maintain the stack in the kernel’s address space. In MK32,

kernel stacks are pageable, so they require an additional 116 bytes of VM data structures. Even

when kernel stacks are pageable, threads run often enough that their stacks remain in memory.

With MK32, for example, I found that over 90% of kernel stacks remained resident, even when the

system paged other memory. When the stack of an idle thread is actually paged out, an additional

220 bytes of VM-related data structures per thread are required, so a non-resident stack consumes

336 bytes. The MK40 kernel takes advantage of the fact that it is not necessary to page kernel

stacks (since there are so few of them) and saves space in the VM system. Additionally, MK40

allocates stacks from physical memory on architectures where this is possible, freeing up a TLB

entry for other purposes.

97

Chapter 6

Conclusions

Control transfer is the fundamental activity in operating system kernels. Using a programming

language abstraction, continuations, I have developed a framework for kernel control transfer that

achieves increased flexibility and performance. An implementation in the context of the Mach 3.0

operating system from Carnegie Mellon University and performance measurements in that

environment validate my framework. The resulting system has been successfully ported to more

than ten different hardware architectures and is already in commercial use.

6.1 Contributions

The main contributions of this work are:

• An adaptation of continuations, a programming language abstraction, for use in a hostile

environment, operating systems kernels written in conventional programming languages.

• A generalization of previous operating system control transfer optimizations.

• An interface for managing control transfer in the kernel, which provides significantly more

functionality than existing such interfaces while still being portable and efficient.

• A methodology for using continuations, including converting existing code.

In this dissertation, I have shown how a programming language abstraction for control transfer can

be adapted for use with conventional programming languages. Continuations, which represent the

saved state of a suspended computation or thread, were originally developed as a mathematical

98 CHAPTER 6

abstraction for defining programming language control transfer semantics. Some modern

programming languages support first-class continuations, which provide direct access to this

abstraction. Unfortunately, the severe efficiency and concurrency requirements for operating

system kernels have so far precluded the use of these modern programming languages; operating

system kernels today are still written in systems programming languages such as C and C++.

Operating in this conventional environment, my framework gives programmers a choice of

continuation representations: when a thread blocks, the programmer can choose to represent the

thread’s state with saved register context and stack frames, or the programmer can choose to save

a continuation function and any state variables that are deemed important. The flexibility of having

a choice of thread state representations and the accessible nature of the machine-independent

continuation function representation permits common control transfer situations to be optimized.

Continuations generalize many existing operating system control transfer optimizations. This

should not be surprising, given that continuations were invented expressly as a generalization for

all control transfer operations. To review several examples, recall LRPC [Bershad et al. 90], the V

system [Cheriton 88], and Taos [McJones & Swart 89]. LRPC optimizes the control transfer in

cross-address space communication; it provides a very direct path from client to server and back

that eliminates unnecessary saving and restoring of register context. Continuations achieve this

optimization in cross-address communication, but in a more general fashion that allows the same

optimization to operate in other control transfer paths. The V system uses a single kernel stack per

processor, but at the expense of disallowing context-switches inside the V kernel. Continuations

achieve the performance characteristics of a single kernel stack per processor, but also allow

traditional context-switches. This greatly simplifies the implementation of kernel facilities such as

dynamic memory allocation, multiprocessor synchronization, and virtual memory. The Taos kernel

optimizes kernel stack usage by discarding the kernel stack of threads that block in user mode,

without any kernel context. Continuations achieve this thread management optimization, but also

allow kernel stacks to be discarded in other situations when a continuation function can represent

the kernel context.

In support of continuations, I have developed an interface for the machine-independent

management of control transfer inside the kernel. The conventional interface for control transfer is

a “ContextSwitch” primitive. In contrast, my interface provides the following functionality:

• Control of kernel stack allocation and deallocation.

• The ability to detach a kernel stack from a thread and later reattach a different stack.

CHAPTER 6 99

• A stack-handoff primitive that changes the current thread without saving and restoring register

context.

• A context-switch primitive that avoids multiprocessor synchronization problems.

In addition, I have developed a set of techniques for using continuations effectively. This includes

advice for selecting the important control transfer paths, depending on the performance goals, and

for selecting the appropriate coding techniques, depending on the structure of those control transfer

paths. The advice and techniques apply both to converting existing kernel code to use continuations

and writing new code with continuations.

Taken together, these contributions form a blueprint for putting continuations into practice.

6.2 Future Impact

The work described in this dissertation relates to several current trends in software and hardware

evolution:

• Microkernels and other forms of modularized operating systems.

• Portable and consumer devices.

• High-latency memory hierarchies in high-performance computing.

Finding an appropriate balance between flexibility and performance is a continual challenge.

Recent systems software, both academic and commercial, is reaching for more flexibility by

moving system components into separate modules, which are often loaded in separate address

spaces. For example, Windows NT [Custer 93] and OSF/1 MK [Roy 93] have moved their

application programmer interfaces (Win32 and Unix, respectively) into address spaces outside the

kernel. The X Window System [Scheifler & Gettys 90] places the display manager and the window

manager functionality in their own address spaces. This trend increases the importance of control

transfer performance.

Despite the exponential decrease in the cost of memory, memory capacity remains a concern in

some increasingly important environments. With small portable computers, power consumption

and packaging issues limit memory size. With consumer devices, such as cable set-top boxes, high-

definition TVs, and personal digital assistants, the cost of goods must be kept as low as possible.

100 CHAPTER 6

In some current designs memory represents a significant fraction of the total cost of goods.1 This

trend increases the importance of memory overhead for control transfer.

High-performance computing environments do not suffer from limited memory capacity. However,

they must cope with deep memory hierarchies with correspondingly large latencies for accesses that

must descend the hierarchy. This trend increases the importance of memory access locality in

control transfer paths.

This dissertation addresses the issues of performance, memory overhead, and memory access

locality in control transfer. The stack-handoff and continuation recognition optimizations improve

the performance of important control transfer paths. The stack-discarding optimization reduces the

memory overhead of control transfer; in most situations the kernel operates with one kernel stack

per processor. This also improves memory access locality in the important control transfer paths,

because these paths only reference one kernel stack instead of two.

6.3 Final Remarks

This dissertation has shown how continuations, a programming language abstraction for control

transfer, can be adapted for use with conventional programming languages to achieve increased

flexibility and performance in kernel control transfer. A programming language with support for

first-class continuations would offer even greater flexibility. Supporting first-class continuations in

a kernel environment, with its requirements for efficiency and concurrency, remains an interesting

challenge. In addition, current formulations of first-class continuations do not allow continuation

recognition, because first-class continuations are opaque objects. I hope that future research will

make it possible to use first-class continuations in a kernel environment.

1 For example, if a consumer device with a total cost of goods of $200 contains 4 megabytes of memory at
$20/megabyte, then memory represents 40% of the total cost.

101

Appendix A

Mach IPC

Mach IPC plays multiple roles in this dissertation: motivation that originally prompted the work,

example in the guise of MockIPC, and finally subject of measurement. This appendix describes the

Mach 3.0 IPC system call interface. The interface allows programs to send messages to protected

message queues known as ports. The messages can carry references to ports and regions of

memory in addition to uninterpreted data.

In developing the Mach 3.0 IPC interface, I had two major goals [Draves 90]. First, I intended to

fix a number of semantic problems. The original Mach interface did not give applications the tools

needed to manage correctly their handles for ports. Second, I intended to develop a more efficient

implementation, both in terms of latency for common operations and data structure size, and some

aspects of the new interface assisted these performance goals. I also chose to preserve as much as

possible the spirit of the Mach 2.5 interface and provided support for the old interface in the

implementation.

The following features of the Mach 3.0 IPC interface relate to this dissertation:

• The mach_msg system call allows both the client and server sides of RPC-like message

exchanges to wakeup another thread and block themselves with a single system call. This

enables scheduling handoffs and the stack handoff form of continuation recognition in both the

request and reply directions. See Section 4.3.2.

