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Abstract

Consensus is a decision problem in which n processors, each starting with a
value not known to the others, must collectively agree on a single value. If the
initial values are equal, the processors must agree on that common value; this
is the validity condition. A consensus protocol is wait-free if every proces-
sor finishes in a finite number of its own steps regardless of the relative speeds
of the other processors, a condition that precludes the use of traditional syn-
chronization techniques such as critical sections, locking, or leader election.
Wait-free consensus is fundamental to synchronization without mutual ex-
clusion, as it can be used to construct wait-free implementations of arbitrary
concurrent data structures. It is known that no deterministic algorithm for
wait-free consensus is possible, although many randomized algorithms have
been proposed.

I present two algorithms for solving the wait-free consensus problem in the
standard asynchronous shared-memory model. The first is a very simple
protocol based on a random walk. The second is a protocol based on weighted
voting, in which each processor executes O(nlog®n) expected operations.
This bound is close to the trivial lower bound of 2(n), and it substantially
improves on the best previously-known bound of O(n?logn), due to Bracha
and Rachman.



Acknowledgments

I would like to begin by thanking the members of my committee. My advisor,
Steven Rudich, has always been willing to provide encouragement. Danny
Sleator showed me that research is better done as play than as work. Merrick
Furst has always been a source of interesting observations and ideas. Maurice
Herlihy introduced me to wait-free consensus when I first arrived at Carnegie
Mellon; his keen insights into distributed computing have been a continuing
influence on my work. ;

[ would like to thank my parents for their warm support and encourage-
ment. )

I would like to thank the many other students who lightened the monastic
burdens of graduate student life. David Applegate in particular was always
ready to supply a new problem or a new toy.

Finally, I would like to thank my beloved wife, Nan Ellman, who waited
longer and more patiently for me to finish than anyone.



Contents

1 Introduction 1
2 The Asynchronous Shared-Memory Model 8
2.1 Basicelements. . . . . . . .. ... . oo 38
22 Timeand asynchrofiy « s« : + « o s ¢ 5+ 5 x ® 58 + ¢+ w @ v 2 + « « 9
2.3 Randomization . . .. .. .. ... .o 10
2.4 Relation to other models . . . . .. ... ... .. L 10
2.5 Performance measures . . .. . .. ... ... ... ... oL 12

3 Consensus and Shared Coins 14
31 Comsensus o « « = v ¢ v v w0 o m w0 F BB E G R E F R E E S 2 14
3.2 Shared coins . . . . . . . . o e 16
3.3 Consensus using shared coins . . . . . e m o womd i E@EE S 17

4 Consensus Using a Random Walk 20
41 Randomwalks. ... ... .. ... ... ... ... ... 21
4.2 The robust shared coin protocol . .. . . . .. ... ... ... 23
4.3 Implementing a bounded counter with atomic registers . . . . 29
4.4 The randomized consensus protocol . . . . . . ... ... ... 31

5 Consensus Using Weighted Voting ' 36
5.1 Introduction . . .. .. .. ... FE 36
5.2 The shared coin protocol . . . .~ . ... ... ... ... ... 38
5.3 Martingales . . . . .. .. L 40
5.3.1 Knowledge, o-algebras, and measurability . . . .. .. 41

5.3.2 Definition of a martingale . ... ... ... ... ... 42

5.3.3 Gambling systems . . . . . . .. ... 43

i



List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1

Consensus from a shared coin. . . . . . . . . . .. ...

Robust shared coin protocol. . . . . . . .. ..o
Pictorial representation of robust shared coin protocol.

The protocol as a controlled random walk. . . . .. ... ...
Pseudocode for counter operations. . . . . . . . .. ...
Consensus protocol. . . . . . . .o e
Counter scan for randomized consensus protocol. . . . . . ..

Shared coin protocol. . . . . . . . ...

iv



List of Tables

6.1 Comparison of consensus protocols. . . . . .. ... ... ... 61



Chapter 1

Introduction

Consensus [CIL87] is a tool for allowing a group of processors to collectively
choose one value from a set of alternatives. It is defined as a decision problem
in which n processors, each starting with a value (0 or 1) not known to
the others, must collectively agree on a single value. (The restriction to a
single bit does not prevent the processors from choosing between more than
two possibilities since they can run just run a one-bit consensus protocol
multiple times.) The processors communicate by reading from and writing
to a collection of registers; each processor finishes the protocol by deciding
on a value and halting. A consensus protocol is wait-free if each processor
makes its decision after a finite number of its own steps, regardless of the
relative speeds or halting failures of the other processors. In addition, a
consensus protocol must satisfy the validity condition: if every processor
starts with the same input value, every processor decides on that value. This
condition excludes trivial protocols such as one where every processor always
decides 0.

The asynchronous shared-memory model is an attempt to capture the
effect of making the weakest possible assumptions about the timing of events
in a distributed system. At each moment an adversary scheduler chooses one
of the n processors to run. No guarantees are made about the scheduler’s
choices— it may start and stop processors at will, based on a total knowledge
" of the state of the system, including the contents of the registers, the pro-
gramming of the processors, and even the internal states of the processors.
Since the scheduler can always simulate a halting failure by choosing not to
run a processor, the model effectively allows up to n —1 halting failures. The
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problem. Their situation is very much like the situation of two people facing
each other in a narrow hallway; neither person has any stake in whether
they pass on the left or the right, but if one goes left and the other right
they will bump into each other and make no progress. When A and B are
deterministic processors under the control of a malicious adversary scheduler,
we can show the scheduler will be able to use its knowledge of their state and
its control over the timing of events to keep A and B oscillating back and
forth forever between the two possible decision values.

Here is what happens. Since each processor is deterministic, at any given
point in time it has some preference, defined as the value (“left” or “right”
in the hallway example) that it will eventually choose if the other processor
executes no more operations [AH90a].! At the beginning of the protocol,
each processor’s preference is equal to its input, because without knowing
that some other processor has a different input it must cautiously decide on
its own input to avoid violating the validity condition. So we can assume
that initially processor A prefers to pass on the left, and processor B on the
right. ‘

Now the scheduler goes to work. It stops B and runs A by itself. After
some finite number of steps, A must make a decision (to go left) and halt, or
the termination condition will be violated. But before A can finish, it must
make sure that B will make the same decision it makes, or the consistency.
condition will be violated. So at some point A must tell B something that
will cause B to change its preference to “left”, and in the shared-memory
model this message must take the form of a write operation (since B can'’t
see when A does a read operation). Immediately before A carries out this
critical write, the scheduler stops A and starts B.

This action puts B in the same situation that A was in. B still prefers to
go right, and after some finite number of steps it must tell A to change its
preference to “right”. When this point is reached either one of two conditions
holds: either B has done something to neutralize A’s still undelivered demand
that B change it preference, in which case the scheduler just stops B and
runs A again, or both A and B are about to deliver writes that will cause
the other to change its preference. In this case, the scheduler allows both of

1This unfortunate possibility is unlikely to occur in the real-world hallway situation,
assuming healthy participants, but it is allowed by the asynchronous shared-memory model
_since the adversary can always choose never to run the other processor again.



idea. Each processor repeatedly adds random =+1 votes to a common pool
until some termination condition is reached. Any processor that sees a pos-
itive total vote decides 1, and those that see a negative total vote decide 0.
Intuitively, because all of the processors are executing the same loop over and
over again, the adversary’s power is effectively limited to blocking votes it
dislikes by stopping processors in between flipping their local coins to decide
on the value of the votes and actually writing the votes out to the registers.
The adversary’s control is limited by running the protocol for long enough
that the sum of these blocked votes is likely to be only a fraction of the total
vote, a process that requires accumulating Q(n?) votes.

