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Abstract
This thesis addresses the problem of producing reliable solutions to manipulation tasks. Such tasks
are strongly influenced by the task geometry, mechanics, and uncertainty. This thesis addresses
these issues by applying the techniques of classical mechanics, and extends these techniques to
include task geometry and uncertainty. In particular, the thesis addresses manipulation tasks
that involve two rigid polygonal objects interacting in a plane; examples include linear pushing,
compliant motion, and placing-by-dropping tasks.

For this class of tasks, the thesis defines a collection of generic algorithms that analyze the kine-
matic, static, dynamic, and motion-specification aspects of a given task. These algorithms identify
a continuous bounded set of actions that will reliably achieve the task goal, despite uncertainty
in every physical parameter except object shape. The algorithms perform a kinematic analysis to
construct the set of reachable (x, y, θ) task configurations, a static analysis to identify the configu-
rations where equilibrium is possible, a dynamic analysis to identify a set of initial configurations
that converge to the goal, and a coordinate transformation to identify a set of commanded motions
that will achieve the goal.

The kinematic and static analysis algorithms have been fully implemented, and the dynamic
analysis algorithms have been partially implemented. These programs were used to synthesize
linear pushing actions, to analyze a part interacting with an orienting fixture, and to synthesize
placing-by-dropping actions. A series of physical experiments were performed to test the validity of
the programs’ physical predictions; no failures were observed in these experiments, some of which
included over 1200 trials.

This thesis represents a step toward the application of classical mechanics to general manipula-
tion problems; many open problems remain. The thesis presents a discussion of possible extensions
of this work to enhance its generality, as well as a discussion of task domains that appear to require
a completely different approach.
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Overview
This thesis is organized as follows:

Part I describes all of the main results of the thesis. This part introduces a class of manipulation
problems involving interacting planar rigid bodies, and proposes a unified approach to their solu-
tion. This approach extends the notions of classical mechanics to include complex task geometry,
uncertainty, and the presence of task constraints. An experiment is proposed to test the viability
of the proposed approach, and the results of the experiment are presented. This part concludes
with a discussion of what we can learn from this exercise, and how it might affect future work.

Part II gives an expanded description of the solution proposed in Part I. This solution analyzes
a manipulation task by constructing a series of geometric sets that describe the kinematic, static,
and dynamic aspects of the task; this part explains the models, data structures, and algorithms
used to construct these sets. In order to convey a clear understanding of the nature of these sets
and their associated computations, this description is primarily qualitative.

Part III contains information that was omitted from Parts I and II for clarity. This includes
tables of equations, tables of experimental data, and additional details of the algorithms and
procedures presented earlier. These details are included to make the computational processes
described in Part II concrete, and to aid the researcher attempting to reproduce or extend these
results.
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A Problem
This thesis begins by assuming that we would like to build systems to automatically manipulate
objects. If we could build such systems, then we would have at our disposal machines that could
reorganize material in the same way that computers now reorganize information. The possible
applications would be manifold. We would like these systems to be as autonomous, flexible, and
reliable as possible. Among these, reliability is of primary importance, especially when these
systems are utilized in hazardous environments where the cost of failure can be extremely high. So
this thesis is motivated by the goal of building reliable autonomous manipulation systems.

Toward that end, let’s consider one of the simplest manipulation tasks imaginable: moving an
object from its current position to a desired position. This general problem statement is fairly
sweeping, including the repositioning of planets, removal of atoms from macromolecules, etc, so
we will simplify things by restricting our attention to “reasonable” tasks — situations where the
object isn’t bolted down, is large enough to be perceived by ordinary sensors, small enough to be
moved by available acuation systems, and so on.

Even with these simplifications, we are years away from obtaining a general solution to this
problem. Why? There are a number of difficulties. The perception problem is an obvious difficulty,
but it is not addressed by this thesis. Even with a good perception system available, the task of
moving an object to a desired position is extremely hard.

To see why, consider the task shown in Figure 1. The two objects exist in a planar world,
with gravity acting into the plane; this world is analogous to a horizontal tabletop. The goal is
to move the two objects into a desired coincidence relationship shown by the dotted outline. The
larger object is controlled by our manipulation system, which we will refer to as the “robot.” The
robot can move the large object into desired positions, and also perceive the location of the smaller
object.

An obvious solution to this task is to have the robot measure the position of the smaller object,
compute the position of the large object that will produce the desired coincidence relationship,
and move the large object to that position. If the robot has perfect sensing and control, then this
strategy will succeed.

Unfortunately, no real robot can ever have perfect sensing and control, since no physical quantity
can ever be measured with infinite precision. Further, some natural phenomena have inherent
uncertainty. For example, the coefficient of friction of two surfaces in contact depends intimately
on the microscopic interaction of the molecules on each surface; variations in this interaction may
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Figure 1: A simple task.

have a signficant effect on the macroscopic behavior of the objects. These considerations imply that
the action executed in the world will not exactly match the robot’s model of the action, possibly
leading to unexpected results (Figure 2).

To attain reliable manipulation systems, we must somehow cope with the presence of uncertainty.
There are several approaches to this problem, each of which has been used successfully in the past:

• Choose a task where uncertainty doesn’t matter. Examples include spray-painting and spot-
welding, where small deviations do not affect the quality of the final result.

• Add sensing and/or fixtures to reduce uncertainty to an acceptable level. This approach is
widely applied in modern automation systems, but incurs the disadvantages of increased cost
and reduced flexibility. Ultimately this approach fails if the task precision is sufficiently high,
as is often the case in assembly applications.

• Execute actions that are inherently robust in the presence of uncertainty. Sometimes the
geometry and physics of a task may be exploited to remove uncertainty, or to achieve the
desired results despite the presence of uncertainty.

This thesis focuses on the third approach. For example, Figure 3 shows how a pushing strategy
may be used to solve the task of Figure 1, despite the presence of uncertainty. The dashed lines show
the nominal positions of the objects, and the nominal motion direction. This is the world according
to the robot’s model; the execution of this action will successfully achieve the goal configuration.
However, the true state of the world is slightly different; this is shown by the solid lines. Despite
the fact that the true executed motion is noticeably different from the robot’s expected motion,
the goal is still achieved. This is because the object slips and rotates into the desired position as
the pushing operation proceeds; the task mechanics and geometry combine to remove the error.

2



   

Figure 2: Example failures of the idealized solution due to the presence of uncertainty.

1 2 3 4

Figure 3: Using a pushing operation to solve the task.
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We would like to be able to use actions such as this example pushing motion to solve manip-
ulation tasks in the presence of uncertainty. This gives rise to the question: How do we identify
such actions? In general, this will require simultaneous analysis of the task geometry, mechanics
and uncertainty.

Some tasks have an additional feature that complicates their analysis and planning, which is
the presence of task constraints. A familiar example is the task of moving a glass of water without
spilling it. A second example is the task of gluing two parts together; the glue-covered surfaces
should never touch anything, except at the final instant when the parts are bonded together. In both
of these examples, the task imposes constraints that must be obeyed throughout task execution.

In light of this discussion, we will recast our “simple” task of repositioning an object to include
the presence of task uncertainties and constraints. Given an object in the world, a manipulation
system, and a desired object position, we would like to identify and execute an action that is
robust in the presence of task uncertainties, and obeys task constraints. This thesis addresses this
problem, for a special class of objects and task situations.

4



  

A Proposed Solution
The previous section discussed the problem of automatically producing reliable manipulation ac-
tions; this section will propose a solution to this problem, and show how it may be applied to three
different manipulation tasks.