• Mach messages have internal structure that the kernel may need to interpret or parse. When the

kernel sends a message with complex internal structure, continuation recognition can bypass

102 APPENDIX A

the overhead of parsing a message that was just constructed. This occurs when the kernel sends

exception messages; see Section 4.3.3. In a similar way, continuation recognition bypasses

some of the overhead of supporting the more esoteric and little-used options to mach_msg.

The following sections discuss the IPC interface in detail.

A.1 Major Concepts

The Mach kernel provides message-oriented, capability-based interprocess communication. The

interprocess communication (IPC) primitives efficiently support many different styles of

interaction, including remote procedure calls, object-oriented distributed programming, streaming

of data, and sending very large amounts of data in a single message.

The IPC primitives operate on three abstractions: messages, ports, and port sets. User tasks1

access all other kernel services and abstractions via the IPC primitives.

The message primitives let tasks send and receive messages. Tasks send messages to ports.

Messages sent to a port are delivered reliably (messages may not be lost) and are received in the

order in which they were sent. Messages contain a fixed-size header and a variable amount of

typed data following the header. The header describes the destination and size of the message.

The IPC implementation makes use of the virtual memory system to transfer efficiently large

amounts of data. The message body can contain the address of a region in the sender’s address

space that should be transferred as part of the message. When a task receives a message containing

such an “out-of-line” region of data, the data appears in an unused portion of the receiver’s address

space. This transmission of out-of-line data is optimized so that sender and receiver share the

physical pages copy-on-write, and no actual data copy occurs unless the pages are written. Regions

of memory up to the size of a full address space may be sent in this manner.

Ports hold a queue of messages. Tasks operate on a port to send and receive messages by

exercising capabilities for the port. Multiple tasks can hold send capabilities, or rights, for a single

port. Tasks can also hold send-once rights, which grant the ability to send a single message. Only

one task can hold the receive capability, or receive right, for a port. Port rights can be transferred

between tasks via messages. The sender of a message can specify in the message body via a special

type specification that the message contains a port right. If a message contains a receive right for a

port, then the receive right is removed from the sender of the message and the right is transferred to

1Mach terminology for processes.

APPENDIX A 103

the receiver of the message. While the receive right is in transit, tasks holding send rights can still

send messages to the port, and they are queued until a task acquires the receive right and uses it to

receive the messages.

Tasks can receive messages from port sets as well as ports. The port set abstraction allows a single

thread to wait for a message from any of several ports. Tasks manipulate port sets with a

capability, or port-set right, that is taken from the same name space as the port capabilities. The

port-set right may not be transferred in a message. A port set holds receive rights, and a receive

operation on a port set blocks waiting for a message sent to any of the constituent ports. A port

may not belong to more than one port set, and if a port is a member of a port set, the holder of the

receive right can’t receive directly from the port.

Port rights are a secure, location-independent way of naming ports. The port queue is a protected

data structure, only accessible via the kernel’s exported message primitives. Rights are also

protected by the kernel; there is no way for a malicious user task to guess a port name and send a

message to a port to which it shouldn’t have access. Port rights do not carry any location

information. When a receive right for a port moves from task to task, and even between tasks on

different machines, the send rights for the port remain unchanged and continue to function.

A.2 Sending and Receiving Messages: mach_msg

The mach_msg system call sends and receives Mach messages. Mach messages contain typed

data, which can include port rights and references to large regions of memory.

mach_msg_return_t
mach_msg(msg, option, send_size, rcv_size, rcv_name,

timeout, notify)
mach_msg_header_t *msg;
mach_msg_option_t option;
mach_msg_size_t send_size;
mach_msg_size_t rcv_size;
mach_port_t rcv_name;
mach_msg_timeout_t timeout;
mach_port_t notify;

If the option argument is MACH_SEND_MSG, it sends a message. The send_size argument

specifies the size of the message to send. The msgh_remote_port field of the message header

specifies the destination of the message.

If the option argument is MACH_RCV_MSG, it receives a message. The rcv_size argument

specifies the size of the message buffer that will receive the message; messages larger than

rcv_size are not received. (By default they are destroyed.) The rcv_name argument specifies

the port or port set from which to receive.

104 APPENDIX A

If the option argument is MACH_SEND_MSG|MACH_RCV_MSG, then mach_msg does both send

and receive operations. If the send operation encounters an error (any return code other than

MACH_MSG_SUCCESS), then the call returns immediately without attempting the receive operation.

Semantically the combined call is equivalent to separate send and receive calls, but it saves a

system call and enables other internal optimizations.

If the option argument specifies neither MACH_SEND_MSG nor MACH_RCV_MSG, then mach_msg

does nothing.

Some options, like MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT, share a supporting

argument. If these options are used together, they make independent use of the supporting

argument’s value.

The arguments to mach_msg are:

msg

The address of a message buffer in the caller’s address space. Message buffers should be

aligned on integer boundaries.

option

Message options are bit values, combined with bitwise-or. One or both of

MACH_SEND_MSG and MACH_RCV_MSG should be used. Other options act as modifiers.

send_size

When sending a message, specifies the size of the message buffer. Otherwise zero should

be supplied.

rcv_size

When receiving a message, specifies the size of the message buffer. Otherwise zero should

be supplied.

rcv_name

When receiving a message, specifies the port or port set. Otherwise MACH_PORT_NULL

should be supplied.

timeout

When using the MACH_SEND_TIMEOUT and MACH_RCV_TIMEOUT options, specifies the

time in milliseconds to wait before giving up. Otherwise MACH_MSG_TIMEOUT_NONE

should be supplied.

APPENDIX A 105

notify

When using the MACH_SEND_NOTIFY, MACH_SEND_CANCEL, and MACH_RCV_NOTIFY

options, specifies the port used for the notification. Otherwise MACH_PORT_NULL should

be supplied.

A.3 Message Format

A Mach message consists of a fixed-size message header, a mach_msg_header_t , followed by

zero or more data items. Data items are typed. Each item has a type descriptor followed by the

actual data (or the address of the data, for out-of-line memory regions).

typedef unsigned int mach_port_t;

typedef unsigned int mach_port_seqno_t;

typedef unsigned int mach_msg_bits_t;
typedef unsigned int mach_msg_size_t;
typedef int mach_msg_id_t;

typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_seqno_t msgh_seqno;
mach_msg_id_t msgh_id;

} mach_msg_header_t;

The msgh_size field in the header of a received message contains the message’s size. The

message size, a byte quantity, includes the message header, type descriptors, and in-line data. For

out-of-line memory regions, the message size includes the size of the in-line address, not the size of

the actual memory region. There are no arbitrary limits on the size of a Mach message, the number

of data items in a message, or the size of the data items.

The msgh_remote_port field specifies the destination port of the message. The field must carry

a legitimate send or send-once right for a port.

The msgh_local_port field specifies an auxiliary port right, which is conventionally used as a

reply port by the recipient of the message. The field must carry a send right, a send-once right,

MACH_PORT_NULL, or MACH_PORT_DEAD.

The msgh_bits field has the following bits defined:

#define MACH_MSGH_BITS_REMOTE_MASK 0x000000ff
#define MACH_MSGH_BITS_LOCAL_MASK 0x0000ff00
#define MACH_MSGH_BITS_COMPLEX 0x80000000

#define MACH_MSGH_BITS_REMOTE(bits)
#define MACH_MSGH_BITS_LOCAL(bits)
#define MACH_MSGH_BITS(remote, local)

106 APPENDIX A

The remote and local bits encode mach_msg_type_name_t values that specify the port rights in

the msgh_remote_port and msgh_local_port fields. The remote value must specify a send or

send-once right for the destination of the message. If the local value doesn’t specify a send or send-

once right for the message’s reply port, it must be zero and msgh_local_port must be

MACH_PORT_NULL. The complex bit must be specified if the message body contains port rights or

out-of-line memory regions. If it is not specified, then the message body carries no port rights or

memory, no matter what the type descriptors may seem to indicate.