In the original shared coin protocol of Aspnes and Herlihy [AH90a], each
processor decides on a value when it sees a total vote whose absolute value
is at least a constant multiple of n from the origin. For each of the expected
O(n?) votes, ©(n?) register operations are executed, giving a total running
time of ©(n*) operations. Unfortunately, both the implementation of the
counter representing the position of the random walk and the mechanism for
repeatedly running the shared coin require a potentially unbounded amount
of space. This problem_was corrected in a protocol of Attiya, Dolev, and
Shavit [ADS89], which retained the multiple rounds of its predecessor but
cleverly reused the space used by old shared coins once they were no longer
needed.

A simpler descendent of the shared coin protocol of Aspnes and Herlihy.
which also requires only bounded space, is the shared coin protocol described
in Chapter 4. This protocol, by using a more sophisticated termination con-
dition, guarantees that the processors always agree on its outcome. A simple
modification of this protocol gives a consensus protocol that does not require
multiple executions of a shared coin; which can be implemented using only
three O(log n)-bit counters, supporting increment, decrement, and read oper-
ations; and which runs in only ©(n?) expected counter operations. However,
this apparent speed is lost in the implementation of the counter, because
©(n?) register operations are needed for each counter operation, giving it
the same running time of ©(n*) expected register operations as its prede-
cessors. Since the consensus protocol of Chapter 4 first appeared [Asp90],
other researchers [BR90, DHPW92] have described weaker primitives that
act sufficiently like counters to make the protocol work and which use only a
linear number of register operations for each counter operation. Using these
‘primitives in place of the counters gives a consensus protocol that runs in
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generate ((n?) local coin flips. The essence of wait-freeness is bounding the
work done by a single processor, despite the failures of other processors. But
the bound on the work done by a single processor, in every one of these
protocols, is asymptotically no better than the bound on the work done by
all of the processors together.

Chapter 5 shows that wait-free consensus can be achieved without forcing
a fast processor to do most of the work. I describe a shared coin protocol
in which the processors cast votes of steadily increasing weights. In effect, a
fast processor or a processor running in isolation becomes “impatient” and
starts casting large votes to finish the protocol more quickly. This mechanism
does grant the adversary greater control, because it can choose from up to n
different weights (one for each processor) when determining the weight of the
next vote to be cast. One effect of this control is that a more sophisticated
analysis is required than for the unweighted-voting protocols. Still, with
appropriately-chosen parameters the protocol guarantees that each processor
finishes after only O(nlog®n) expected operations.

The organization of the dissertation is as follows. Chapters 2 and 3 pro-
vide a framework of definitions for the material in the later chapters. Chapter -
2 describes the asynchronous shared-memory model in detail and compares
it with other models of distributed systems. Chapter 3 formally defines the
consensus problem and its relationship to the problem of constructing shared
coins. The main results appear in Chapters 4 and 5. Chapter 4 describes the
simple consensus protocol based on a random walk. Chapter 5 describes the
faster protocol based on weighted voting. Finally, Chapter 6 compares these
results to other solutions to the problem of wait-free consensus and discusses
possible directions for future work.

Much of the content of Chapters 4 and 5 also appears in [Asp90] and
[AW92], respectively. Some of the material in Chapter 3 is derived from
[AH90a].



read and write operations act as if they take place instantaneously: they
never fail, and the result of concurrent execution of multiple operations on
the same register is consistent with their having occurred sequentially.

The assumptions behind atomicity may appear to be rather strong, espe-
cially in a model that is designed to be as harsh as possible. However, it turns
out that atomic registers are not powerful enough to implement determinis-
tically such simple synchronization primitives as queues or test-and-set bits
[Her91], and may be constructed efficiently from much weaker primitives in a
variety of ways [BP87, IL87, NW87, Pet83, SAGS8T]. So in fact the apparent

strength of atomic registers is somewhat illusory.

2.2 Time and asynchrony

The systems represented by the model may have many events occurring con-
currently. However, because the only communication between processors in
the system is by operations on atomic registers, it is possible to represent
its behavior using a global-time model [BD88, Lam36a, Lam86b]. Instead
of treating operations on the registers as occurring over possibly-overlapping
intervals of time, they are treated as occurring instantaneously. The history
of an execution of the system can thus be described simply as a sequence
of operations. Concurrency in the system as a whole is modeled by the
interleaving of operations from different processors in this sequence.

The actual order of the interleaving is the primary source of nondetermin-
ism in the system. At any given time there may be up to n processors that are
ready to execute another operation; how, then, does the system choose which
of the processors will run next? We would like to make as few assumptions
here as possible, so that our protocols will work under the widest possible
set of circumstances. One way of doing this is to assign control over timing
to an adversary scheduler, a function that chooses a processor to run at
each step based on the previous history and current state of the system. The
adversary scheduler is not bound by any fairness constraints; it may start
and stop processors at will, doing whatever is necessary to prevent a protocol
from executing correctly. In addition, no limits are placed on the scheduler’s
computational power or knowledge of the programming or internal states of
the processors. However, its control is limited only to the timing of events
in the system— it cannot, for example, cause a read operation to return the



sors ever again. However, there is no reason to believe that dead processors
are the only source of difficulty in an asynchronous environment. For ex-
ample, the adversary could choose to put some processor to sleep for a very
long interval, waking it only when its view of the world was so outdated
that its misguided actions would only hinder the completion of a protocol.
As the hallway example in the introduction shows, stopping a processor and
reawakening it much later can be even more devastating stopping a processor
forever. Furthermore, distinguishing between slow processors and dead ones
requires either an assumption that slow processors must take a step after
some bounded interval, or that fast processors may execute a potentially un-
bounded number of operations waiting for the slow processors to revive. The
first assumption imposes a weak form of synchrony on the system, violating
the principle of avoiding helpful assumptions; the second makes it difficult
to measure the efficiency of a protocol. For these reasons we avoid the issue
completely by using the more general definition.

Other alternatives to the model involve changing the underlying commu-
nications medium from atomic registers, either by adopting stronger prim-
itives that provide greater synchronization, or by moving to some sort of
message-passing model. We avoid the first approach because, as always, we
would like to work in as weak a model as possible. However, the question of
how a different choice of primitives can affect the difficulty of solving wait-
free consensus is an interesting one about which little is known, except for
the deterministic case [LAAS87, Her91].

Moving to a message-passing model presents new difficulties. In general,
the defining property of a message-passing model is that the processors com-
municate by sending messages to each other directly, rather than operating
on a common pool of registers or other primitives. Message-passing models
come in bewildering variety; a general taxonomy can be found in [LL90].
Dolev et al. [DDS87] classify a large collection of message-passing models
and show which are capable of solving consensus deterministically.

Among these many models, one has traditionally been associated with
solving asynchronous consensus [BND89, BT83, CM89, FLP85]. " In this
model, the adversary is allowed to (i) stop up to ¢ processors and (ii) de-
lay messages arbitrarily. Unfortunately, a simple partition argument shows
that in this model one cannot solve consensus even with a randomized al-
gorithm if at least n/2 processors can fail [BT83]. Intuitively, the adversary
can divide the processors into two groups of size n/2 and delay all messages
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text, I will concentrate primarily on it. However, because the total-work
measure has traditionally been used to analyze consensus protocols it will be
considered as well.