The proposed solution is motivated by two observations about manipulation tasks: First, all
manipulation tasks involve physical systems. If we treat the manipulation planning problem as the
analysis and control of a physical system, then we can simultaneously improve the physical validity
of our solutions, and benefit from advantageous mechanical characteristics of the task. Second,
manipulation tasks are embedded in continuous domains. This implies that many manipulation
tasks may be solved by a continuous bounded set of similar actions.

These observations suggest the following approach to solving manipulation tasks: Using a model
of the physical system behavior, construct a set of actions that will successfully accomplish the task.
Then shrink this set by the amount of uncertainty that is present; the actions that remain will
accomplish the task despite the presence of uncertainty.

This thesis embraces this idea and makes it concrete, for a restricted class of manipulation tasks
that involve two polygonal objects interacting in a planar world. In doing so, the thesis develops
a collection of generic algorithms that may be combined in various ways to solve several different
manipulation problems. Because these generic algorithms are somewhat abstract, we will defer
a formal presentation of their semantics for the moment. Instead, we will develop an intuitive
understanding of the algorithms by seeing how they may be used to snythesize the pushing motion
shown in Figure 3.

Figure 4 gives a precise definition of this manipulation problem. The task is defined by specifying
parameters that describe the objects in the world, their physical properties, their locations, and
the performance capabilities of the robot. Except for the object shapes, each parameter has an
associated uncertainty, which represents the maximum possible discrepancy between the robot’s
model of a parameter value and the true parameter value.

5
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Figure 4: Defining the manipulation task illustrated in Figure 1. The robot believes
the small object is at the position (134.0mm,618.5mm,173.6◦); the true position is
within 2mm and ±5◦ of this nominal value. The robot believes that the object center
of mass is located at its centroid; the true center of mass is within 3.2mm of this point.
The distribution of support forces between the small object and the supporting surface
is unknown. The robot knows that the true coefficient of friction between the two
objects varies within the interval [0.23, 0.48]. The robot may grasp the large polygon
with one of two handles located at points A and B, and then move the handle to any
desired (x, y, θ) location; in doing so, the true resulting position will be within 1mm
and ±2◦ of the commanded position. The robot may also translate the large polygon
in any desired direction; the resulting motion will have a true direction that is within
±2◦ of the commanded direction. The height of the large polygon is 173.7mm.
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Figure 5: Parameters describing a pushing operation. xi, yi, θi, ψ, and d are com-
manded values; control uncertainty will cause the true motion to be slightly different.
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We would like to synthesize a pushing action that will achieve the goal shown in Figure 1. A
pushing action is executed by grasping the large polygon by one of its two handles, moving it to
an initial position (xi, yi, θi), and then translating in a direction ψ for a distance d. The planning
problem then becomes one of choosing which handle to grasp, and identifying values of xi, yi, θi, ψ,
and d that will produce a successful motion (Figure 5). This may be accomplished by the following
procedure:

1. Construct the state space of the system.

2. Repeat:

2.1. Propose a pushing direction ψ.

2.2. Construct a set of initial states Vstate that will converge to the goal under the
commanded pushing direction ψ, despite the presence of uncertainty in the task
mechanics and pushing direction.

2.3. Transform Vstate into a set of initial commanded positions Vcommand that will
achieve the goal. Include sensing and control uncertainty in this transformation;
Vcommand is then a set of commanded initial positions that will achieve the goal,
despite the presence of uncertainty in mechanics, sensing, and control.
Attempt this computation for handle A, and if the result is null, then try again
for handle B. Set H to a flag indicating whether Vcommand corresponds to handle
A or B.

until Vcommand is non-null, or all candidate ψ values have been exhausted.

3. If Vcommand is non-null, then:

3.1. Select a point (xi, yi, θi) from Vcommand.

3.2. Compute the required pushing distance d.

3.3. Return the vector [H xi yi θi ψ d].

This procedure reveals several weaknesses of the synthesis process as it is currently developed.
For example, the pushing direction ψ is not directly constructed, but instead is identified by a
generate-and-test strategy, possibly guided by heuristics. In addition, we shall see later that the
machinery required to compute the pushing distance d in step 3.2 has not been developed. Finally,
there are several important factors that we neglect: We do not consider the workspace limits of the
robot, the problem of planning a motion for the robot to grasp the large polygon, or the problem
of planning a collision-free motion to move the large polygon to the initial position. Despite these
omissions, the above algorithm is able to synthesize a solution to our example pushing task, as well
as other more difficult problems. We shall examine steps 1, 2.2, and 2.3 in further detail.

Step 1: Constructing the State Space

We begin with a kinematic analysis, shown in Figure 6. The surface depicted in the figure is
the configuration-space obstacle of the two interacting polygons. This surface is embedded in the
(x, y, θ) space of possible configurations; the horizontal axes are the x and y axes, and the vertical
axis is the θ axis. Points inside the configuration-space obstacle correspond to illegal positions
where the objects overlap, while points outside the obstacle correspond to free positions where the

8
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Figure 6: (a) The (x, y, θ) configuration-space obstacle of the two polygonal objects.
(b) An enlarged view of the obstacle features required for the mechanics analysis. The
vertex corresponding to the goal configuration is labelled in both (a) and (b).
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objects do not touch. Points on the obstacle surface are positions where the objects are in contact.
On this surface, we can identify features that are analogous to the faces, edges, and vertices of
a polyhedron. These features correspond to sets of configurations that have identical topological
contact conditions; a few of these configurations are labelled in the figure.

The configuration-space obstacle provides an exact description of the kinematic properties of
the two interacting polygonal objects. The surface of the obstacle describes all of the possible
states where the objects are in contact, and the free-space surrounding the obstacle corresponds to
all of the possible states where the objects are not in contact. Thus the combination of these two
sets gives a complete description of the possible kinematic states our physical system can attain.
This is a sufficient state space for our analysis, because we will not require velocity information.

Step 2.2: Constructing a Set of States that Converges to the Goal

Given a goal on the surface of a configuration-space obstacle and a pushing direction, we would
like to identify a set of initial configurations that will converge to the goal as the pushing operation
is executed. Here we present two methods for constructing such a set. In the first method, we
assume a weak model of the task mechanics, and apply energy arguments to construct the set.
In the second method, we assume a stronger model of the task mechanics, and construct the set
through numerical integration. Both methods compute a conservative approximation of the true
set of initial configurations that will reliably converge to the goal, but the second method is less
conservative than the first.

Method 1: Energy Arguments

In this method, we combine the kinematic constraints of the configuration-space obstacle with
“energy” constraints imposed by the task mechanics to identify a set of initial configurations that
must converge to the goal. Figure 7 shows how this is performed in a simple two-dimensional
configuration space. In this task, the goal is to place the polygon on the flat surface in the config-
uration shown. We will neglect the lateral position of the polygon, so the relevant configuration
parameters are just y and θ. The corresponding configuration-space obstacle is shown in the figure;
points below the bold curves are infeasible configurations.

We would like to synthesize a dropping motion that will reliably place the polygon in the desired
configuration, which corresponds to one of the deep concavities in the configuration-space obstacle.
A simple way to accomplish this is by observing that if there is no initial angular velocity at the
time of release, then the mechanical energy of the system is bounded by the potential energy of
the polygon’s initial release position. A consequence of this observation is that the trajectory of
the system in the configuration space is constrained to stay below the height of initial release.

We can exploit this property to identify initial release positions that will converge to the goal.
The horizontal line in Figure 7(b) shows an initial release height that constrains the possible
configurations to only one of the “valleys” in the configuration space; this valley contains the goal
configuration. If the polygon is dropped from an initial configuration within the shaded region,
then we know that it can never escape the region, since this would require an increase in mechanical
energy. Further, we can use a separate analysis to show that the only possible rest configuration in
the valley is the goal; thus if the system ever comes to rest, then it must come to rest in the goal.
Unless the polygon is perfectly elastic and frictionless, it will lose energy every time it contacts
the surface, and eventually come to rest. Thus, if the polygon is released from a point within the
region, it will come to rest in the goal configuration.