The MACH_MSGH_BITS_REMOTE and MACH_MSGH_BITS_LOCAL macros return the appropriate

mach_msg_type_name_t values, given a msgh_bits value. The MACH_MSGH_BITS macro

constructs a value for msgh_bits , given two mach_msg_type_name_t values.

The msgh_seqno field provides a sequence number for the message. It is only valid in received

messages; its value in sent messages is overwritten. Section A.7 discusses message sequence

numbers.

The mach_msg call doesn’t use the msgh_id field, but it conventionally conveys an operation or

function id.

Each data item has a type descriptor, a mach_msg_type_t or a mach_msg_type_long_t . The

mach_msg_type_long_t type descriptor allows larger values for some fields. The

msgtl_header field in the long descriptor is only used for its inline, longform, and deallocate

bits.

typedef unsigned int mach_msg_type_name_t;
typedef unsigned int mach_msg_type_size_t;
typedef unsigned int mach_msg_type_number_t;

typedef struct {
unsigned int

msgt_name : 8,
msgt_size : 8,
msgt_number : 12,
msgt_inline : 1,
msgt_longform : 1,
msgt_deallocate : 1,
msgt_unused : 1;

} mach_msg_type_t;

typedef struct {
mach_msg_type_t msgtl_header;
unsigned short msgtl_name;
unsigned short msgtl_size;
unsigned int msgtl_number;

} mach_msg_type_long_t;

APPENDIX A 107

The msgt_name (msgtl_name) field specifies the data’s type. The following types are

predefined:

MACH_MSG_TYPE_UNSTRUCTURED
MACH_MSG_TYPE_BIT
MACH_MSG_TYPE_BOOLEAN
MACH_MSG_TYPE_INTEGER_16
MACH_MSG_TYPE_INTEGER_32
MACH_MSG_TYPE_CHAR
MACH_MSG_TYPE_BYTE
MACH_MSG_TYPE_INTEGER_8
MACH_MSG_TYPE_REAL
MACH_MSG_TYPE_STRING
MACH_MSG_TYPE_STRING_C
MACH_MSG_TYPE_PORT_NAME

MACH_MSG_TYPE_MOVE_RECEIVE
MACH_MSG_TYPE_MOVE_SEND
MACH_MSG_TYPE_MOVE_SEND_ONCE
MACH_MSG_TYPE_COPY_SEND
MACH_MSG_TYPE_MAKE_SEND
MACH_MSG_TYPE_MAKE_SEND_ONCE

The last six types specify port rights, and receive special treatment. The next section discusses

these types in detail. The type MACH_MSG_TYPE_PORT_NAME describes port right names, for use

when no rights are being transferred, but just names. For this purpose, it should be used in

preference to MACH_MSG_TYPE_INTEGER_32.

The msgt_size (msgtl_size) field specifies the size of each datum, in bits. For example, the

msgt_size of MACH_MSG_TYPE_INTEGER_32 data is 32.

The msgt_number (msgtl_number) field specifies how many data elements comprise the data

item. Zero is a legitimate number.

The total length specified by a type descriptor is (msgt_size * msgt_number), rounded up to an

integral number of bytes. In-line data is then padded to an integral number of integers. This ensures

that type descriptors always start on integer boundaries. It implies that message sizes are always an

integral multiple of an integer’s size.

The msgt_longform bit specifies, when TRUE, that this type descriptor is a

mach_msg_type_long_t instead of a mach_msg_type_t . The msgt_name , msgt_size , and

msgt_number fields should be zero. Instead, mach_msg uses the following msgtl_name ,

msgtl_size , and msgtl_number fields.

The msgt_inline bit specifies, when FALSE, that the data actually resides in an out-of-line

region. The address of the memory region (a vm_offset_t) follows the type descriptor in the

108 APPENDIX A

message body. The msgt_name , msgt_size , and msgt_number fields describe the memory

region, not the address.

The msgt_deallocate bit is used with out-of-line regions. When TRUE, it specifies that the

memory region should be deallocated from the sender’s address space (as if with

vm_deallocate) when the message is sent.

The msgt_unused bit should be zero.

A.4 Port Rights

Each task has its own name space of port rights. Port rights are named with unsigned integers.

Except for the reserved values MACH_PORT_NULL (0) and MACH_PORT_DEAD (-1), this is a full

32-bit name space. When the kernel chooses a name for a new right, it is free to pick any unused

name (one which denotes no right) in the space.

There are five basic kinds of rights: receive rights, send rights, send-once rights, port-set rights,

and dead names. Dead names are not capabilities. They act as place-holders to prevent a name

from being otherwise used.

A port is destroyed, or dies, when its receive right is deallocated. When a port dies, send and send-

once rights for the port turn into dead names. Any messages queued at the port are destroyed,

which deallocates the port rights and out-of-line memory in the messages.

Tasks may hold multiple “user-references” for send rights and dead names. When a task receives a

send right which it already holds, the kernel increments the right’s user-reference count. When a

task deallocates a send right, the kernel decrements its user-reference count, and the task only loses

the send right when the count goes to zero.

Send-once rights always have a user-reference count of one, although a port can have multiple

send-once rights, because each send-once right held by a task has a different name. In contrast,

when a task holds send rights or a receive right for a port, the rights share a single name.

A message body can carry port rights; the msgt_name (msgtl_name) field in a type descriptor

specifies the type of port right and how the port right is to be extracted from the caller. The values

MACH_PORT_NULL and MACH_PORT_DEAD are always valid in place of a port right in a message

body. In a sent message, the following msgt_name values denote port rights:

APPENDIX A 109

MACH_MSG_TYPE_MAKE_SEND

The message will carry a send right, but the caller must supply a receive right. The send

right is created from the receive right, and the receive right’s make-send count is

incremented.

MACH_MSG_TYPE_COPY_SEND

The message will carry a send right, and the caller should supply a send right. The user

reference count for the supplied send right is not changed. The caller may also supply a

dead name and the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_SEND

The message will carry a send right, and the caller should supply a send right. The user

reference count for the supplied send right is decremented, and the right is destroyed if the

count becomes zero. Unless a receive right remains, the name becomes available for

recycling. The caller may also supply a dead name, which loses a user reference, and the

receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MAKE_SEND_ONCE

The message will carry a send-once right, but the caller must supply a receive right. The

send-once right is created from the receive right.

MACH_MSG_TYPE_MOVE_SEND_ONCE

The message will carry a send-once right, and the caller should supply a send-once right.

The caller loses the supplied send-once right. The caller may also supply a dead name,

which loses a user reference, and the receiving task will get MACH_PORT_DEAD.

MACH_MSG_TYPE_MOVE_RECEIVE

The message will carry a receive right, and the caller should supply a receive right. The

caller loses the supplied receive right, but retains any send rights with the same name.

If a message carries a send or send-once right, and the port dies while the message is in transit,

then the receiving task will get MACH_PORT_DEAD instead of a right. The following msgt_name

values in a received message indicate that it carries port rights:

MACH_MSG_TYPE_PORT_SEND

This is actually the same value as MACH_MSG_TYPE_MOVE_SEND. The message carried a

send right. If the receiving task already has send and/or receive rights for the port, then

that name for the port will be reused. Otherwise, the new right will have a new name. If the

110 APPENDIX A

task already has send rights, it gains a user reference for the right (unless this would cause

the user-reference count to overflow). Otherwise, it acquires the send right, with a user-

reference count of one.

MACH_MSG_TYPE_PORT_SEND_ONCE

This is actually the same value as MACH_MSG_TYPE_MOVE_SEND_ONCE. The message

carried a send-once right. The right will have a new name.

MACH_MSG_TYPE_PORT_RECEIVE

This is actually the same value as MACH_MSG_TYPE_MOVE_RECEIVE. The message

carried a receive right. If the receiving task already has send rights for the port, then that

name for the port will be reused. Otherwise, the right will have a new name. The make-

send count of the receive right is reset to zero, but the port retains other attributes like

queued messages, extant send and send-once rights, and requests for port-destroyed and

no-senders notifications.