An alternative to these measures that has seen some use in analyzing
wait-free protocols is the rounds measure of asynchronous time [AFL33,
ALS90, LF81, SSW91]. It is used for models that represent halting failures
explicitly. When using this measure, up to n— 1 processes may be designated
as faulty at the discretion of the adversary; once a processor becomes faulty it
is never allowed to execute another operation. A round is a minimal interval
during which every non-faulty processor executes at least one operation. The
measure is simply the number of these rounds. In effect, this measure counts
the operations of the slowest non-faulty processor at any given point in the
execution. If a slow processor executes only one operation in a given interval,
only one round has elapsed, even though a faster processor might have carried
out hundreds of operations during the same interval. -

The rounds measure is reasonable if one defines the property of being
wait-free as equivalent to being able to survive up to n — 1 halting failures.
However, as explained above, in the context of a totally asynchronous sys-
tem this definition is unnecessarily restrictive. But once we adopt the more
general definitions we quickly run into trouble. If some processor stops and
then starts again much later during the execution of the protocol, the entire
period that the processor is inactive counts as only one round. As a result
the rounds measure implicitly resolves the problem of distinguishing slow
processors from dead ones by guaranteeing that processors will either run at
bounded relative speeds or not run at all. This is in conflict with the goal of
using a model that is as general as possible, and for this reason the rounds
measure will not be used here.!

L A notion of “rounds” does appear in Section 3.3; these rounds are part of the internal
structure of the protocol described there and have no relation to the rounds measure.
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many possible models; in the asynchronous shared-memory model it trans-
lates into requiring that the protocol be wait-free, as it requires that pro-
cessors must finish in finite expected time regardless of the actions of the
adversary scheduler.

If it happens that the processors already agree with each other, we want
the consensus protocol to ratify that agreement rather than veto it; hence the
validity condition. From a less practical perspective the validity condition
is needed because its absence makes the problem uninteresting, since all of
the processors could just decide 0 every time the protocol is run without any
communication at all.

If we are allowed to make convenient assumptions about the system, con-
sensus is not a difficult problem. For example, on a PRAM (perhaps the
friendliest cousin of asynchronous shared-memory) consensus reduces to sim-
ply taking any function we like of the input values that satisfies the validity
condition. In general, in any model where both the processors and the com-
munications medium are reliable the problem can be solved simply by having
_ the processors exchange information about their inputs until all of them know
the entire set of inputs; at this point each can individually compute a func-
tion of the inputs as in the PRAM case to come up with the decision value
for the protocol. It is only when we move to a model, like asynchronous
shared-memory, that allows processors to fail that consensus becomes hard.

One difficulty is that the harsh assumptions of the asynchronous shared-
- memory model can amplify the correctness conditions in ways that may not
be immediately obvious. For example, the validity conditions implies that
the adversary can always force the processors to decide on a particular value
by running only those processors that started with that value. Because these
“live” processors are unable to see the differing input values of the “dead”
processors, they will see a situation indistinguishable from one in which ev-
ery processor started with the same value. In this latter case, the validity
condition would force the processors to decide on that common value. So
because of their limited knowledge, the live processors must decide on the
only input value they can see, even though there may be other processors
that disagree with it. This example shows that one must be very careful
about what assumptions one makes in the model, as they can subtly affect
what a protocol is allowed to do.

15



is the bias, ¢, defined by ¢ = 1/2 — §. In terms of the bias the agreement
property can be restated as follows:

e Bounded bias. The probability that at least one processor decides on
a given value is at most 1/2 + €.

This property says in effect that the adversary can force some processor to
see a particular outcome with only € greater probability than if the processms
were actually collectively flipping a fair coin.

In some circumstances we would like to guarantee that all of the pro-
cessors always agree on the outcome of the coin, even though the adversary
might have been able to control what that outcome is. A shared coin that
guarantees agreement will be called robust. As will be seen in Chapter 4.
robust shared coins can often be converted directly into consensus protocols
by the addition of only a small amount of machinery. However Chapter 5
describes an intrinsically non-robust shared coin; in this situation moré so-
phisticated techniques are needed to achieve consensus. One approach is
described in the next section.

3.3 Consensus using shared coins

It is a well-established result thatone can construct a consensus protocol from
a shared coin with constant agreement parameter [ADS89, AH90a, SSW91].
This section gives as an example the first of these constructions [AH90a]. As
we shall see, this construction gives a consensus protocol which lequlres an
expected O((T(n) + n)/8) operations per processor and O((T"(n) + n?)/é)
total operations, where T'(n) and T'(n) are the expected number of operations
per processor and total operations for the shared coin protocol.

Pseudocode for each processor’s behavior in the shared-coin-based con- .
sensus protocol is given in Figure 3.1. Each processor has a register of its own
with two fields: prefer and round, initialized to (L,0). In addition there are
assumed to be a (potentially unbounded) collection of shared coin primitives,
one for each “round” of the protocol. Two special terms are used to simplify
the description of the protocol. A processor is a leader if its round field is
greater than or equal to every other process’s round field. Two processors
agree if both their prefer fields are equal, and neither field is L.

L



details of the protocol. The interested reader is referred to [AH90a] for a more
thorough description of the construction including a full proof of correctness.
Alternative constructions with similar performance may be found in [ADS89]
and [SSWO1].

For our purposes it will suflice to summarize the relevant results from

[AH90a):

Theorem 3.1 ([AH90a]) The protocol of Figure 3.1 implements a consen-
sus protocol that requires an cxpected O(1/6) rounds, where § is the agreement
parameter of the shared coin.

From which it follows that:

Corollary 3.2 The protocol of Figure 3.1 implements a consensus proto-
col that requires an expected O((1'(n) + n)/§) operations per processor and
O((T'(n) + n?%)/8) operations in total; where é is the agreement parameter,
T(n) the expected number of operations per processor, and T'(n) the expected
number of operations in total [or lhe shared coin. .

Proof: From the theorem, we expect at most O(1/8) rounds.

In each round, each processor executes at most 2n read operations, one
instance of the shared coin, and two write operations, for a total of 2n + 2 +
" T(n) operations.

Similarly, in each round the processors collectively execute at most 2n’
read operations, 2n write opcralions, and one instance of the shared coin, for
a total of 2n% + 2n + T"(n) operations.

19



decide 0. So to use a simple random-walk-based shared coin in a consensus
protocol one would need to run it repeatedly as described in Section 3.3.

The protocols described in this chapter avoid the need for such methods
by extending the random walk Lo incorporate the function of detecting agree-
ment. As a result we obtain a robust shared coin, described in Section 4.2,
which guarantees that all processors agree on its outcome. Because the coin
guarantees agreement, it can be modified in to obtain a consensus protocol
simply by attaching a preamble to ensure validity, as described in Section 4.4.
The resulting consensus protocol (and its variants, obtained by replacing the
counter implementation [BR90, DIIPW92]) are particularly simple, as they
are the only known wait-free consensus protocols that do not require the re-
peated execution of a non-robust shared coin protocol and the multi-round
superstructure that comes with it.

The simplicity of the protocol also allows some optimizations that are
more difficult when using a non-robust coin. The consensus protocol is de-
signed to require fewer total opcrations if fewer processors actually partici-
pate in it, a feature which becomes important when, for example, the protocol
is used as a primitive for building shared data structures which only a few
processors might attempt to access simultaneously.