10
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Figure 7: Using energy arguments to synthesize dropping motions. (a) The goal.
(b) The configuration space. The shaded region corresponds to a set of initial release
positions that will achieve the goal. (c) Adding mass uncertainty creates a new stable
state, which reduces the set of release positions guaranteed to achieve the goal.
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Figure 8: A set of configurations that will achieve the goal for ψ = 29◦ ± 4◦. The
shaded region is the floor of a volume of configurations that is a “puddle” on the
obstacle surface. Removing uncertainty in the pushing direction and center of mass
location would result in a larger volume, bounded by the light contour surrounding
the shaded region. The other highlighted features represent the configurations where
equilibrium is possible; since these regions are far from the no-uncertainty contour, they
did not restrict the volume in this example.

The existence of other possible rest states may reduce the convergence region. In Figure 7(c),
there is uncertainty in the position of the center of mass, which makes static equilibrium possible
for the configuration labelled in the figure. Since this is not a goal configuration, we must preclude
this possible final rest state by choosing a more restrictive initial release height. In addition, this
height must be further reduced to assure that the energy is sufficiently restricted for all possible
locations of the center of mass.

This example shows how energy arguments may be combined with configuration-space con-
straints and a static-equilibrium analysis to identify a set of configurations that will converge to
a desired goal. Notice that the analysis makes no assumption about the details of the polygon’s
trajectory as it bounces before coming to rest; these collisions may be arbitrarily complex without
invalidating the result. Further, these arguments are not specific to tasks involving gravity; they
may be applied whenever there is an appropriate metric in the task mechanics that bounds the set
of reachable configurations.

Figure 8 shows the result of applying this approach to our example pushing task. A nominal
pushing direction has been chosen by hand, and this direction imposes a metric in the task that
is analogous to potential energy.1 We can use this metric to identify a constraint that bounds the
set of reachable configurations to a concavity which contains the goal, but no other possibly-stable
configurations. The resulting volume of initial configurations is shown in the figure; this volume
is analogous to the puddle that would form if you poured water onto the obstacle surface, with
gravity pointed in the direction imposed by the “energy” metric.

1This is actually a conjecture, and will be discussed further in Part II.
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Method 2: Numerical Integration

The energy-based method described above provides a direct technique for computing a set of
initial states that will converge to the goal. Unfortunately, there are some situations where this
approach is not sufficient; these situations include cases where the goal is not locally concave, cases
where the goal is adjacent to non-goal states where equilibrium is possible, and cases where there
is so much uncertainty that the constructed volume vanishes after shrinking. In these situations,
we must apply a more powerful technique to identify a set of convergent initial conditions.

To accomplish this, we will apply a stronger model of the task mechanics that includes trajectory
information. By including more information describing the system behavior, we can compute a less
conservative approximation of the true set of initial configurations that will achieve the goal.

We do not require that our trajectory model produce a unique prediction of the system behavior;
in fact, this would be a very unrealistic expectation for models of mechanical systems in the presence
of uncertainty. Instead, we use a trajectory model that provides a description of the set of possible
system behaviors consistent with a given configuration and a given action.

13



   

Figure 9: Pushing mechanics expressed in the configuration space. Each cone depicts
the set of possible instantaneous motions that may occur for ψ = 29◦ ± 4◦. For a
configuration corresponding to the base of a given cone, the configuration that will
occur at the next time instant will lie somewhere within the angular limits indicated by
the cone’s arc. A circle around the base of a cone indicates that zero-motion is possible;
notice that these cones only exist within the possible-equilibrium contour computed by
other methods. This contour also contains three double cones, indicating that for those
configurations, rotation in either direction is possible, but pure lateral sliding is not
possible. Lost-contact is also a possible case, but no example appears in this figure.
These cones include the effect of uncertainty in mass, support friction, contact friction,
and pushing direction.
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Figure 9 shows the trajectory model for our example pushing task. Due to the uncertainty
in mass, support friction, contact friction, and pushing direction, the exact motion of the object
cannot be predicted. However, it is possible to constrain the set of possible motions, and these
constraints may be expressed by a cone of possible instantaneous motions. The figure shows these
cones for a sampling of points on the obstacle surface; note that multiple cones appear for some
points, as well as situations where zero motion can occur.

We can use this trajectory model to compute a region of initial contact states that will converge
to the goal. This is accomplished by a numerical procedure that constructs an initial contour
surrounding the goal, and then expands this contour to include points that will converge to the
goal. Conceptually, this is a greedy algorithm: The initial contour contains only goal points, and
then the algorithm considers each adajcent point outside the contour and asks the question: Do all
of the possible trajectories from this point enter the current contour? If the answer is yes, then the
contour is expanded to include the new point, and the process repeats. Thus the initial contour
expands outward, but at all times the contour only includes points that will achieve the goal. This
expansion continues until no more points may be included, or until some other termination criterion
is met.

Figure 10 shows this process applied to our pushing example. We begin with an initial contour
surrounding the goal, and gradually expand this contour until no further expansion is possible.
The resulting contour bounds a region of configurations on the obstacle surface that will main-
tain contact and converge to the goal. We can convert this two-dimensional set into a volume by
identifying the free positions that give rise to initial contacts within the contour. This is accom-
plished by erecting the extremal pushing direction rays from every contour point; these rays bound
a volume of initial configurations that will achieve the goal. If the rays re-intersect the obstacle
surface, then we must construct a new contour surrounding the intersection and repeat the contour
expansion/ray construction process. This does not occur in this example.

A comparison of figures 10(e) and 8 shows an advantage of applying a more detailed model
of the task mechanics: The volume constructed with the trajectory model is significantly larger
than the volume constructed using only energy constraints. This is a consequence of the additional
constraints imposed by the trajectory model, which restrict the trajectories that are possible on
the obstacle surface and in free space. These constraints allow the algorithm to identify a larger
bounding contour on the obstacle surface, and a deeper volume for a given contour.
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(a)

(b)

(c)

Figure 10: Constructing a volume of initial states that will achieve the goal, using nu-
merical integration. (a) The initial contour surrounding the goal. (b) After 3 expansion
steps. (c) After 10 expansion steps.
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(d)

(e)

Figure 10 (continued): (d) After 36 expansion steps; no further expansion is possible.
At all times during the expansion process, the trajectory cone for each point on the
contour points strictly into the contour. (e) Converting the two-dimensional region into
a volume, using the minimum and maximum pushing direction rays. This figure depicts
a discrete approximation of the ideal continuous algorithm.
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Step 2.3: Transforming Initial States into Commanded Starting Positions

We have seen two methods for computing a set of initial states Vstate that will achieve the goal
configuration for a pushing direction ψ, despite the presence of uncertainty in task mechanics
and pushing direction. Since we ultimately seek a robot pushing command that will achieve the
goal, we need to convert this set of initial states into a set of commanded starting positions. We
accomplish this by transforming Vstate into the robot’s coordinate system; in addition, we apply
shrinking operations to compensate for the position uncertainty of the object and the robot. These
operations are performed by the following procedure:

2.3.1. Shrink Vstate by the uncertainty in the object position.

2.3.2. Transform the shrunk volume into the robot’s coordinate frame; this transforma-
tion depends on whether the robot uses handle A or B to grasp the large polygon.

2.3.3. Shrink the transformed volume by the robot’s position uncertainty.

The order of these operations is significant; we must compensate for the object’s position uncer-
tainty before applying the coordinate transformation, and the robot’s uncertainty after applying
the transformation. Enforcing this order ensures that the shrinking procedures are performed in
the proper coordinate systems — the shrinking for object position uncertainty is performed in
the (x, y, θ) space of relative object positions, and the shrinking for robot position uncertainty is
performed in the (xi, yi, θi) space of commanded starting positions.