When the kernel chooses a new name for a port right, it can choose any name, other than

MACH_PORT_NULL and MACH_PORT_DEAD, that is not currently being used for a port right or dead

name. It might choose a name that at some previous time denoted a port right, but is currently

unused.

A.5 Memory

A message body can contain the address of a region in the sender’s address space that should be

transferred as part of the message. The message carries a logical copy of the memory, but the

kernel uses virtual memory techniques to defer any actual page copies. Unless the sender or the

receiver modifies the data, the physical pages remain shared.

An out-of-line transfer occurs when the data’s type descriptor specifies msgt_inline as FALSE.

The address of the memory region (a vm_offset_t) should follow the type descriptor in the

message body. The type descriptor and the address contribute to the message’s size (send_size ,

msgh_size , rcv_size). The out-of-line region itself does not contribute to the message’s size.

The name, size, and number fields in the type descriptor describe the type and length of the out-of-

line data, not the in-line address. Out-of-line memory frequently requires long type descriptors

(mach_msg_type_long_t), because the msgt_number field is too small to describe a page of

4K bytes.

APPENDIX A 111

Out-of-line memory arrives somewhere in the receiver’s address space as new memory. It has the

same inheritance and protection attributes as newly vm_allocate ’d memory. The receiver has the

responsibility of deallocating (with vm_deallocate) the memory when it is no longer needed.

Security-conscious receivers should exercise caution when using out-of-line memory from

untrustworthy sources, because the memory may be backed by an unreliable external pager.

Null out-of-line memory is legal. If the out-of-line region size is zero (for example, because

msgtl_number is zero), then the region’s specified address is ignored. A received null out-of-line

memory region always has a zero address.

Unaligned addresses and region sizes that are not page multiples are legal. A received message can

also contain memory with unaligned addresses and unusual sizes. In the general case, the first and

last pages in the new memory region in the receiver do not contain only data from the sender, but

are partly zero. (But see Section A.9.) The received address points to the start of the data in the

first page. This possibility doesn’t complicate deallocation, because vm_deallocate does the

right thing, rounding the start address down and the end address up to deallocate all arrived pages.

Out-of-line memory has a deallocate option, controlled by the msgt_deallocate bit. If it is

TRUE and the out-of-line memory region is not null, then the region is implicitly deallocated from

the sender, as if by vm_deallocate . In particular, the start and end addresses are rounded so that

every page overlapped by the memory region is deallocated. The use of msgt_deallocate

effectively changes the memory copy into a memory movement. In a received message,

msgt_deallocate is TRUE in type descriptors for out-of-line memory.

Out-of-line memory can carry port rights.

A.6 Message Send

The send operation queues a message to a port. The message carries a copy of the caller’s data.

After the send, the caller can freely modify the message buffer or the out-of-line memory regions

and the message contents will remain unchanged.

Message delivery is reliable and sequenced. Messages are not lost, and messages sent to a port,

from a single thread, are received in the order in which they were sent.

If the destination port’s queue is full, then several things can happen. If the message is sent to a

send-once right (msgh_remote_port carries a send-once right), then the kernel ignores the queue

limit and delivers the message. Otherwise the caller blocks until there is room in the queue, unless

112 APPENDIX A

the MACH_SEND_TIMEOUT or MACH_SEND_NOTIFY options are used. If a port has several blocked

senders, then any of them may queue the next message when space in the queue becomes available,

with the proviso that a blocked sender will not be indefinitely starved.

These options modify MACH_SEND_MSG. If MACH_SEND_MSG is not also specified, they are

ignored.

MACH_SEND_TIMEOUT

The timeout argument should specify a maximum time (in milliseconds) for the call to

block before giving up. If the message can’t be queued before the timeout interval elapses,

then the call returns MACH_SEND_TIMED_OUT. A zero timeout is legitimate.

MACH_SEND_NOTIFY

The notify argument should specify a receive right for a notify port. If the send were to

block, then instead the message is queued, MACH_SEND_WILL_NOTIFY is returned, and a

msg-accepted notification is requested. If MACH_SEND_TIMEOUT is also specified, then

MACH_SEND_NOTIFY doesn’t take effect until the timeout interval elapses.

With MACH_SEND_NOTIFY, a task can forcibly queue to a send right one message at a

time. A msg-accepted notification is sent to the notify port when another message can be

forcibly queued. If an attempt is made to use MACH_SEND_NOTIFY before then, the call

returns a MACH_SEND_NOTIFY_IN_PROGRESS error.

The msg-accepted notification carries the name of the send right. If the send right is

deallocated before the msg-accepted notification is generated, then the msg-accepted

notification carries the value MACH_PORT_NULL. If the destination port is destroyed before

the notification is generated, then a send-once notification is generated instead.

MACH_SEND_INTERRUPT

If specified, the mach_msg call will return MACH_SEND_INTERRUPTED if a software

interrupt aborts the call. Otherwise, the send operation will be retried.

MACH_SEND_CANCEL

The notify argument should specify a receive right for a notify port. If the send operation

removes the destination port right from the caller, and the removed right had a dead-name

request registered for it, and notify is the notify port for the dead-name request, then the

dead-name request may be silently canceled (instead of resulting in a port-deleted

APPENDIX A 113

notification). This option is typically used to cancel a dead-name request made with the

MACH_RCV_NOTIFY option. It should only be used as an optimization.

The send operation can generate the following return codes.

These return codes imply that the call did nothing:

MACH_SEND_MSG_TOO_SMALL

The specified send_size was smaller than the minimum size for a message.

MACH_SEND_NO_BUFFER

A resource shortage prevented the kernel from allocating a message buffer.

MACH_SEND_INVALID_DATA

The supplied message buffer was not readable.

MACH_SEND_INVALID_HEADER

The msgh_bits value was invalid.

MACH_SEND_INVALID_DEST

The msgh_remote_port value was invalid.

MACH_SEND_INVALID_REPLY

The msgh_local_port value was invalid.

MACH_SEND_INVALID_NOTIFY

When using MACH_SEND_CANCEL, the notify argument did not denote a valid receive

right.

These return codes imply that some or all of the message was destroyed:

MACH_SEND_INVALID_MEMORY

The message body specified out-of-line data that was not readable.

MACH_SEND_INVALID_RIGHT

The message body specified a port right which the caller didn’t possess.

MACH_SEND_INVALID_TYPE

A type descriptor was invalid.

114 APPENDIX A

MACH_SEND_MSG_TOO_SMALL

The last data item in the message ran over the end of the message.

These return codes imply that the message was returned to the caller with a pseudo-receive

operation:

MACH_SEND_TIMED_OUT

The timeout interval expired.

MACH_SEND_INTERRUPTED

A software interrupt occurred.

MACH_SEND_INVALID_NOTIFY

When using MACH_SEND_NOTIFY, the notify argument did not denote a valid receive

right.

MACH_SEND_NO_NOTIFY

A resource shortage prevented the kernel from setting up a msg-accepted notification.

MACH_SEND_NOTIFY_IN_PROGRESS

A msg-accepted notification was already requested, and hasn’t yet been generated.

These return codes imply that the message was queued:

MACH_SEND_WILL_NOTIFY

The message was forcibly queued, and a msg-accepted notification was requested.

MACH_MSG_SUCCESS

The message was queued.

Some return codes, like MACH_SEND_TIMED_OUT, imply that the message was almost sent, but

could not be queued. In these situations, the kernel tries to return the message contents to the caller

with a pseudo-receive operation. This prevents the loss of port rights or memory that only exist in

the message. For example, a receive right that was moved into the message, or out-of-line memory

sent with the deallocate bit.

The pseudo-receive operation is very similar to a normal receive operation. The pseudo-receive

handles the port rights in the message header as if they were in the message body. They are not

swapped. After the pseudo-receive, the message is ready to be resent. If the message is not resent,

APPENDIX A 115

note that out-of-line memory regions may have moved and some port rights may have changed

names.