The chapter is organized as [ollows. Section 4.1 describes some properties
of random walks that will be used later in the chapter. Section 4.2 describes
the robust shared coin protocol and proves its correctness. The description of
the robust shared coin protocol assumes the presence of an atomic counter,
providing increment, decrement, and read operations that appear to occur
sequentially; Section 4.3 shows how such a counter may be built from single-
writer atomic registers at the cost of O(n?) register operations per counter
operation. Finally, Section 4.4 describes the consensus protocol obtained by
modifying the robust shared coin.

4.1 Random walks .

Let us begin by stating a few basic lemmas about the behavior of random
walks.

Lemma 4.1 Consider a symmclric random walk with step size 1 running
between absorbing barriers al a and b and starting at x, where a < v < b.

Then:



points as dividing the range of the random walk into intervals; between each
pair of points where the adversary forces the particle to move determinis-
tically is a region where the particle moves randomly. The points at the
edge of these random regions act like barriers in a random walk. A point on
the side away from c pushes the particle into a new region and so acts like
an absorbing barrier, while a point on the side toward ¢ pushes the particle
back into the old region and so acts like a reflecting barrier. Thus the region
containing ¢ acts like a random walk with two absorbing barriers, and the
remaining regions act like random walks with one absorbing barrier (on the
side away from c) and one reflecting barrier (on the side toward c).

Because each barrier can only be crossed away from c¢, once the particle
leaves a region it can never return. Now, suppose the particle starts in a
region with width w;. After at most w? steps on average (by Lemmas 4.1 or
4.2) it will pass into a new region of width w,; after an additional w3 steps
it will pass into a new region of width ws, and so on until either a or b is
reached. Since these regions all fit between a and b, > w; < b — a, and thus
(since each w; > 0) S w? < (b—a)?. |

Though the bound in Lemma 4.3 is proved for the case of a very powerful
adversary that is always allowed to choose between a random move and a
deterministic move at each step, the bound applies equally well to a weaker
adversary whose choices are more constrained, as the stronger adversary
could always choose to operate within the weaker adversary’s constraints.
This technique, of proving bounds for a strong adversary that carry over to
a weaker one, has great simplifying power. [t will be used extensively in the
analysis of the shared coin and consensus protocols.

4.2 The robust shared coin protocol

Figure 4.1 shows pseudocode for each processor’s behavior in the robust
shared coin protocol. The coin is constructed using an atomic counter,
which supports atomic increment, decrement, and read operations. In this
section, these operations are assumed to take unit time. The counter is
initialized to 0. The processor’s local coin is represented by the procedure
local_flip, which returns the values —1 and 1 with equal probability.

A processor’s behavior in the protocol is represented in pictorial form in
Figure 4.2. While a processor reads values in the central range from — K
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to K (where K is a parameter of the protocol) it flips a local fair coin to
decide whether to increment or decrement the counter. This part of the
protocol is essentially the same as the random-walk-based shared coin of
Aspnes and Herlihy [AH90a]. What is new is the addition of a “slope” at
either side of the random walk. On these slopes, a processor does not move
the counter randomly but instead always moves it away from the center.
When a processor reads a counter value in one of the “buckets” beyond the
slopes, it decides either 0 or 1 depending on the sign of the counter.

If the slopes are wide enough, once any processor has seen a value that
causes it to decide, all other processors will see values that cause them to
push the counter toward the same decision. This mechanism eliminates the
possibility that delayed writes might move the counter out of the decision
range and allow the random walk (with small but non- negligible probabllltv)
to wander over to the other side. More formally, we can show: :

Lemma 4.4 If any processor reads a counter value v > (K + n), then all
subsequent reads will return values greater than or equal to K + 1; in the
symmetric case where v < —(K + n), all subsequent values read will be less
than or equal to —(K + 1).

Proof: Supposé that a processor has read v > (K + n); then it immediately
terminates leaving n — 1 running processors. Thus the number d of processors
that will execute a decrement before their next read is at most n — 1. Let
| = ¢ — d where ¢ is the value stored in the counter. Since ¢ > (& + n), it
must be the case that [ > K + 1. Now consider the effect of the actions the
scheduler can take. If it allows a decrement to proceed, ¢ and d both drop
by 1 and [ remains constant. If it allows an increment to occur, c increases
and [ increases with it. If it allows a read, the value read is ¢ > 1 > K + 1,
and thus d is unaffected. In each case [ remains at least K +1, and the claim
follows since ¢ > I. The proof of the symmetric case is similar. §

The consistency property follows immediately from Lemma 4.4. A similar
argument shows that the counter will not overflow:

‘Lemma 4.5 The counter value never leaves the range [K — 3n, K + 3n] in
any ezecution of the shared coin protocol.

Proof: Suppose that the counter reaches K + 2n at some point. Then each
processor will execute at most one increment or decrement operation before
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Figure 4.3: The protocol as a controlled random walk.

Lemma 4.7 The robust shared coin protocol ezecutes an ezpected O((K +
n)?) total counter operations when K > n.

Proof: If we consider the true position ¢, Lemma 4.6 implies that the sched-
uler can only forcet up if t > K —(n—1) > land down if t < =K +(n—1) <
—1. Furthermore if |t| ever exceeds K + n + (n — 1), each processor will
decide after its next read. Thus the movement of the true position is a
controlled random walk in the sense of Lemma 4.3 with center 0 and bar-
riers at £(K + 2n — 1). The expected number of steps until a barrier is
reached is at most 4(K 4 2n — 1)* steps, which will be followed by at most
2n operations as the processors each decide. Since each step takes a constant

number of counter operations the expected number of operations required is
O((K +n)?). I
The time bound of Lemma 4.7 shows that every processor terminates in

finite expected time when K > n. The bounded bias property is a conse-
quence of the following lemma:

Lemma 4.8 Against any scheduler, the probability that the processors in the

robust shared coin protocol will decide 1 is between K—z(;\,.—l) and K+2(Z._1).
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4.3 Implementing a bounded counter with
atomic registers

The robust shared coin protocol assumes the presence of a shared counter
supporting atomic increment, decrement, and read operations, with the re-
striction that no operation will be applied that will move the counter out of
some fixed range [—r,r]. In practice such a counter is not likely to be avail-
able as a hardware primitive. Fortunately it is not difficult to implement a
shared counter using atomic registers. However, some care must be taken to
guarantee that the counter uses only a bounded amount of space.

Both Aspnes and Herlihy [A1190a] and Attiya, Dolev, and Shavit [ADS39]
describe shared counter implementations. The two counter implementations
both assign a register to hold the net increment due to each processor, so
that the counter’s value is simply the sum of the values in these registers.
Both algorithms use simple atomic snapshot protocols to dllow the entire set
of registers to be read in a single atomic action.

Alas, neither implementation does quite what we would like. Even though
the value stored in the counter will never exceed the range [—r,r], the net
increment due to an individual processor is potentially unbounded. The
Aspnes-Herlihy protocol ignores this difficulty by assuming the presence of
unbounded registers (which it also uses to implement the atomic scan.) The
Attiya-Dolev-Shavit protocol uses only bounded registers, but enforces the
bounds by prematurely terminating the shared coin protocol if any proces-
sor’s register wanders out of a limited range. This premature termination .
occurs infrequently, and is acceptable in a shared coin that does not need to
guarantee consistency. But it is not acceptable for a robust coin, as it may
allow the scheduler to force some processor to choose one value (through
premature termination) after another has already chosen a different value
(through the normal workings of the shared coin protocol.)