Figure 11 illustrates this procedure for our pushing example. The volumes for handles A and B
are both shown in the figure; notice that the volume for handle B vanishes after shrinking for the
robot position uncertainty, even though the original volume and uncertainty parameters were the
same in both cases. Why?

This can be understood by considering the center of uncertainty of a tool being applied to a
task. If we say that the tool may be moved to a position (x, y, θ) with a precision of εxy distance
units and εθ degrees, then the center of uncertainty is the point on the tool where these precision
limits are defined to hold. Other points on the tool will have larger effective position errors, because
the angular error is multiplied by the distance to the center of uncertainty.

For example, suppose that you are asked to insert a meter stick into a small hole in a wall. Where
do you grasp the meter stick? One option is to grasp the stick at its midpoint, thus supporting the
center of mass. However, this is a bad choice of grasp positions, because the half-meter distance
to the tip of the stick would greatly increase the magnitude of small angular errors in your wrist,
making the task more difficult. A better choice would be to grasp the stick near the tip, possibly
using an additional hand to support the weight of the stick if necessary. This strategy has the
effect of moving the center of uncertainty nearer to the tip of the meter stick, which is the critical
point for the insertion.

In our pushing example, the robot controls the position of its end-effector, so this defines the
center of uncertainty. This point may be collocated with either handle A or B. Handle B is farther
away from the upper-right corner of the large polygon than handle A, so angular errors affect
handle B more than handle A. This effect becomes apparent once the volume Vstate is transformed
into the robot’s coordinate space; the volume for handle B is “smeared” over a large xy-range,
which causes the volume to vanish once shrinking for θ-uncertainty is performed.
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Figure 11: Converting the volume of successful initial states into a volume of successful
robot starting positions. (a) After shrinking for object position uncertainty. (b) After
converting the volume into the robot’s coordinate system. The labels A and B indicate
the handle used by the robot to grasp the large polygon. (c) After shrinking for robot
position uncertainty. Volume B has vanished. The dot in the center of the volume
corresponds to the commanded initial position shown in Figure 3.
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The volume for handle A does not vanish. The remaining volume corresponds to a set of
commanded starting positions from which a subsequent push in the commanded direction ψ will
be guaranteed to achieve the desired final configuration, despite the presence of uncertainty in task
mechanics, sensing, and control. The pushing motion illustrated in Figure 3 represents a point near
the center of this volume; this point is shown in Figure 11(c).

Generalizing to Other Tasks

The preceding sections showed how a series of set constructions may be used to synthesize robust
pushing actions in the presence of uncertainty. We would like to generalize these constructions
to cover a variety of planar manipulation tasks. Toward this end, this thesis separates these
constructions into a collection of five generic algorithms, which may be combined in various ways
to solve several different manipulation problems. These algorithms are briefly summarized below:

CO Constructs the configuration-space obstacle of the two objects.

STATIC Constructs the set of configurations where static equilibrium
is possible.

BPe Constructs a volume of configuration-space points that will
converge to the goal, using energy arguments.

BP i Constructs a volume of configuration-space points that will
converge to the goal, using numerical integration.

COMMAND Converts a configuration-space volume into a set of commanded
robot positions.

These algorithms are analogs to classical techniques commonly used in the analysis of mechanical
systems. CO analyzes the system kinematics, while STATIC addresses the static properties of the
system. BPe and BP i address the dynamic system behavior, and COMMAND converts the analysis
results into a form suitable for robot execution. The algorithms are not specific to a particular
physical system, but rather apply to any physical system that satisfies the required assumptions.
These assumptions and the input/output semantics of each algorithm are presented in Figure 12.

These generic algorithms may be applied to a variety of manipulation problems, as long as the
underlying assumptions are satisfied. We conclude this section by discussing the application of
these algorithms to three example problems: synthesis of linear pushing actions, the analysis of a
fixture designed to orient parts, and synthesis of placing-by-dropping actions.

Linear Pushing

Figures 6-11 show how these algorithms may be used to synthesize pushing motions. We can use
the CO algorithm to compute the configuration obstacle, and then identify a volume of successful
initial states by applying the BP i algorithm, using a D function based on the analysis of linear
pushing mechanics described in Part II. We can also use the STATIC and BPe algorithms to
compute the volume, provided that a certain conjecture proposed in Part II is true. Regardless of
the method used, the resulting volume of configuration-space points may be converted into a set
of successful commanded starting positions using the COMMAND algorithm.
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Fixture Analysis

Many industrial assembly lines contain machines that are designed to orient parts into a known
configuration. Often these machines incorporate special fixtures that are designed to hold the part
in only a finite number of possible configurations; the randomly-oriented part is placed into the
fixture, and then mechanical filters are applied to remove undesired configurations. Rejected parts
are returned to the parts bin to repeat the process. With suitably designed fixtures and mechanical
filters, these machines can be very effective in producing a continuous stream of properly oriented
parts.

These machines are currently designed by a manual trial-and-error process; this process may
be aided by the CO and STATIC algorithms. Using these algorithms, we can identify all of the
configurations where a part may come to rest in a given fixture. This information may be used
to confirm that the fixture can hold the part in the desired configuration, and also to identify the
undesired rest configurations that must be removed with mechanical filters. Further, examination
of these configurations may suggest changes to the fixture design that will reduce the number of
undesired rest states, thereby reducing the number of filters required.

Placing by Dropping

If a robot has the goal of placing an object in a desired configuration, one strategy is to drop
the object into place. Depending on the details of the task geometry and other parameters, it may
be possible to drop the object into the desired configuration from a broad set of initial dropping
positions. We can use the CO, STATIC, BPe, and COMMAND algorithms to synthesize a set
of commanded dropping positions that will achieve the desired final configuration, despite the
presence of uncertainty.
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CO(Pm,Pf )

Input: Two polygons, a “moving-polygon” Pm and a “fixed-polygon” Pf .

Output: A data structure representing the configuration-space obstacle of the two polygons, ex-
pressed in the fixed-polygon’s coordinate frame. The data structure contains metric,
topological, and contact information describing each obstacle feature.

Assumptions: Pm and Pf are rigid, and may be comprised of multiple rigidly-connected polygons.
All motions of the system are confined to the plane.

STATIC (Pm,Pf , Tμ,Fa)

Input: Two polygonal objects Pm and Pf . Each polygon feature has an associated material.
A table Tμ of friction coefficients, indexed by pairs of materials. Each entry in the table
should contain an interval [μmin, μmax] of possible friction coefficients.
A set of possible applied forces Fa, specified by:

• An interval [ηmin, ηmax] of possible force-direction angles, measured relative to the
fixed-polygon’s x-axis.

• A nominal point of application Pη of the applied force, expressed in the moving-
polygon’s coordinate frame.

• An error distance rη.

Output: A data structure representing the set of configurations where static equilibrium is possible;
these are the configurations where the contact reaction force can balance the applied force.

Assumptions: All of the assumptions of the CO algorithm.
Friction forces obey Coulomb’s Law: F = μN .
When the system is in static equilibrium, the relative applied force satisfies the following
three conditions: The force has non-zero magnitude, the force direction lies in the interval
[ηmin, ηmax], and the line of force passes within rη of the point Pη. The relative applied
force is the sum of all forces that are not contact reaction forces.

BPe(Pm,Pf , Tμ,Fa,G, C)

Input: The input parameters Pm,Pf ,Tμ, and Fa as defined by the STATIC algorithm.
A set of desired goal configurations G.
A set of task constraints C, defining a set of configurations that should never occur.