The pseudo-receive operation may encounter resource shortages. This is similar to a

MACH_RCV_BODY_ERROR return code from a receive operation. When this happens, the normal

send return codes are augmented with the MACH_MSG_IPC_SPACE, MACH_MSG_VM_SPACE,

MACH_MSG_IPC_KERNEL, and MACH_MSG_VM_KERNEL bits to indicate the nature of the resource

shortage.

The queuing of a message carrying receive rights may create a circular loop of receive rights and

messages, which can never be received. For example, a message carrying a receive right can be

sent to that receive right. This situation is not an error, but the kernel will garbage-collect such

loops, destroying the messages and ports involved.

A.7 Message Receive

The receive operation dequeues a message from a port. The receiving task acquires the port rights

and out-of-line memory regions carried in the message.

The rcv_name argument specifies a port or port set from which to receive. If a port is specified,

the caller must possess the receive right for the port and the port must not be a member of a port

set. If no message is present, then the call blocks, subject to the MACH_RCV_TIMEOUT option.

If a port set is specified, the call will receive a message sent to any of the constituent ports. It is

permissible for the port set to have no constituent ports, and ports may be added and removed

while a receive from the port set is in progress. The received message can come from any of the

constituent ports that have messages, with the proviso that a constituent port with messages will

not be indefinitely starved. The msgh_local_port field in the received message header specifies

from which port in the port set the message came.

The rcv_size argument specifies the size of the caller’s message buffer. The mach_msg call will

not receive a message larger than rcv_size . Messages that are too large are destroyed, unless the

MACH_RCV_LARGE option is used.

The destination and reply ports are reversed in a received message header. The

msgh_local_port field names the destination port, from which the message was received, and

the msgh_remote_port field names the reply port right. The bits in msgh_bits are also

reversed. The MACH_MSGH_BITS_LOCAL bits have the value MACH_MSG_TYPE_PORT_SEND if the

116 APPENDIX A

message was sent to a send right, and the value MACH_MSG_TYPE_PORT_SEND_ONCE if it was

sent to a send-once right. The MACH_MSGH_BITS_REMOTE bits describe the reply port right.

A received message can contain port rights and out-of-line memory. The msgh_local_port field

does not “receive” a port right although it does name the destination port; the act of receiving the

message destroys the send or send-once right for the destination port. The msgh_remote_port

field does potentially carry a received port right, the reply port right, and the message body can

carry port rights and memory if MACH_MSGH_BITS_COMPLEX is present in msgh_bits . Received

port rights and memory should be consumed or deallocated in some fashion.

In almost all cases, msgh_local_port will specify the name of a receive right, either rcv_name

or if rcv_name is a port set, a constituent of rcv_name . If other threads are concurrently

manipulating the receive right, the situation is more complicated. If the receive right is renamed

during the call, then msgh_local_port specifies the right’s new name. If the caller loses the

receive right after the message was dequeued from it, then mach_msg will proceed instead of

returning MACH_RCV_PORT_DIED. If the receive right was destroyed, then msgh_local_port

specifies MACH_PORT_DEAD. If the receive right still exists, but isn’t held by the caller, then

msgh_local_port specifies MACH_PORT_NULL.

Received messages are stamped with a sequence number, taken from the port from which the

message was received. (Messages received from a port set are stamped with a sequence number

from the appropriate constituent port.) Newly created ports start with a zero sequence number, and

the sequence number is reset to zero whenever the port’s receive right moves between tasks. When

a message is dequeued from the port, it is stamped with the port’s sequence number and the port’s

sequence number is then incremented. The dequeue and increment operations are atomic, so that

multiple threads receiving messages from a port can use the msgh_seqno field to reconstruct the

original order of the messages.

These options modify MACH_RCV_MSG. If MACH_RCV_MSG is not also specified, they are ignored.

MACH_RCV_TIMEOUT

The timeout argument should specify a maximum time (in milliseconds) for the call to

block before giving up. If no message arrives before the timeout interval elapses, then the

call returns MACH_RCV_TIMED_OUT. A zero timeout is legitimate.

MACH_RCV_NOTIFY

The notify argument should specify a receive right for a notify port. If receiving the

APPENDIX A 117

reply port creates a new port right in the caller, then the notify port is used to request a

dead-name notification for the new port right.

MACH_RCV_INTERRUPT

If specified, the mach_msg call will return MACH_RCV_INTERRUPTED if a software

interrupt aborts the call. Otherwise, the receive operation will be retried.

MACH_RCV_LARGE

If the message is larger than rcv_size , then the message remains queued instead of being

destroyed. The call returns MACH_RCV_TOO_LARGE and the actual size of the message is

returned in the msgh_size field of the message header.

The receive operation can generate the following return codes. These return codes imply that the

call did not dequeue a message:

MACH_RCV_INVALID_NAME

The specified rcv_name was invalid.

MACH_RCV_IN_SET

The specified port was a member of a port set.

MACH_RCV_TIMED_OUT

The timeout interval expired.

MACH_RCV_INTERRUPTED

A software interrupt occurred.

MACH_RCV_PORT_DIED

The caller lost the rights specified by rcv_name .

MACH_RCV_PORT_CHANGED

rcv_name specified a receive right that was moved into a port set during the call.

MACH_RCV_TOO_LARGE

When using MACH_RCV_LARGE, and the message was larger than rcv_size . The

message is left queued, and its actual size is returned in the msgh_size field of the

message buffer.

These return codes imply that a message was dequeued and destroyed:

118 APPENDIX A

MACH_RCV_HEADER_ERROR

A resource shortage prevented the reception of the port rights in the message header.

MACH_RCV_INVALID_NOTIFY

When using MACH_RCV_NOTIFY, the notify argument did not denote a valid receive

right.

MACH_RCV_TOO_LARGE

When not using MACH_RCV_LARGE, a message larger than rcv_size was dequeued and

destroyed.

In these situations, when a message is dequeued and then destroyed, the reply port and all port

rights and memory in the message body are destroyed. However, the caller receives the message’s

header, with all fields correct, including the destination port but excepting the reply port, which is

MACH_PORT_NULL.

These return codes imply that a message was received:

MACH_RCV_BODY_ERROR

A resource shortage prevented the reception of a port right or out-of-line memory region in

the message body. The message header, including the reply port, is correct. The kernel

attempts to transfer all port rights and memory regions in the body, and only destroys those

that can’t be transferred.

MACH_RCV_INVALID_DATA

The specified message buffer was not writable. The calling task did successfully receive

the port rights and out-of-line memory regions in the message.

MACH_MSG_SUCCESS

A message was received.

Resource shortages can occur after a message is dequeued, while transferring port rights and out-

of-line memory regions to the receiving task. The mach_msg call returns

MACH_RCV_HEADER_ERROR or MACH_RCV_BODY_ERROR in this situation. These return codes

always carry extra bits (bitwise-or’ed) that indicate the nature of the resource shortage:

MACH_MSG_IPC_SPACE

There was no room in the task’s IPC name space for another port name.

APPENDIX A 119

MACH_MSG_VM_SPACE

There was no room in the task’s VM address space for an out-of-line memory region.

MACH_MSG_IPC_KERNEL

A kernel resource shortage prevented the reception of a port right.

MACH_MSG_VM_KERNEL

A kernel resource shortage prevented the reception of an out-of-line memory region.

If a resource shortage prevents the reception of a port right, the port right is destroyed and the

receiver sees the name MACH_PORT_NULL. If a resource shortage prevents the reception of an out-

of-line memory region, the region is destroyed and the caller receives a zero address. In addition,

the msgt_size (msgtl_size) field in the data’s type descriptor is changed to zero. If a resource

shortage prevents the reception of out-of-line memory carrying port rights, then the port rights are

always destroyed if the memory region can not be received. A task never receives port rights or

memory regions that it isn’t told about.