A simple alternative to premature termination that still allows the size
of the registers to be bounded is to store the remainder of each processor’s
contribution relative to some convenient modulus m greater than the total
range 2r + 1. The counter valuc can then be reconstructed as the unique v
in the range [—r, 7] that is congruent to the sum of the registers, modulo m.
Pseudocode for the three counter operations using this technique is shown
in Figure 4.4; it assumes the presence of an array of registers which can be
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4.4 The randomized consensus protocol

Figure 4.5 shows pseudocode for cach processor’s behavior in the randomized
consensus protocol. The protocol uses three shared counters. The first two
maintain a total of the number ol participating processors that started with
each of the inputs 0 and 1. The last is used as the counter for a modified
version of the robust shared coin protocol. All of the counters have an initial
value of 0.

The protocol is optimized [or the case where few processors participate.
We will define a processor to he active if it takes at least one step before
some processor decides on a valuc, and denote by p the total number of active
processors in a given execution. 'I'he protocol uses the counters ao and a
to keep track of the number ol active processors by having each processor
increment one or the other ol these counters as it starts the protocol.

The protocol depends on heing able to take an atomic snapshot of the
counters. Since the first two counters are never decremented, such a snapshot
can be obtained as described in [Figure 4.6. Though the operation defined
there is not wait-free, because it will not finish if ag or a; changes during
some pass through the loop, this event can occur at most p times during any
execution of the consensus protocol. So in fact the time to carry out the
atomic snapshot will be bounded in the context in which it is used.

If the counters are not primitives but are instead constructed as described
in Section 4.3 using an atomic scan operation, the overhead of Figure 4.6 can
be avoided completely by simply rcading all three counters in a single atomic
scan of the arrays that implement them. '

Several features of the protocol are worth noting. First of all, the same
“slopes” that ensured consistency for the robust shared coin ensure consis-
tency for the consensus protocol, [or the same reasons. Second, the counters
ag and a; allow the protocol to guarantee validity, as the random walk is only
invoked if both have non-zero values. These counters are also used to min-
imize the range of the random walk, by taking advantage of the fact stated
in the following lemma, a modilication ol Lemma 4.6:

Lemma 4.10 Let ag, ¢y, c be lhe values read from the counters by some pro-
cessor and t the true position of lhe random walk in the state preceding the
read. Then |c—t| < ag+a; — |.

Proof: There are at most ag + a; — I processors with pending increments or
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decrements. 1

To prove that the consensus protocol is correct, we must establish that it
is consistent, that it terminates, and that it is valid. The proof of consistency
is a straightforward modification ol the proot of Lemma 4.4:

Lemma 4.11 If any processor reads a counter value v > 2n, then all subse-
quent reads will return values > n+1; in the symmetric case where v < —2n,
all subsequent reads will return values < —(n +1).

Proof: Apply the proof of Lenima 4.4 with K =n. B

Similarly, the proof that the counter ¢ does not overflow is a straightfor-
ward modification of Lemma :1.5:

Lemma 4.12 The value of ¢ never leaves the range [—4n,4n] in any execu-
tion of the consensus protocol. :

Proof: Apply the proof of Lemima 4.5 with K =n. i

Termination is trickier to demonstrate. As in the case of the shared coin,
the key to proving the consensus protocol’s termination is the fact that the
scheduler’s only alternative Lo moving the true position randomly is to move
it away from the origin. In the shared coin protocol, this condition depends
on fixing the parameter A > n. In the consensus protocol the situation
is more complicated, as the protocol uses its knowledge of the number of
currently active processors Lo scl the inner boundaries of the slope close to
the origin while still preventing the scheduler from being able to force the
true position to move toward the origin.

Lemma 4.13 Let n be the lolal number of processors and p be the number
of processors that take at least one step before some processor decides on a
value. Then the worst-case cxpecled running time of the consensus protocol
is O(p? +n) total counter operalions.

Proof: We will show that the consensus protocol terminates in O(p? + n)
time by reducing it to a controlled random walk of the true position ¢. Divide
the execution of the protocol into two phases. In the first phase, at most one
of ag, a; is nonzero; if the cxcculion does not leave the first phase before

33



Proof: Lemmas 4.11, 4.13, and 4.14.. 1

It is worth looking at the behavior of the shared coin implicitly embedded
in the consensus protocol of Ifigure 4.5. Because the function of detecting
agreement is implemented in the shared coin itself, limiting scheduler con-
trol over the outcome of the shared coin is no longer necessary to achieve
consensus. Thus the parameter K of the shared coin protocol can be set to
minimize the time taken in the random walk without regard to its effect on
the agreement parameter §. [n the protocol of Figure 4.5 the shared coin has
an effective agreement paramecter of #, as low as is possible without setting
K <p.

At the same time, the simplicity of the protocol allows the number and
size of the shared counters to he very small. Unfortunately, when the avail-
able primitives are limited to atomic registers this small size is lost in the
©(n?) space overhead of the atomic scan operation. It is not immediately
clear that this overhead is a nccessary feature of an atomic counter imple-
mentation; much work remains to be done in this area.
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multiple of n? votes are cast, the total variance will be Q(n?). Because the
total vote is approximately normally distributed, the protocol can guarantee
that with constant probabilily the total vote is more than n away from the
origin, rendering the scheduler’s adjustment ineffective.

Alas, the very anonymity ol the processors that is the strength of the
voting technique is also its grealest weakness. To overcome the scheduler’s
power to withhold votes, it is necessary that a total of Q(n?) votes are cast—
but the scheduler might also choose to stop all but one of the processors,
leaving that lone processor Lo generate all )(n?) votes by itself. It follows
that, for all of the polynomial-time wait-free consensus protocols based on
unweighted voting, the worst-case expected bound on the work done by a
single processor is asymplotically no better than the bound on the total
work done by all of the processors together.

In this chapter we show how to avoid this problem by modifying a pro-
tocol of Bracha and Rachman [BR91] to allow the processor to cast votes of
increasing weight. Thus a fast processor or a processor running in isolation
can quickly generate votes of sufficient total variance to finish the protocol.
at the cost of giving the scheduler greater control by allowing it both to with-
hold votes with larger impact and Lo choose among up to n different weights
(one for each processor) when determining the weight of the next vote.

There are two main difficultics that this approach entails. The first is that
careful adjustment of the weight lunction and other parameters of the pro-
tocol is necessary to make surc that it performs correctly. More importantly,
allowing the weight of the i-th vole to depend on the particular processor
the scheduler chooses to run, which may in turn depend on the outcomes
of previous votes, means thal we cannot treat the sequence of votes as a
sequence of independent random variables.

However, the sign ol cach vote is determined by a fair coin flip that
the scheduler cannot predict in advance, and so despite all the scheduler’s
powers, the expected value ol cach vote before it is cast is always 0. This
is the primary requirement of a martingale process [Bil86, Fel71, Kop84].
Under the right conditions, martingales have many similarities to sequences
of sums of independent random variables. In particular, martingale analogues
of the Central Limit Theorem and Chernoff bounds will be used in the proof
of correctness.

The rest of the chapter is organized as follows. Section 5.2 defines the
shared coin protocol and gives an overview of its operation. Section 3.3
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each flip is w(t) or —w(¢) respectively, where ¢ is the number of coins flipped
by the processor up to and including its current flip. Each weighted flip
represents a vote for either the output value 1 (if positive) or 0 (if negative).
After each flip, the processor updates its register to hold the sum of the
weighted flips it has performed, and the sum of the squares of their values.
After every c flips, the processor reads the registers of all the other proces-
sors, and computes the sum ol all the weighted flips (the total vote) and the
sum of the squares of their values (Lhe total variance). If the total variance
is greater than the quorum A, il stops, and outputs 1 if the total vote is
positive, and 0 if it is negative (il Lreats a total vote of zero as a failure to
avoid introducing asymmetry between the two outcomes). Alternatively, if
the total variance has not yct reached the quorum K, it continues to flip its
local coin.