Output: A set of configurations Vstate which will eventually reach a stable configuration in G, never
encountering a configuration in C.

Assumptions: All of the assumptions of the STATIC algorithm.
The state of the system is bounded by a constraint analogous to the total mechanical
energy of a body released from rest in a gravitational field. That is, there is a direction
ηtrue ∈ [ηmin, ηmax] and a point Ptrue within a distance rη of the point Pη such that the
system may only reach configurations within the half-space defined by a line normal to
ηtrue and passing through Ptrue in the initial state of the system.
The system is not perfectly elastic or perfectly frictionless.

Figure 12: Semantics of the generic algorithms.
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BP i(Pm,Pf , D(x, y, θ, feature),G, C, stop?)

Input: Two polygonal objects Pm and Pf , with definitions of the properties required by the
function D, and appropriate uncertainties in those properties.
A function D that accepts a configuration (x, y, θ) and a configuration obstacle feature, and
returns the set of all possible instantaneous motions, along with a Boolean flag indicating
whether static equilibrium is possible. The returned set should contain a set of velocity
cones describing the motions that can occur in free-space and in contact with the obstacle
surface.
A set of desired goal configurations G.
A set of task constraints C, defining a set of configurations that should never occur.
A termination predicate stop? that may be used to interrupt the integration procedure
and cause it to return its current result; this predicate is explained in Part II.

Output: A set of configurations Vstate which will eventually reach a stable configuration in G, never
encountering a configuration in C. Additional output is returned that allows execution to
continue if the stop? predicate was used to interrupt integration.

Assumptions: All of the assumptions of the CO algorithm.
The function D computes a set that includes all possible instantaneous motions, without
requiring a description of the object velocities. Under the current algorithm, all free-space
motions must be pure translations in a direction within an interval [ηmin, ηmax].
The system behavior represented by the function D is well-behaved over small distances
within a given configuration-obstacle feature; this assumption is discussed in Part II.

COMMAND(Vstate,Uobject,Urobot,moving?)

Input: A set of (x, y, θ) configurations Vstate.
The object and robot position uncertainties Uobject and Urobot. Each of these is defined
by a center of uncertainty Pε and maximum position and orientation errors εxy and εθ.
A boolean flag “moving?” that indicates whether the robot controls the moving-polygon
or the fixed-polygon.

Output: A set of commanded positions Vcommand such that if the robot moves to a commanded
position in Vcommand, the resulting true (x, y, θ) configuration will be contained in Vstate.

Assumptions: All of the assumptions of the CO algorithm.

Figure 12 (continued): Semantics of the generic algorithms.
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An Experiment
The previous sections presented the problem of planning reliable manipulation actions in the pres-
ence of uncertainty, and proposed a collection of five generic algorithms that may be used to solve
a restricted class of these problems. These algorithms treat the manipulation task as a physical
system, and model uncertainty by associating a worst-case error bound with every physical pa-
rameter except the object shape. Using these models, the algorithms explicitly construct a set of
action commands that will succeed in accomplishing the goal, despite the worst-case combination
of errors.

While the specification of these algorithms may aid our understanding of the structure of ma-
nipulation tasks, there is a vast chasm between a theoretical specification and an effective working
system. This thesis asks the question: Can this approach be made practical? There are several
issues that immediately come to mind:

• Can the necessary analytical details be worked out?

• Can the algorithms be implemented?

• Will the resulting programs be robust?

• Will the resulting programs be reasonably fast?

• Will the plans constructed by the algorithms succeed in the real world?

• Will the algorithms’ worst-case analysis be too conservative?

This thesis may be viewed as an experiment that attempts to find answers to these questions.
The experimental procedure is simple: Perform the necessary analysis, implement the algorithms,
and measure their performance. Successful results will provide a lower bound on the performance
that may be achieved using these techniques; lack of success will be less instructive, since more
work may lead to improvements.

Work on this experiment is not yet complete; this thesis reports the results obtained thus far.
These results are encouraging, but several issues remain unresolved. This section will summarize
these results; detailed test data are given in Part III.
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Analysis and Implementation Results

As of this writing, the CO and STATIC algorithms are essentially complete; all of the required
analysis has been performed, the full algorithms have been implemented, and the resulting programs
have been carefully tested. In contrast, much work remains for the BPe, BP i, and COMMAND
algorithms, and only partial implementations have been produced.

CO

For the CO algorithm, an enumeration argument was used to identify all of the configuration-
obstacle features that are possible. Once the types of features were identified, a metric and topo-
logical analysis was performed. The metric analysis developed parameterized equations describing
each feature, and the topological analysis catalogued the possible topological interactions between
features. This analysis included both generic and non-generic cases. These results led to the
development of an algorithm to construct the obstacle features and their topological arrangement.

This analysis was then used to write a program that constructs a representation of the config-
uration obstacle, given two arbitrary polygons. Since this is the first step of all of the anticipated
manipulation analysis algorithms, substantial effort was devoted to producing a robust and effi-
cient implementation. The resulting program is able to produce some fairly complex configuration
obstacles, including the example obstacle features shown in Figure 13.

To promote robustness, several strategies were used, including explicit handling of non-generic
geometric cases, the use of inherently robust numerical procedures, consistent application of fuzzy
arithmetic, and thorough testing during program development. As a final test, the program was
tested on a suite of 1600 examples, shown in Figure 14. Automatic correctness checks were applied
to assure that certain critical invariants were never violated during program execution, and also
to verify the metric and topological validity of the final output. After significant work to remove
logic errors and some weaknesses in the numerical analysis, the program was able to solve all 1600
cases without an error. This result suggests that the program has good robustness, but certain
key weaknesses remain; these are discussed in Part II. Whether these weaknesses may be overcome
with further work remains an open question.

Several strategies were also applied to promote efficiency. These include standard optimiza-
tion techniques such as caching and the construction of data structures to support constant-time
execution of important operations. In addition, efficient geometric tests were developed that al-
lowed subtantial computation to be avoided when certain convexity criteria are satisfied. Finally,
the computation was organized to allow incremental construction of the obstacle surface, enabling
planners to avoid constructing irrelevant obstacle features. The final program computes configura-
tion obstacles on the order of seconds; for example, the configuration obstacle shown in Figure 6
was constructed in 18.95 seconds, while only 3.67 seconds were required to construct the four facets
needed to synthesize the example pushing motion.2 Detailed performance data are presented in
Part II.

2All execution times reported in this thesis reflect the elapsed execution time of a Common Lisp program running
on a Symbolics 3600 Lisp Machine. This machine was equipped with two megawords of memory, and did not have
any special floating-point hardware.
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(a)

(b)

Figure 13: Examples of difficult cases solved by the CO program. (a) A configu-
ration-obstacle facet with six disconnected components. (b) A non-generic configura-
tion-obstacle vertex with ten obstacle edges intersecting at the vertex.

27



     

Figure 14: The test suite for the CO algorithm. All pairs of these 40 polygons form
1600 example problems. 35 of the polygons were hand-designed to assure that all of
the possible generic and non-generic geometric cases arose in the test; the remaining 5
polygons were randomly-generated in an effort to reduce the presence of human bias.

STATIC

The first step in the analysis of the STATIC algorithm was to develop a representation of
planar forces that allows the static equilibrium analysis problem to be reduced to the problem of
deciding whether two polygons intersect. This representation was developed in collaboration with
Matt Mason, and is illustrated in Figure 15. The coordinate system shown in the figure is the
(Fx, Fy, τ/ρ) force-torque space. This is the space of possible planar forces; the horizontal axes
describe the force direction, and the vertical axis describes the force moment. Given one or more
frictional contacts, the set of possible contact reaction forces corresponds to an infinite polyhedral
cone emanating from the origin [Erdmann 1984]. We project this cone onto the surface of a unit
sphere centered at the origin, producing a two-dimensional representation of the possible contact
reaction forces. Similarly, we express the set of possible applied forces as another polygon on the
sphere; static equilibrium is only possible when these polygons intersect.