A.8 Atomicity

The mach_msg call handles port rights in a message header atomically. Port rights and out-of-line

memory in a message body do not enjoy this atomicity guarantee. The message body may be

processed front-to-back, back-to-front, first out-of-line memory and then port rights, or in some

random order.

For example, consider sending a message with the destination port specified as MACH_MSG_-

TYPE_MOVE_SEND and the reply port specified as MACH_MSG_TYPE_COPY_SEND. The same send

right, with one user-reference, is supplied for both the msgh_remote_port and

msgh_local_port fields. Because mach_msg processes the message header atomically, this

succeeds. If msgh_remote_port were processed before msgh_local_port , then mach_msg

would return MACH_SEND_INVALID_REPLY in this situation.

On the other hand, suppose the destination and reply port are both specified as MACH_MSG_-

TYPE_MOVE_SEND, and again the same send right with one user-reference is supplied for both.

Now the send operation fails, but because it processes the header atomically, mach_msg can return

either MACH_SEND_INVALID_DEST or MACH_SEND_INVALID_REPLY.

For example, consider receiving a message at the same time another thread is deallocating the

destination receive right. Suppose the reply port field carries a send right for the destination port. If

120 APPENDIX A

the deallocation happens before the dequeuing, then the receiver gets MACH_RCV_PORT_DIED. If

the deallocation happens after the receive, then the msgh_local_port and the

msgh_remote_port fields both specify the same right, which becomes a dead name when the

receive right is deallocated. If the deallocation happens between the dequeue and the receive, then

the msgh_local_port and msgh_remote_port fields both specify MACH_PORT_DEAD.

Because the header is processed atomically, it is not possible for just one of the two fields to hold

MACH_PORT_DEAD.

The MACH_RCV_NOTIFY option provides a more likely example. Suppose a message carrying a

send-once right reply port is received with MACH_RCV_NOTIFY at the same time the reply port is

destroyed. If the reply port is destroyed first, then msgh_remote_port specifies

MACH_PORT_DEAD and the kernel does not generate a dead-name notification. If the reply port is

destroyed after it is received, then msgh_remote_port specifies a dead name for which the kernel

generates a dead-name notification. It is not possible to receive the reply port right and have it turn

into a dead name before the dead-name notification is requested; as part of the message header the

reply port is received atomically.

A.9 Caveats

Sending out-of-line memory with a non-page-aligned address, or a size which is not a page

multiple, works but with a caveat. The extra bytes in the first and last page of the received memory

are not zeroed, so the receiver can peek at more data than the sender intended to transfer. This

might be a security problem for the sender.

If MACH_RCV_TIMEOUT is used without MACH_RCV_INTERRUPT, then the timeout duration might

not be accurate. When the call is interrupted and automatically retried, the original timeout is used.

If interrupts occur frequently enough, the timeout interval might never expire.

MACH_SEND_TIMEOUT without MACH_SEND_INTERRUPT suffers from the same problem.

A.10 Bootstrapping

When a task is first created, it holds no port rights. The kernel provides a few system calls that let

the task “bootstrap” itself and acquire initial port rights that in turn may be used in RPCs to

acquire more port rights.

A.10.1 mach_reply_port

mach_port_t mach_reply_port();

APPENDIX A 121

The mach_reply_port system call allocates a port. The calling task acquires the receive right

for the port.

A.10.2 mach_thread_self

mach_port_t mach_thread_self();

The mach_thread_self system call returns the calling thread’s thread port. The thread can use

the thread port to perform operations upon the kernel object that represents itself.

mach_thread_self has an effect equivalent to receiving a send right for the thread port.

mach_thread_self returns the name of the send right. In particular, successive calls will

increase the calling task’s user-reference count for the send right.

A.10.3 mach_task_self

mach_port_t mach_task_self();

The mach_task_self system call returns the calling thread’s task port. The thread can use the

task port to perform operations upon the kernel object that represents its task.

mach_task_self has an effect equivalent to receiving a send right for the task port.

mach_task_self returns the name of the send right. In particular, successive calls will increase

the calling task’s user-reference count for the send right.

However, the Mach runtime library retrieves the task port and stores it in a global variable. The

standard header files define mach_task_self() to be a macro that retrieves this value. In this

case, “calls” to mach_task_self() do not increment the calling task’s user-reference count for

the send right.

A.10.4 mach_host_self

mach_port_t mach_host_self();

The mach_host_self system call returns the calling thread’s host port. The thread can use the

host port to perform operations upon the kernel object that represents the current machine.

mach_host_self has an effect equivalent to receiving a send right for the host port.

mach_host_self returns the name of the send right. In particular, successive calls will increase

the calling task’s user-reference count for the send right.

123

Appendix B

The Control Transfer Interface

This appendix describes in more detail the control transfer interface that was introduced in

Section 3.4. The functions in the interface are divided into four functional groups: low-level stack

management, high-level stack management, context-switch, and kernel exit.

Clients of the control transfer interface, such as interprocess communication and thread

management code, only use the high-level stack management, context-switch, and kernel exit

operations. Providers of the control transfer interface can choose to implement the high-level stack

management operations directly, or to implement the two low-level primitives and take advantage

of a standard machine-independent implementation of the high-level operations in terms of the low-

level primitives. Machine-dependent code asserts full control over stack management by defining

the MACHINE_STACKS conditional compilation symbol in a header file, thus disabling the standard

machine-independent implementation.

B.1 Low-Level Stack Management

B.1.1 stack_attach

void stack_attach(thread, stack, continuation)
thread_t thread;
vm_offset_t stack;
void (*continuation)(thread_t);

Attaches the kernel stack to the thread and initializes the stack so that when switch_context

resumes the thread, control transfers to the supplied continuation function with the previously

running thread as an argument.

124 APPENDIX B

B.1.2 stack_detach

vm_offset_t stack_detach(thread)
thread_t thread;

Detaches and returns the thread’s kernel stack. This function may perform other machine-

dependent finalization, such as copying user register context from the stack to a separate data

structure.

B.2 High-Level Stack Management

B.2.1 stack_alloc

void stack_alloc(thread, continuation)
thread_t thread;
void (*continuation)(thread_t);

Allocates a new stack from kernel virtual memory and then calls stack_attach(thread,

stack, continuation) .

B.2.2 stack_alloc_try

boolean_t stack_alloc_try(thread, continuation)
thread_t thread;
void (*continuation)(thread_t);

Makes a non-blocking attempt to allocate a new kernel stack. stack_alloc_try uses a cache of

unused kernel stacks; if the cache is empty, it returns FALSE. If stack_alloc_try succeeds in

allocating a stack, then it initializes the stack with stack_attach and returns TRUE.

B.2.3 stack_free

void stack_free(thread)
thread_t thread;

Calls stack_detach(thread) to get the thread’s stack, and then frees the stack by returning it

to the cache of unused stacks.

B.2.4 stack_collect

void stack_collect()

When the system is running out of free physical memory, the pageout daemon calls

stack_collect to recover unused resources in the stack management system. The stack

management system may cache some stacks, to improve the performance of stack_alloc and

stack_free and so that stack_alloc_try has a ready source of stacks. stack_collect

should return to the virtual memory system any unused stacks that may be cached.

APPENDIX B 125

B.2.5 stack_privilege

void stack_privilege(thread)
thread_t thread;

Makes the thread stack-privileged. The stack_alloc_try operation must always succeed for

stack-privileged threads. The stack_privilege operation allocates a reserved stack for the

thread, so that if the stack cache is empty the thread can instead use its reserved stack. The

stack_free operation must be careful not to return a reserved stack to the stack cache. Clients of

stack_handoff should avoid using handoff when the current thread is running on its reserved

stack.

B.3 Context Switch

B.3.1 current_thread

thread_t current_thread();

Returns a pointer to the current thread.

B.3.2 stack_handoff

void stack_handoff(old_thread, new_thread)
thread_t old_thread;
thread_t new_thread;

Performs a stack handoff, moving the current kernel stack from the current thread to the new

thread. stack_handoff changes address spaces if necessary. When stack_handoff returns,

the value of current_thread() has changed to be the new thread.