As in the previous chapter, the function local_flip returns the values | and
—1 randomly with equal probability. The values K and c are parameters of
the protocol which will be sct depending on the number of processors n to
give the desired bounds on the agreement parameter and running time. The
weight function w(t) is used to make later local coin flips.have more effect
than earlier ones, so that a processor running in isolation will be able to
achieve the quorum K quickly. 'I'he weight function will be assumed to be
of the form w(t) = t* where « is a nonnegative parameter depending on n:
though other weight functions arc possible, this choice simplifies the analysis.

We will demonstrate that for suitable choice of K, ¢ and a all processors
return 1 with constant probability; the case of all processors returning 0
will follow by symmetry. The structure of the argument follows the proof of
correctness of the less sophisticaled protocol of Bracha and Rachman [BR91],
which corresponds to Figure 5.1 when w(t) is the constant 1, K = ©(n?),
and ¢ = O(n/logn). Votes cast before the quorum K is reached will form
a pool of common votes that all processors see.! We will show that with
constant probability (i) the total of the common votes is far from the origin
and (ii) the sum of the extra votes cast between the time the quorum is
reached and the time some processor does its final read in line 13 is small.
so that the total vote read by cach processor will have the same sign as the
total common vote.

IThe definitions of the common and cxtra votes we will use differ slightly from those
used in [BRI1]; the formal definitions appear in Section 5.4.
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additional knowledge does not allect her ability to predict the future. To
do so, the definition of a martingale must be extended to allow additional
information to be represented explicitly.

The tool used to represent the information known at any point in time
will be a concept from mecasurce Lheory, a o-algebra® The description given
here is informal; more complete definitions can be found in [Fel7l, Sections

IV.3,IV.4, and V.11] or [BilS6].

5.3.1 Knowledge, o-algebras, and measurability

Recall that any probabilistic statcment is always made in the context of some
(possibly implicit) sample space. The elements of the sample space (called
sample points) represent all possible results of some set of experiments,
such as flipping a sequence ol coins or choosing a point at random from the
unit interval. Intuitively, all randomuess is reduced to selecting a single point
from the sample space. An event, such as a particular coin-flip coming up
heads or a random variable taking on the value 0, is simply a subset of the
sample space that “occurs” il one of the sample points it contains is selected.

If we are omniscient, we can sce which sample point is chosen and thus
can tell for each event whether it occurs or not. However, if we have only
partial information, we will nol he able to determine whether some events
occurred or not. We can represent the extent of our knowledge by making
a list of all events we do know about. This list will have to satisfy certain
closure properties; for example, il we know whether or not A occurred, and
whether or not B occurred, then we should know whether or not the event
“A or B” occurred.

We will require that the sct of known events be a o-algebra. A o-algebra
F is a family of subsets of a sample space Q that (i) contains the empty set:
(ii) is closed under complement: il F contains A, it contains 2\ A (the com-
plement of A); and (iii) is closcd under countable union: if F contains all of
A1, Ag, ..., it contains [J2, A.." An event A is said to be F-measurable if it
is contained in F. In our context, the term “measurable,” which comes from
the original measure-theorctic use of o-algebras to represent families of sets
on which a probability distribution is well-defined, simply means “known.”

2Sometimes called a o-field.
3Additional properties, such as being closed under finite union or intersection, follow
immediately from this definition.



F; is a o-algebra representing the knowledge of the underlying probability
distribution available at time <. Martingales are required to satisfy three
axioms, for all :: '

1. Fi € Fip1. (The past is never forgotten.)
2. S; is Fi-measurable. (T'he present is always known.)

3. E[Siy1 | F:] = Si. (The luture cannot be foreseen. )

Often F; will simply be the g-algebra (Sy,...S;) generated by the vari-
ables S; through S;; in this casc axioms I and 2 will hold automatically.

To avoid special cases let. Fi, denole the trivial o-algebra consisting of the
empty set and the entire probability space. The difference sequence of a
martingale is the sequence X, X;,... X, where X; = 51 and X; = 5 — 5i
for i > 1. A zero-mean martingale is a martingale for which E[S;] = 0.

5.3.3 Gambling systems

A remarkably useful theorem, which has its origins in the study of gambling
systems, is due to Halmos [Hal39]. We restate his theorem below in modern
notation:

Theorem 5.1 Let {S;,F:},1 < i < n be a martingale with difference se-
quence {X;}. Let {¢;},1 < i < be randomn variables taking on the values
0 and 1 such that each (; is Fi_ -measurable. Then the sequence of random
variables S! = Z;:I G X, is @ martingale relative to F;.

Proof: The first two propertics are casily verified. Because ¢; is Fi_;-
measurable, E[¢; X; | Fioi] = 15[\, | Fizi] = 0, and the third property also
follows. I

5.3.4 Limit theorems

Many results that hold for sums ol independent random variables carry over
in modified form to martingales. lor example, the following theorem of
Hall and Heyde [HH80, Theorem 3.9] is a martingale version of the classical
Central Limit Theorem: .



If n = 1 we are done, since w? < W. I n is greater than 1, for each ¢ <
n—1let ! = Sy — X, and F! = Fipi. Then {S!,F/},1 <i < n—1 satisfies
the conditions of the lemma with F, = F,, w! = wi4; and W' = W — w?, so
by the induction hypothesis l')[(""s""—' lf(')] < e®(W-u)/2 Byt then, using
the fact that E[X | F] = E[l)[.X | F'] | F] when F C F', we can compute:

E[easn | fo] = IE)[]F)[G“X‘GQ(S"_XI) | ‘7:1] | fo]
= R[eE [ | 7] | R
< l,:{(,wx.(;.H(W—wf)ﬁ \ }'o]

(..v')(VV—-m‘f)/'Zl“l[e&:\’l I}—O]

(}u"(VV—mvf )/260271/%/2
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Theorem 5.4 Let {S;,F:},1 < i < n be a zero-mean martingale with
difference sequence {X;}. [f lhere exists a sequence of random variables
Wy, Wa, . . . Wy, and a constanl W, such (hal

1. Fach w; is F;_i-measurable.
2. For all i, | X;| < w; wilh probability |, and
3. T, w? < W with probabilily 1,
then for any A > 0,
Pr(s, > A] < ™V, (5.3)

Proof: By Lemma 5.3, for any « > 0, I [(""*“] < e*W/2 Thus by Markov's
inequality
P8, = Al = Py [("'S" > c‘"\} g o WlAgod

Setting o = A\/W gives (5.3). I

Symmetry immediately gives us:



vote X; is cast, and thus both &; and (p; are F;_;-measurable. Consequently
the sequences {Zj,»:l anj} and {}::;:, Cp,ij} are martingales relative to
{F:} by Theorem 5.1. Votes for which (p; = 1 but &; = 0 will be referred to
as the extra votes for processor P. (Observe that (p; > &, since P could
not have started its final read until the total variance was at least K.) The
sequence {Z;=1(CP,i - m)Xi} of the partial sums of these extra votes is a
difference of martingales and is thus also a martingale relative to {F;}.