This representation was used to develop an algorithm for constructing the set of possible equi-
librium states. For each feature of the configuration obstacle, the algorithm computes the subset
of the feature where static equilibrium can occur. The boundaries of this subset are found by a
critical-value analysis that identifies configurations where the overlap between the two polygons
on the force sphere becomes singular. This critical-value analysis was carried out for all of the
obstacle features that are possible, including both generic and non-generic cases. The algorithm
employs a small conservative approximation when constructing the polygon of possible applied
forces; this approximation can sometimes cause extra configurations to be included in the set
of possible-equilibrium configurations. The approximation and its implications are discussed in
Part II.
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Figure 15: Projecting forces onto the surface of the unit sphere in force/torque space.
Sets of forces map to polygons on the sphere; the large polygon represents the negated
set of possible contact reaction forces, and the small rectangle represents the set of
possible applied forces. Static equilibrium is only possible when these polygons intersect.

The algorithm was implemented, and the resulting program includes all of the cases covered
by the analysis. The program was tested on a set of cases that gives rise to all of the possible
critical conditions that can occur on the force sphere, for both generic and non-generic input
data. Unfortunately, automatic verification of the algorithm was not performed, primarily due
to the difficulty of writing suitable automatic test procedures. Instead, the correctness of the
implementation was checked manually using a variety of software tools designed for this purpose.
Figures 20 and 111 show examples of output produced by the STATIC algorithm.

Because the algorithm does not involve topological constructions, it is not prone to many of the
robustness problems that made implementation of the CO algorithm so difficult. In the tests that
were performed, no robustness weaknesses were observed; I expect that errors in the program that
remain undetected will be straightforward to repair.

As with the CO algorithm, optimizations were included to reduce unnecessary computation.
For the example pushing task described in the previous section, the program is able to identify the
possible-equilibrium configurations for the entire obstacle in 30.10 seconds (see Figure 111). If the
planner constructs only the four facets necessary to synthesize the example pushing motion, then
the static-equilibrium analysis only requires 8.55 seconds.

BPe , BP i , and COMMAND

While the CO and STATIC algorithms have been fully developed and tested, this work is not
yet complete for the BPe , BP i , and COMMAND algorithms. As a result, some of the necessary
analytical details have not been worked out for these algorithms, and the resulting implementations
contain numerous inefficiencies, bugs, and numerically weak procedures.
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Nonetheless, these programs successfully generated the data needed for the physical experiments
described below, as well as the example computations presented in this thesis. The following para-
graphs briefly summarize the current status of these algorithms. Computation times are presented,
but these should be viewed with skepticism; the final implementations of the algorithms will be
slowed by the presence of additional code to handle unsupported geometric cases, and will be sped
up by more efficient programming. Robustness results are not available.

The BPe algorithm involves (1) identification of critical points where potential-energy con-
straints apply, (2) sorting the resulting points by their height in the potential energy field, (3)
using the lowermost point to construct a pair of half-space constraints, and (4) constructing a con-
nected configuration-space volume that contains the goal and obeys the half-space constraints. In
the current implementation, the critical points must be selected manually, and manual constraints
must sometimes be added to insure that the constructed volume is connected. Otherwise, all of
these steps are performed automatically. After the necessary manual specifications were provided,
the current BPe program constructed the volume illustrated in Figure 8 in 14 seconds.

The BP i algorithm involves construction of an initial contour surrounding the goal, expansion
of this contour to produce a region on the configuration obstacle surface, and then ray-construction
to lift the two-dimensional region into a three-dimensional volume. The current implementation
of this algorithm is completely automatic for simple problems, but several important geometric
cases are not supported. Further, the current implementation is relatively slow — for example,
the pushing contour shown in Figure 10(d) required 38 minutes to construct. There are three
factors that contribute to this slow execution: (i) the implementation is extremely inefficient,
(ii) the trajectory function D is expensive to compute for pushing mechanics in the presence of
uncertainty, and (iii) the current integration algorithm requires O(n2) steps, where n is the number
of points in the final contour. Part II suggests ways to address each of these issues, and substantial
speed improvements may be possible.

Compared to the other algorithms, the COMMAND algorithm is very simple. In the current
implementation of this algorithm, the volumes Vstate and Vcommand are represented by lists of
polygonal slices. Shrinking a volume is then performed by shrinking each polygonal slice by εxy,
and then intersecting each resulting slice with all of the slices within a vertical distance of ±εθ.
Implementing this algorithm is not difficult, but requires correct handling of a plethora of geometric
cases; not all of these are supported in the current implementation. The current implementation
automatically constructed the volume shown in Figure 11(c) in 10 seconds.

Physical Experiments

This thesis is ultimately concerned with the goal of building reliable autonomous manipulation
systems. Therefore it is essential that these methods produce planners and analysis techniques
that are successful in the physical world.

A theoretically sound implementation of the proposed algorithms will produce actions that will
succeed in the idealized world of our physical model, and if our physical model is a sufficiently
accurate representation of the real world, then these actions should succeed in the real world as
well. If we then perform these actions in the real world as an experiment, successful results will
support the vailidity of both the algorithm and the model, while unsuccessful results will suggest
that there is a problem with the either the algorithm or the model, or both.
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Figure 16: The 25 sample points chosen for experiment #1. The polygons are the
slices of Vcommand shown in Figure 11(c), viewed from above.

This section summarizes four physical experiments designed to test the physical validity of the
results produced by the programs described above. Two of these experiments involve pushing
mechanics, and two of the experiments involve mechanics in the presence of a gravity field.

Experiment #1: Exploring the Worst-Case Conditions

The volume Vcommand shown in Figure 11(c) represents a set of commanded starting positions
that will produce the desired final configuration, even under the worst-case combination of uncer-
tainty conditions. The goal of this experiment is to test that assertion.

An ideal test would be to consider every point in Vcommand, and then for each such point, execute
a pushing operation under all possible combinations of uncertainty conditions consistent with the
input uncertainty parameters. If the program’s analysis is correct, then the goal configuration
should be achieved in every trial.

Of course, this ideal experiment is impossible, because it requires an infinite number of trials. A
more practical experiment would be to choose a finite number of points in the volume, and test each
point under a finite number of uncertainty conditions. These points and uncertainty conditions
could be randomly chosen, but a better strategy is to intentionally choose points on the boundary
of the volume, and apply the maximum amount of uncertainty to make each trial as difficult as
possible.

Using this strategy, I selected 25 points distributed over the boundary of Vcommand, and used an
industrial manipulator to execute 48 pushing operations for each point. These points are shown in
Figure 16. In each operation, I added a controlled amount of uncertainty, within the limits specified
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as input to the algorithm. The 48 pushing operations executed for each point corresponded to all
combinations of extremal uncertainty conditions in five variables: support friction distribution,
object position, object orientation, robot orientation, and robot pushing direction. The magnitude
of some of these errors was reduced slightly from the input value to compensate for the presence of
natural uncertainty in the experimental apparatus. The remaining input uncertainty parameters
were the object center of mass location, coefficient of friction, and robot position. These were not
controlled in the experiment, because the input uncertainty parameters closely matched the true
uncertainty of the physical apparatus.

These choices produced a set of 1200 experimental trials. The trials were executed using an
interactive computer program; I would set up the task initial conditions, tell the program to execute
the trial, observe the result, and manually enter whether the trial was a success or failure. These
results were then automatically tabulated. A video camera was used to record each experiment so
that I could re-examine doubtful observations using instant replay.