B.3.3 call_continuation

void call_continuation(continuation)
void (*continuation)(void);

Calls the supplied continuation, resetting the current kernel stack pointer to the base of the stack.

This function prevents stack overflow during a long sequence of continuation calls.

B.3.4 switch_context

thread_t switch_context(old_thread, continuation, new_thread)
thread_t old_thread;
void (*continuation)(void);
thread_t new_thread;

Resumes the new thread on its kernel stack. This stack may be left behind from a previous call to

switch_context without a continuation, or the stack may come from stack_attach . This call

changes address spaces if necessary.

126 APPENDIX B

If a continuation for the current thread is supplied, then switch_context does not save

register context and does not return. Otherwise, switch_context saves the current thread’s

register context and kernel stack and returns when the calling thread is rescheduled, returning the

previously running thread.

B.3.5 load_context

void load_context(new_thread)
thread_t new_thread;

Loads the first thread on a processor. Like switch_context , but without a currently running

thread. Used once per processor during system initialization.

B.4 Kernel Exit

B.4.1 thread_syscall_return

void thread_syscall_return(kr)
kern_return_t kr;

Causes the current thread to return to user space from a system call, with the specified return value

as the status code for the system call.

B.4.2 thread_exception_return

void thread_exception_return()

Causes the current thread to return to user space from an exception, page-fault, or device interrupt.

B.4.3 thread_bootstrap_return

void thread_bootstrap_return()

Causes a newly-created thread to enter user space for the first time.

B.4.4 thread_set_syscall_return

void thread_set_syscall_return(thread, retval)
thread_t thread;
kern_return_t retval;

Changes the thread’s saved system call user register context to exception-type user register context.

Before this call, the thread could have used thread_syscall_return . After

thread_set_syscall_return , the thread should use thread_exception_return . When it

does, the user’s system call returns with retval as the status code.

127

Bibliography

[Accetta et al. 86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,

Avadis Tevanian, Michael Young. Mach: A New Kernel Foundation for UNIX

Development. In Proceedings of the Summer 1986 USENIX Conference, pages 93-113,

June 1986.

[Anderson et al. 92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry

M. Levy. Scheduler Activations: Effective Kernel Support for the User-Level Management

of Parallelism. ACM Transactions on Computer Systems, 10(1):53-79, February 1992.

[Appel & Jim 89] Andrew W. Appel and Trevor Jim. Continuation-Passing, Closure-Passing

Style. In Conference Record of the Sixteenth Annual ACM Symposium on Principles of

Programming Languages, pages 293-302, January 1989.

[Appel & Li 91] Andrew W. Appel and Kai Li. Virtual Memory Primitives for User Programs. In

Proceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 96-107, April 1991.

[Bershad et al. 90] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, Henry M.

Levy. Lightweight Remote Procedure Call. ACM Transactions on Computer Systems,

8(1):37-55, February 1990.

[Bershad 90] Brian N. Bershad. High Performance Cross-Address Space Communication. PhD

dissertation, University of Washington, Seattle, WA, June 1990.

[Birrell 89] Andrew D. Birrell. An Introduction to Programming with Threads. Research Report

35, DEC Systems Research Center, January 1989.

128 BIBLIOGRAPHY

[Black 90a] David. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach

Operating System. IEEE Computer Magazine, 23(5):35-43, May 1990.

[Black 90b] David L. Black. Scheduling and Resource Management Techniques for

Multiprocessors. PhD dissertation, School of Computer Science, Carnegie Mellon

University, July 1990.

[Black et al. 91] D. L. Black, D. B. Golub, D. P. Julin, R. F. Rashid, R. P. Draves, R. W. Dean,

A. Forin, J. Barrera, H. Tokuda, G. Malan, and D. Bohman. Microkernel Operating

System Architecture and Mach. Journal of Information Processing, 14(4):442-453,

December 1991.

[Carter et al. 91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and

Performance of Munin. In Proceedings of the Thirteenth ACM Symposium on Operating

Systems Principles, pages 152-164, October 1991.

[Carter 93] John Carter. Personal communication, June 14, 1993.

[Cheriton 88] David R. Cheriton. The V Distributed System. Communications of the ACM,

31(3):314-333, March 1988.

[Cheriton 91] David Cheriton. Personal communication, May 9, 1991.

[Clinger & Rees 92] William Clinger and Jonathan Rees (eds). Revised4 Report on the

Algorithmic Language Scheme. TR 92-1261, Cornell University Dept. of Computer

Science, Ithaca, NY, January 1992.

[Cooper & Draves 88] Eric C. Cooper and Richard P. Draves. C-Threads. Technical Report

CMU-CS-88-154, School of Computer Science, Carnegie Mellon University, February

1988.

[Cooper & Morrisett 90] Eric C. Cooper and J. Gregory Morrisett. Adding Threads to Standard

ML. Technical Report CMU-CS-90-186, School of Computer Science, Carnegie Mellon

University, December 1990.

[Custer 93] Helen Custer. Inside Windows NT. Microsoft Press, Redmond, WA, 1993.

[Draves 90] Richard P. Draves. A Revised IPC Interface. In Proceedings of the First Mach

USENIX Workshop, pages 101-121, October 1990.

BIBLIOGRAPHY 129

[Draves 91] Richard P. Draves. Page Replacement and Reference Bit Emulation in Mach. In

Proceedings of the USENIX Mach Symposium, pages 201-212, November 1991.

[Dybvig & Hieb 89] R. Kent Dybvig and Robert Hieb. Engines from Continuations. Computer

Languages, 14(2):109-123, 1989.

[Eykholt et al. 92] J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah, M.

Smith, D. Stein, J. Voll, M. Weeks, D. Williams. Beyond Multiprocessing: Multithreading

the SunOS Kernel. In Proceedings of the Summer 1992 USENIX Conference, pages 11-

18, 1992.

[Felleisen et al. 88] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba.

Abstract Continuations: A Mathematical Semantics for Handling Full Functional Jumps.

In Conference Record of the 1988 ACM Symposium on LISP and Functional

Programming, pages 52-62, July 1988

[Geschke et al. 77] C. M. Geschke, J. H. Morris, and E. H. Satterthwaite. Early Experiences with

Mesa. Communications of the ACM, 20(8):540-553, August 1977.

[Goldberg & Robson 83] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley, Reading, MA, 1983.

[Golub et al. 90] David Golub, Randall Dean, Alessandro Forin, and Richard Rashid. Unix as an

Application Program. In Proceedings of the Summer 1990 USENIX Conference, pages

87-95, June 1990.

[Golub & Draves 91] David B. Golub and Richard P. Draves. Moving the Default Memory

Manager out of the Mach Kernel. In Proceedings of the USENIX Mach Symposium, pages

177-188, November 1991.

[Habermann & Nassi 80] A. N. Habermann and Isaac R. Nassi. Efficient Implementation of Ada

Tasks. CMU-CS-80-103, Computer Science Department, Carnegie-Mellon University,

5000 Forbes Ave, Pittsburgh, PA 15213, January 1980.

[Haskin et al. 88] R. Haskin, Y. Malachi, W. Sawdon, G. Chan. Recovery Management in

QuickSilver. ACM Transactions on Computer Systems, 6(1):82-108, February 1988.

130 BIBLIOGRAPHY

[Haynes & Friedman 84] Christopher T. Haynes and Daniel P. Friedman. Engines Build Process

Abstractions. In Conference Record of the 1984 ACM Symposium on LISP and

Functional Programming, pages 18-23, August 1984.

[Haynes et al. 84] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations

and Coroutines. In Conference Record of the 1984 ACM Symposium on LISP and

Functional Programming, pages 293-298, August 1984.

[Haynes et al. 86] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Obtaining

Coroutines with Continuations. Computer Languages, 11(3/4):143-153, 1986.

[Haynes & Friedman 87] Christopher T. Haynes and Daniel P. Friedman. Abstracting Timed

Preemption with Engines. Computer Languages, 12(2):109-121, 1987.