The structure of the proof of correctness is as follows. First, we show
that the distribution of the total common vote, 3 #;X;, is close to a normal
distribution with mean 0 and variance K for suitable choices of a and Kj;
in particular, for n sufficiently large, the probability that 3= &, X; > VK
will be at least a constant for any fixed z. Next, we complete the proof by
showing that if the total common vote is far from the origin the chances
that any processor will read a total vote whose sign differs from the common
vote is small. This fact is itself shown in two steps. First, it is shown
that, for suitable choice of ¢, the total of the extra votes for a processor P.
Y ((pi — %i)X;, will be small with high probability. Second, a bound A is
derived on the difference between 3 (p;X; and the total vote actually read
by P.

It will be necessary to select values for a, K, and ¢ that give the correct
bounds on the probabilities. However,” we will be in a better position to
justify our choice for these parameters after we have developed more of the
analysis, so the choice of parameters will be deferred until Section 5.4.3.

5.4.1 Phases of the protocol

We begin by defining the phases of the protocol more carefully. Let ¢; be
the value of the i-th processor’s internal variable ¢ at any given step of the
protocol. Let U; be the random variable representing the maximum value of
t; during the entire execution of the protocol. Let T; be the random variable
representing the maximum value of ¢; during the part of the execution of the
protocol where k; = 1.

In the proof of correctness we will encounter many quantities of the form
T E(Ty) or =%, €(U;) for various functions £.. We will want to get bounds
on these quantities without having to look too closely at the particular values
of each T; or U;. This section proves several very general inequalities about
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Lemma 5.8 Let (z) = z4/A and let x be any strictly increasing function
such that xw~! is convez. Then for any non-negative {z:}, if Ll /A <
K, then ¥, x(zi) £ (n = 1)x(0) + x(nMATx).

Proof: Let Y = S w(z;). Now x(z;) = x¥~'¢(z;) or

X~ ((1 - M;")) 0+ ﬂ;—)Y>

(1- 220} o)+ By

which is at most

given the convexity of x3~!. Hence

n

Sox(zi) < nxvTH0) - (i M) X~ (0) + (i ﬂ;—)) x¥~HY)

=1

= (n—1)xy7'(0) +x¥~ (an
_ < (n=1x¥7H0) + xp K
which is just (n — 1)x(0) + x (n‘/‘“‘TK). |

The quantity n!/ATk is the maximum value that any z; can take on
Without violating the constraint on ¥ z;. So what Lemma 5.8 says is that
if x®~! is convex, }:x(w,) is maximized by maximizing one of the z; while
setting the rest to zero.

For the variables U; we can show:

Lemma 5.9 Let ¢(z) = z?/A and let - be any strictly increasing function
such that x(¥~(z)+c+1) is concave in x. Then for any non-negative {z}.
if Y ¥(xi) S K, then

n

> x(Us) Snx(TA—4rc+1) (5.

=1

Ut
-1
—
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where Cy is an absolute constant.

 Proof: The proof uses Theorem 5.2, which requires that the martingale be
normalized so that the total conditional variance Vi is close to 1. So let
Y; = % and consider the martingale {Zj-:l YJ,]-',} To apply the theorem
we need to compute a bound on the value Ly. We will fix § = 1.

We begin by getting a bound on the first term >° E[IYilz“'z‘s}. We have

N N N
1 . -
ZIE“Y:'V‘] = E[EWJ“] = FE[;W‘XW‘} = [ZIZ 4} (5.11)
= = = 1= ]_-
Now,
d 4 T 4 e 4
104 < saa & 'G. = l T.G..
j=l] _/0 7d + T, o1k

Define ¥(z) = z%/A, x(z) = 2" + 57, tal\mg 0° = 1. Then x¥~'y) =
(Ay)tel/4 + (A2t DI? 5 convex, and hence I, (T"“ '—at—l-> is at most

4a+1. 3 4a+1

(nY AT )4 + S"_%Z_ilﬁ‘i +(n—1)x(0) using' Lemma 5.8. If a is positive then
x(0) is zero; however if a is zero \(0) will be 1. In either case (n — 1)y(0) <

n — 1. Plugging everything value back into (5.11) gives

( 1/ AT[\) (nl/ATK)4a+1 n—1

. 5.12
;E“Y' | < " Kt K (5.12)
For the second term E[IV,?, - ll““s}, observe that
N 1 N

V=Y EY? | Fi] = = L E[(m X0 Fict]

=1 izl

which is just 1/K times the sum of the squares of the weights |.X;| of the
common votes. But the total variance of the common votes can differ trom
K by at most the variance of the first vote X; for which x; = 0. Since the
processor that casts this vote can have cast at most nt/AT votes beforehand,

the variance of this vote is at most ( VAT + 1) , giving the bound
. 1 2a
2 _ 1406 I/A R :
VR -1 < = (n'AT+1) 7 (5.13)
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could not have started its final read until the total variance exceeded K. As
discussed above, both (p; and «; are F;_;-measurable. Thus & = (p; — i is
a 0 —1 random variable that is F;_,-measurable, and {Sp,i = Zj-:l £iX7, }—L}
is a martingale by Theorem 5.1. ,

Define A = n(¢Tx)*. The lollowing lemma shows a bound on the tails of

&K,

Lemma 5.12 For any z > 0, if

T
gt <d 5 (5.14)
' nA

holds for some positive d < z, and

A (z —d)? B §E
g* & |l spgr——— (5.15)
2log(n/p)
holds for some positive p < n, then for each processor P,.
Pr [Z(CP,:’ — B S A=z K] <p/n. - (5.16)

Proof: The proof uses Corollary 5.5, so we proceed by showing that its
premises (stated in Theorem 5.4) are satisfied. '
By Corollary 5.10, X; and thus &.X; is zero for : > n(Tx + ¢+ 1). So
S &X; = Spa where M =n(Tx +c+1).
Set w; = |£X;|. Then the first premise of Corollary 5.5 follows from the
fact that for each 7, & and |X;| are both F;-measurable. The second premise
is immediate. For the third premise, notice that

SUEX ) =Y 6XP =Y (puXE= Y kX< XP =) wiX]

The first term is
n U,

Ta=yY

=1 j=1

The second term is
Z i XEP> K - t%e
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But if (5.15) holds then

- (x — d)?
‘ = 2log(n/p)

and, since log(n/p) > 0 and ¢ > 1,

(z —d)*

T3 =) < —log(n/p) = log(p/n),

From which it follows that

e~ (@=d* /2= 1) < plosp/n) = p /g

5.4.4 Written votes vs. decided votes

" In this section we show that the difference between S (p;X; and the total
vote actually read by P is bounded by & = n(gTk)*.

Lemma 5.13 Let Rp be lhe sum of the votes read during P’s final read.
Then :
| S ¢piXi — Rp| S Ty + e+ 1)* <n(gTx)* = A (5.20)

Proof: Suppose (p; = 1, and suppose X is decided by processor P;. If the
vote X; is not included in the value read by P, it must have been decided
before P’s read of P,’s register but written afterwards. Because each vote
is written out before the next vote is decided there can be at most one vote
from P; which is included in 3 ¢(p..X; but is not actually read by P. This
vote has weight at most U?. So we have |2 (pi Xy — Rp| < i, U7 Now let
x(z) = z*. Then '

x (7 ) e+ 1) = ((Ag) " e+ 1) = > <Z>(Ay)’°/‘4(c+ 1)
k=0

which is concave since the sccond derivative of each term of the sum is neg-
ative. The rest follows from Lemma 5.9.
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Now for this event not to occur, we must either have 3 x;X; < VK
or Y(Cpi — ki) Xi < A — v/l lor some P. But as the probability of a
union of events never exceeds the sum of the probabilities of the events. the
probability of failing in any ol these ways is at most

Pr[Y ks < oV/K| + 3 Pr[X(Gri — 1) X < A —2VE|
2

/12 1/5
< T N | ——
< |:<I>(L) + O (n”"T,\')

by Lemmas 5.11 and 5.12. So the probability some processor decides 0 is at
most (5.25), and thus the probability that all processors decide 1 is at least
1 minus (5.25). 1

The running time of the protocol is more-easily shown:

+n(p/n) (5.25)

Theorem 5.15 No processor crccutes more than (AK)Y4(2+n/c)+2c+2n
register operations during an cxcculion of lhe shared coin protocol.