All 1200 trials successfully achieved the goal. It should be noted, however, that I observed
an unexpected phenomenon during the experiment. During the execution of some of the pushing
motions, the object was observed to “chatter” after achieving the final configuration. This chat-
tering was probably due to lack of smoothness in the robot’s motion, or possibly arose due to a
combination of stick/slip and deformation effects in the interaction with the support surface. The
chattering seemed to diminish when the motion speed was reduced, and I have not observed it while
executing a pushing motion by hand. Regardless of the cause, this was not a behavior that was
predicted by the planner. Note that the goal configuration remained stable even in the presence of
this unmodelled effect; I conjecture that this is due to the inherent stability of the task geometry,
as predicted by the energy analysis displayed in Figure 8.

Experiment #2: Including Constraints

The algorithms described above are defined to include the presence of task constraints; these
are states that should never occur during task execution. These constraints are easy to include in
the BPe and BP i algorithms, because the constraint states may be treated as non-goal possible-
equilibrium states. The resulting commanded actions should succeed in achieving the goal, without
violating the task constraints. This experiment is designed to test this assertion.

To test the planner’s ability to include constraints, we will consider an example task with and
without constraints. We will execute the resulting plans, and insure that the plan constructed
with constraints never violates the constraints during plan execution. It may also be interesting to
observe the plan constructed without constraints; if the executed motion violates the constraints,
then we know that the planner included an explicit compensation to avoid the constraint states.

The example task is shown in Figure 17. The final configuration is shown, and we will assume
that the goal of the task is to glue the objects together in this configuration. Further, we will
assume that some previous operation has applied contact cement to the large polygon on the edge
indicated in the figure. Because this cement instantly bonds to anything it touches, it is important
that nothing touch the edge until the desired configuration is achieved.

Figure 18 shows a plan that would be constructed without the contact cement constraints. As
with the previous pushing example, the pushing direction was selected by hand. For this pushing
direction, the volume of initial states that will achieve the desired configuration is very large —
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Figure 17: A task involving constraints. (a) The objects. (b) The goal configuration.
This task is complicated by the constraint that the contact cement should not touch
anything until the final configuration is achieved.

larger than the volume shown, in fact. In this case the integration process was terminated early
because the constructed volume was already large enough to compensate for the task uncertainties,
and because of limitations in the implementation. A nominal point was chosen from the resulting
volume, and the corresponding pushing operation was executed manually. A custom-made jig was
used to insure that the executed motion was a true linear motion with the desired motion direction
and finger orientation. Figure 18(d) depicts the observed motion; notice that this motion would
be unsuitable if the contact cement was present, since the object slides down the cement-covered
edge toward the goal.

Figure 19 shows a plan constructed including the contact cement constraints. The constraints
were expressed by identifying the configuration obstacle features corresponding to contacts with
the cement-covered edge, and marking the subset of those features where a contact occurs with
the cement. The resulting obstacle regions are highlighted in the figure. The BP i program was
then run normally, given these regions as the task constraints C, and a different manually-selected
pushing direction. The resulting volume of initial states is shown in the figure. Once again, a
nominal point was chosen from the volume, and the corresponding pushing motion was manually
executed. Figure 19(e) depicts the observed motion; in this case, the constraints were obeyed
consistently over the execution of several trials.

This experiment demonstrates the ability of the approach to include the presence of task con-
straints. However, the current implementation requires a manually-selected pushing direction; will
a fully automatic planner be able to replicate these results? This remains an open question, but I
conjecture that the answer is yes, for the following reasons: First, unsuitable pushing directions can
be automatically rejected, because the resulting volume of commanded starting positions will be
null. Second, there is a finite interval of acceptable commanded pushing directions for each task; a
generate-and-test method of selecting pushing directions will find a member of this interval, as long
as the search granularity is sufficiently fine. Finally, it is possible to exploit local geometric features
of the task to guide the search for a suitable pushing direction. Future work will investigate these
issues.
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(a)

(b)

(c)

Figure 18: Constructing a volume of initial states that will converge to the goal, not in-
cluding the contact-cement constraint. (a) The goal and relevant configuration-obstacle
features. (b) The result of the BP i contour integration. (c) The volume Vstate.
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(d)

1 2 3 4

(e)

Figure 18 (continued): (d) The volume Vstate after shrinking for object position
uncertainty. Vcommand was also constructed, but is not shown. (e) A typical pushing
action selected from the volume; this action corresponds to a point near the center of
the volume. Here ψ = 55◦ ± 2◦.
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(a)

(b)

(c)

Figure 19: Constructing a volume of initial states that will converge to the goal,
obeying the contact-cement constraint. (a) Expressing the constraints. The shaded
regions on the obstacle surface are configurations where the constraint is violated. (b)
The result of the BP i contour integration. (c) The volume Vstate.
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(d)

1 2 3 4

(e)

Figure 19 (continued): (d) The volume Vstate after shrinking for object position
uncertainty. (e) A typical pushing action selected from the volume; this action corre-
sponds to a point near the center of the volume. Notice that the contact cement is not
touched until the final configuration is attained. Here ψ = 46◦ ± 2◦.
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Figure 20: A part and an orienting fixture. (a) The part. (b) The fixture. (c) The
configuration-space obstacle of the part and fixture, with the possible-equilibrium states
identified. The configuration labelled A is the only stable configuration; B and C are
examples of unstable equilibrium configurations.

Experiment #3: Parts Nest Analysis

The STATIC algorithm computes the set of all configurations where static equilibrium is possi-
ble. Conversely, the complement of this set is the set of states where motion must occur. The goal
of this experiment is to test this assertion, and to explore the usefulness of the STATIC algorithm
for the analysis and design of part-orienting fixtures.

As mentioned above, the STATIC algorithm may be used to identify all of the possible rest
configurations for a part dropped into a fixture. This output can then be used to verify that equi-
librium is possible for the goal configuration, and also to identify the undesirable rest configurations
that must be removed with mechanical filters. In some cases, it may be possible to design a fixture
where the desired configuration is the only stable rest configuration.

Figure 20 shows a part and fixture with only one stable rest configuration. The configuration
obstacle is also shown in the figure, with the possible-equilibrium states identified. There are many
possible-equilibrium states, but only one of these states will remain stable in the presence of small
perturbations. The implies that if the part is dropped onto the fixture, it will either come to rest
in a known stable configuration, or it will fall through to be dropped again.

The design of this part and fixture was facilitated by the STATIC program. I began with an
initial part design, and an idea for an orienting fixture. I then ran the STATIC program on these
designs, and inspected the resulting stable rest states. Seeing the stable rest configurations and
their associated force-sphere situations suggested modifications to the fixture or part to remove the
undesired rest state. After a few iterations of this process, I arrived at the final design in less than
two hours. In so doing, I made several modifications to the fixture, and a small modification to the
part.
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I then fabricated the part and fixture to test the physical validity of the program’s predictions.
I attached the fixture to a flat support surface, and elevated this surface to a large angle. I then
performed dropping experiments by placing the part on the surface above the fixture, and releasing
it. The part would then slide down the surface onto the fixture, experience one or more collisions,
and then either come to rest on the fixture or continue to fall. Over the course of several trials,
the only rest state I observed was the predicted stable configuration.

I also tried to carefully place the part into other stable configurations. In some cases I was
able to obtain unstable equilibrium conditions like the configuration labelled C in Figure 20, but
these configurations did not persist in the presence of a small perturbation (a small discrete impact
applied to the support surface). These observations are consistent with the predictions of the
STATIC program. However, there was a surprise: Configurations similar to the configuration
labelled B in Figure 20 did remain stable, sometimes even after several small perturbations were
applied.