[Hildebrand 92] Dan Hildebrand. An Architectural Overview of QNX. In Proceedings of the

USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 113-126,

April 1992.

[Hutchinson et al. 89] Norman C. Hutchinson, Larry L. Peterson, Mark B. Abbott, and Sean

O’Malley. RPC in the x-Kernel: Evaluating New Design Techniques. In Proceedings of

the 12th ACM Symposium on Operating Systems Principles, pages 91-101, December

1989.

[Kane 88] Gerry Kane. MIPS RISC Architecture. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[Khanna et al. 92] Sandeep Khanna, Michael Sebrée, and John Zolnowsky. Realtime scheduling in

SunOS 5.0. In Proceedings of the Winter 1992 USENIX Conference, pages 375-390,

1992.

[Lampson et al. 74] Butler W. Lampson, Jim G. Mitchell, and Edward H. Satterthwaite. On the

Transfer of Control Between Contexts. In Lecture Notes On Computer Science:

Proceedings of the Programming Symposium, pages 181-203, 1974.

[Leffler et al. 89] S. Leffler, M. McKusick, M. Karels, and J. Quarterman. The Design and

Implementation of the 4.3BSD Unix Operating System. Addison-Wesley, Reading, MA,

1989.

[Letwin 88] Gordon Letwin. Inside OS/2. Microsoft Press, Redmond, WA, 1988.

BIBLIOGRAPHY 131

[Levy & Eckhouse 89] H. M. Levy and R. H. Eckhouse. Computer Programming and

Architecture: The VAX-11, Second Edition. Digital Press, Bedford, MA, 1989.

[Malan et al. 91] Gerald Malan, Richard Rashid, David Golub, and Robert Baron. DOS as a

Mach 3.0 Application. In Proceedings of the USENIX Mach Symposium, pages 27-40,

November 1991.

[McJones & Swart 89] Paul. R. McJones and Garret. F. Swart. Evolving the UNIX System

Interface to Support Multithreaded Programs. In Proceedings of the Winter 1989 USENIX

Conference, pages 393-404, February 1989. Also DEC SRC Report 21, DEC Systems

Research Center, 130 Lytton Ave, Palo Alto, CA 94301, 1987.

[Milne & Strachey 76] Robert Milne and Christopher Strachey. A Theory of Programming

Language Semantics. Halsted Press, New York, 1976.

[Mogul et al. 87] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The Packet Filter: An Efficient

Mechanism for User-Level Network Code. In Proceedings of the Eleventh ACM

Symposium on Operating Systems Principles, pages 39-51, November 1987.

[Motorola 90a] Motorola. MC88100 RISC Microprocessor User’s Manual, 2nd. Prentice-Hall,

Englewood Cliffs, NJ, 1990.

[Motorola 90b] Motorola. MC88200 Cache/Memory Management Unit User’s Manual, 2nd.

Prentice-Hall, Englewood Cliffs, NJ, 1990.

[Nelson 91] Greg (Charles G.) Nelson, ed. Systems Programming with Modula-3. Prentice-Hall,

Englewood Cliffs, NJ, 1991.

[Ousterhout et al. 88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, B. B. Welch.

The Sprite Network Operating System. Computer, 21(2):23-36, February 1988.

[Phelan et al. 93] James M. Phelan, James Arendt, and Gary R. Ormsby. An OS/2 Personality on

Mach. In Proceedings of the USENIX Mach III Symposium, pages 191-202, April 1993.

[Rashid et al. 87] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert

Baron, David Black, William Bolosky, and Jonathan Chew. Machine-Independent Virtual

Memory Management for Paged Uniprocessor and Multiprocessor Architectures. In

Proceedings of the 11th ACM Symposium on Operating Systems Principles, pages 31-39,

October 1987.

132 BIBLIOGRAPHY

[Rashid et al. 89] Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael Jones,

Doug Orr, Richard Sanzi. Mach: A Foundation for Open Systems. In Proceedings of the

Second Workshop on Workstation Operating Systems, pages 109-113, September 1989.

[Ritchie & Thompson 78] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System.

Bell System Technical Journal, 57(6): 1905-1929, July-August 1978.

[Roy 93] Paul J. Roy. Unix File Access and Caching in a Multicomputer Environment. In

Proceedings of the USENIX Mach III Symposium, pages 21-38, April 1993.

[Saltzer 66] J. H. Saltzer. Traffic Control in a Multiplexed Computer System. MAC-TR-30,

Massachusetts Institute of Technology, Cambridge, MA, July 1966.

[Satyanarayanan et al. 85] M. Satyanarayanan, J. Howard, D. Nichols, R. Sidebotham, and A.

Spector. The ITC Distributed File System: Principles and Design. In Proceedings of the

10th ACM Symposium on Operating Systems Principles, pages 35-50, December 1985.

[Scheifler & Gettys 90] R. W. Scheifler and J. Gettys. The X Window System. Software—

Practice and Experience, 20(2):5-34, October 1990.

[Schroeder & Burrows 90] Michael D. Schroeder and Michael Burrows. Performance of Firefly

RPC. ACM Transactions on Computer Systems, 8(1):1-17, February 1990.

[Schulman 93] Andrew Schulman. Undocumented DOS: A Programmer’s Guide to Reserved

MS-DOS Functions and Data Structures, 2nd ed. Addison-Wesley, Reading, MA, 1993.

[Sitaram & Felleisen 90] Dorai Sitaram and Matthias Felleisen. Control Delimiters and Their

Hierarchies. Lisp and Symbolic Computation, 3:67-99, 1990.

[Sites 92] Richard L. Sites. Alpha Architecture Reference Manual. Digital Press, Burlington,

MA, 1992.

[Steele 78] Guy L. Steele Jr. RABBIT: A Compiler for SCHEME, MIT AI Lab, May 1978.

[Stoy & Strachey 72] J. E. Stoy and C. Strachey. OS6—An Experimental Operating System for a

Small Computer. The Computer Journal, 15(2):117-124,15(3):195-203, 1972.

BIBLIOGRAPHY 133

[Strachey & Wadsworth 74] Christopher Strachey and Christopher P. Wadsworth. Continuations:

A Mathematical Semantics for Handling Full Jumps. Technical Monograph PRG-11,

Oxford University Computing Laboratory, Programming Research Group, Oxford,

England, January 1974.

[Tanenbaum 91] Andy Tanenbaum. Personal communication, May 14, 1991.

[Tanenbaum 87] Andrew S. Tanenbaum. Operating Systems: Design and Implementation.

Prentice-Hall, Englewood Cliffs, NJ, 1987.

[Tanenbaum et al. 90] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J.

Mullender, J. Jansen, and G. van Rossum. Experiences with the Amoeba Distributed

Operating System. Communications of the ACM, 33(12):46-63, December 1990.

[Tevanian 87] Avadis Tevanian, Jr. Architecture-Independent Virtual Memory Management for

Parallel and Distributed Environment: The Mach Approach. PhD dissertation, Carnegie

Mellon University, Pittsburgh, PA, December 1987.

[Thacker et al. 88] Charles P. Thacker, Lawrence C. Stewart, and Edwin H. Satterthwaite Jr.

Firefly: A Multiprocessor Workstation. IEEE Transactions on Computers, 37(8):909-

920, August 1988.

[Wand 80] Mitchell Wand. Continuation-Based Multiprocessing. In Conference Record of the

1980 LISP Conference, pages 19-28, August 1980.

[Young 89] Michael Wayne Young. Exporting a User Interface to Memory Management from a

Communication-Oriented Operating System. PhD dissertation, Carnegie Mellon

University, Pittsburgh, PA, November 1989.

[Yuhara et al. 94] M. Yuhara, B. N. Bershad, C. Maeda, J. E. B. Moss. Efficient Packet

Demultiplexing for Multiple Endpoints and Large Messages. In Proceedings of the 1994

Winter USENIX Conference, pages 153-166, January 1994.