Proof: First consider the maximum number of votes a processor can cast.
After (AK)'/4 votes the total variance of the processor’s votes will be

(AK)Y/A (AK)A ((A]&')UA>A
Z % > / Pdzg =2t =K,
z=1 0 A

so after at most an additional ¢ votes the processor will execute line 11 of
Figure 5.1 and see a total variance greater than A'. Thus each processor
casts at most (AK)Y4 + ¢ votes. But each vote costs 1 write operation in
line 8, and every ¢ votes costs 1 rcads in line 11, to which must be added
a one-time cost of n reads in line 13. The total number of operations is
thus at most ((AK)I/A + c) (1 + [n/e]) +n < (AK)YA+¢)(2+n/c)+n =
(AK)Y42+n/c)+2c+2n. B

[t remains only to find values for @, i, and ¢ which give both a constant
agreement parameter and a rcasonable running time. As a warm-up, let us
consider what happens if we emulate the protocol of Bracha and Rachman

[BRI1]:

Theorem 5.16 [fa =0, K = 1n*, and ¢ = “:gn — 3, then for n sufficiently

large the protocol implements a shared coin with agreement parameter at least
0.05 in which each processor cxecules at most O(n?logn) operations.
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which for n > 2 will be less than \/Tx/nA = 2. To show (5.22), note that

logn
| 5
A 1/16logn
g" =l + —-—— <e
g ( 16 log* n)

and thus log(g?) < 1/16logn. But

log [ 1+ _L:_E;_d)i = log|!|+ _
& 2log(n/p) 8 log(n/p)
1 1
Slog(n/p) 128 log2(n/p)
1 1

3(logn — log p) "~ 128(log n — log p)?

v

(using the approximation log(l + &) > = — sz?). For sufficiently large n

this quantity exceeds 1/16 logn and (5.22) holds. The remaining constraint
(5.23) is easily verified, and thus ‘I'heorem 5.14 applies and the agreement
parameter is at least

o= oor o (i) o)
{—|8(1)+C, ;) w110

nt/legn(16n logn

< 1— (08124 O ((logn/m)'/?) + 0.10)

which is at least 0.05 for sullicicntly large n. Thus the protocol gives a
constant agreement paramector. s :

Now by Theorem 5.15, the munber of operations executed by any single
processor is at most (AR )/ (2 + n/c) 4+ 2¢ + 2n, or

(log n)'/'°8™(16n log n)(n/ log n)'/*¢*O(log n) + O(n)

which is O(n log®n). il

It follows immediately that plugging a coin with the parameters of The-
orem 5.17 into the consensus protocol construction of Chapter 3 gives a
consensus protocol that requires an expected O(n log® n) operations per pro-
cessor. It is not difficult to see that the best bound we can place on the total
number of operations is in fact 1 times this quantity, or O(n? log®n). The
worst case is when each processor casts the same number of common votes.
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Expected operations

Per processor Total
Abrahamson [Abr88] 20 . pOl*)
Aspnes and Herlihy [AH90a] O(n*) O(n*)
Attiya, Dolev, and Shavit [ADS89] O(n*) O(n*)
Chapter 4 ([Asp90]) O(n%(p* +n)) O(r*(p* +n))
Bracha and Rachman [BR90] On(p* +n)) O(n(p* +n))
Dwork et al. [DHPW92] O(n(p* +n)) O(n(p* +n))
Saks, Shavit, and Woll [SSWO!] O(n) O(n*)
Bracha and Rachman [BR91] O(n*logn) O(n?logn)
Chapter 5 ([AW92]) O(nlog®n) O(n?log®n)

Table 6.1: Comparison of consensus protocols.

number of active processors as defined in Section 4.4. The first known pro-
tocol was the exponential protocol of Abrahamson [Abr88]. The first known
polynomial-time protocol was thal ol Aspues and Herlihy [AH90a]. Attiva.
Dolev, and Shavit [ADS89] described a modification of this protocol which
required only a bounded amount of space, but which retained the spirit of
the rounds-based structure of the Aspnes-Herlihy protocol.

The protocol of Chapter 4, which also appears in [Asp90], was the first to
eliminate the use of rounds by using a robust shared coin. Since its first ap-
pearance its performance was improved by a factor of n by Bracha and Rach-
man [BR90] and by Dwork et al. [DHPW92]. Both groups achieved the im-
provement by replacing the O(n?) implementation of an atomic counter with
a weaker primitive that requirced only O(n) register operations per counter
operation, and acted sufficiently like a counter to make the consensus proto-
col work.

The first protocol to use the idea of casting votes until a quorum is reached
(instead of until a sufficiently large margin of victory 1s reached) was that
of Saks, Shavit, and Woll [SSW91]. Their protocol was optimized for the
special case where nearly all ol the processors are running in lockstep. Bracha
" and Rachman [BR91] noticed that the protocol could be sped up by having
each processor read all the registers only after every O(n/logn) votes; the
resulting protocol is a special case of the protocol of Chapter 5 obtained by
setting a to 0. The protocol of Chapter 5, which also appears in [AW92]. is
the first to use votes of unequal weight, and as a result is the first for which
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the per-processor bound.

However, to get below Q(n?) operations will require at least two break-
throughs. The first problem is thal all of the algorithms we currently have
require that every processor rcad cvery other processor’s register directly at
some point, which takes ©(n?) total operations. It seems likely that some
sort of randomized cooperative technique could allow this dissemination of
information to proceed more quickly (possibly at the cost of using very large
registers); but at present no such technique is known.

The second problem is that to reduce the total number of operations below
Q(n?) it will be necessary to rednce the number of local random choices below
Q(n?), as local coin-flips thal have no writes between them effectively con-
solidate into a single random choice [rom the point of view of the scheduler.
This problem appears more difficult than the first, as it requires abandoning
the voting technique at the heart of all currently known wait-free consen-
sus protocols. The reason is that in these protocols, the scheduler’s power
only becomes limited when the standard deviation of the total vote becomes
comparable to the sum of the votes that the scheduler can withhold. With
unweighted votes, Q(n?) votes are required; for weighted votes the situation
is only made worse, as increasing the weight of some votes increases the sum
of the withheld votes more quickly than it increases the standard deviation of
the total vote. It appears that it will be difficult to get below Q(n?) without
adopting some decision method that takes more account of the ordering of
events in the system.

6.3 Open problems

The consensus protocol described in Chapter 5 comes quite close to the limits
of current methods for solving wait-[ree consensus. Aside from optimizations
such as eliminating the log n factors [rom the per-processor bound or reducing
the value of n at which the protocol becomes practical, essentially the only
question remaining is whether the total number of operations can be reduced
substantially. There are several questions whose answers would shed light on
this problem, as well as many other problems in the area:

1. Is it possible in the asynchronous shared-memory model for n proces-
sors to collectively read n registers in fewer than ©(n?) total operations?
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