This unpredicted behavior arose because of the presence of support friction between the part
and the supporting surface. This support friction was not included in the STATIC algorithm’s
model of this physical system, which explains why it was not predicted by the program. To resolve
this problem, we can either extend the STATIC algorithm’s analysis to include this unmodelled
phenomenon, or we can modify the world so that the phenomenon is no longer present. I chose
the latter, and added a vibration source to the support surface. This made the support friction
effectively nonexistent, and the unpredicted behavior was no longer observed.

Experiment #4: Placing by Dropping

The STATIC algorithm constructs the set of states where equilibrium may occur; if we want
to know that equilibrium will occur in a given task, more computation is required. For dropping
tasks, the BPe algorithm may be used to construct a set of initial dropping positions that will
reliably achieve a desired final configuration. The goal of this experiment is to test this assertion.

The BPe program was applied to the part and fixture defined in the previous experiment, with
the previously-identified stable configuration specified as the goal. This program calls the STATIC
algorithm to identify possible equilibrium states, and then performs a subsequent energy-constraint
analysis. The resulting volume of initial dropping positions is shown in Figure 21. This volume
corresponds to a set of configurations where the part center of mass is below the maximum-height
line shown in the figure, the wide base of the part is between the fixture polygons, and the two
arms of the part are above the fixture polygons. Figure 22 shows some example configurations
inside the volume.

One possible experiment to test the physical validity of this result would be to systematically
explore initial dropping positions within the volume, under controlled uncertainty conditions. Such
an experiment would be technically difficult, because it requires a method of placing the part at
a precisely known initial dropping position, and then releasing the part instantaneously without
interfering with its motion. As with the first pushing experiment, we would like this method to be
as automatic as possible, so that a large number of trials may be executed.

Sufficient time was not available to devise and implement a suitable automatic apparatus, so in-
stead I performed a less rigorous manual experiment. I carefully measured and drew the maximum-
height line on the surface containing the fixture polygons, and similarly marked the location of the
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Figure 21: Analysis of a placing-by-dropping operation. (a) A volume of initial drop-
ping positions that will reliably achieve the goal configuration. This volume is a “pud-
dle” filling a concavity in the configuration-space obstacle; the shaded region is the
bottom of the puddle. (b) An enlarged view of the volume. (c) The critical config-
uration that gives rise to the maximum-height constraint. Initial dropping positions
higher than this configuration have sufficient energy to allow the object to escape while
translating left in the displayed orientation. If the initial dropping height is lower than
the height in this configuration, then the object cannot escape. This configuration
corresponds to the upper-right corner of the volume; if more water is poured into the
“puddle,” then it will leak past this point. The volume includes ±4 degrees of gravity
direction uncertainty; this has been omitted in (c) for clarity.
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Figure 22: Typical configurations within the volume shown in Figure 21.

part center of mass. I then executed a number of dropping operations by releasing the part from
initial configurations that obeyed the maximum-height and other constraints. In all trials, the part
settled into the predicted configuration, even after bouncing multiple times before settling. I also
executed dropping actions from initial positions higher than the maximum-height line, and found
a large additional region of initial dropping positions that reliably produced successful results. Ex-
ecuting these operations gave me the impression that the volume constructed by the BPe program
was so reliable that the rigorous experiment described above seems uninteresting.

Is the Worst-Case Analysis Too Conservative?

The programs described in this thesis are designed to compute a set of commanded actions that
will reliably achieve the goal. This computed set is a conservative approximation of the true set
of actions that will reliably achieve the goal; there will generally be points outside the computed
set that will also reliably succeed. An important question is: How closely does the computed set
approximate the true set? If the true set of successful actions is much larger than the computed
set, then the algorithms may fail to find solutions to problems that are not actually difficult.

The BPe algorithm intentionally uses a weak model of the task mechanics, so we would expect
the sets constructed by this algorithm to be much smaller than the corresponding true sets of
reliable actions. The observations in Experiment #4 support this expectation, since a region of
release positions above the maximum-height line was found to reliably achieve the goal. These
observations emphasize the advantages and disadvantages of using a weak mechanics model: We
may avoid a substantial amount of analysis and computation, but at the same time risk missing
solutions in cases where reliable actions are available.

The BP i algorithm uses a strong model of the task mechanics, so we would expect this algorithm
to compute a set that closely approximates the true set of reliable actions. It should be the case that
every point in the computed set succeeds under all combinations of uncertainty conditions, while
points not-too-far outside the set may fail for some choices of uncertainty conditions. Observing
the 1200 successful pushing actions in experiment #1 led me to doubt this assertion, because the
actions appeared to be so robust that it seemed that the true set of successful actions must be
substantially larger than the computed set.

To test this doubt, I conducted an experiment designed to explore the nature of points outside
the computed set. In this experiment, I selected three points outside the volume of commanded
starting positions Vcommand, and also identified the nearest points on the boundary of the volume.
These points are shown in Figure 23. I then executed the corresponding pushing actions, with no
uncertainty added; all of these trials succeeded. Next I examined each of the points outside the
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1mm

Figure 23: Sample points chosen outside the volume Vcommand. The polygon is the
middle slice of the volume shown in Figure 11(c); the chosen points are 2mm outside
this polygon. The nearest points on the boundary of Vcommand are also shown.

volume, and attempted to characterize the worst-case uncertainty condition consistent with the
input uncertainty parameters. I then executed the pushing operations again, explicitly including
the worst-case uncertainty plus an additional small margin of uncertainty to compensate for the
natural uncertainty of the apparatus. This time, the points outside the volume failed, while the
neighboring points on the volume boundary succeeded under the same uncertainty conditions.
Figure 24 shows the failure modes that were observed.

The results of this experiment suggest that my doubts were misguided, and that the computed
volume Vcommand does represent a close approximation to the true set of reliable pushing actions
for this task. This further suggests that if we are interested in planning actions that are 100%
reliable, the BP i and COMMAND programs are not overly conservative. However, there is more
to be said about this topic, and we will return to it in the next section.
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Figure 24: Observed failure modes for points outside the volume Vcommand. (a), (b),
and (c) show the failure mode for the three points chosen outside the volume. In each
case, the figure shows the chosen point and volume slice, along with two motion traces.
The upper trace shows the observed motion for the point on the boundary of Vcommand,
and the lower trace shows the observed motion for the point outside Vcommand. The
uncertainty conditions are the same in both traces, but differ across (a), (b), and (c).
The failures shown in (a) and (c) occurred consistently, while the failure shown in
(b) occurred roughly half the time, due to the presence of natural uncertainty. These
observations are consistent with the program’s predictions, because points in Vcommand

reliably succeed, while points outside Vcommand possibly fail.
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What Have We Learned?
This thesis began by describing an important problem facing robotics research: The problem of
automatically constructing reliable actions that move objects into desired positions. This problem
is difficult because of the presence of uncertainty, which inherently exists in any real manipulation
task. Further, correct solutions must obey the constraints imposed by the task geometry and
mechanics, as well as other constraints that might be imposed by the goals of the task.

The thesis proposed an approach to solving a class of manipulation problems that involve planar
rigid objects. The approach exploits the continuity present in these tasks to model sets of actions
as geometric sets in various coordinate spaces. Uncertainty is explicitly included by assuming that
every physical parameter except shape can be represented by a maximum error value, which bounds
the discrepancy that can exist between the robot’s model of the parameter and the true physical
parameter. The task geometry and mechanics are then used to construct a set of actions that will
succeed, despite the worst-case combination of these errors. The thesis expresses this approach by
defining a collection of five generic algorithms that may be applied to a variety of manipulation
problems, provided that the necessary assumptions are met. These algorithms are then applied to
three example problems: synthesis of linear pushing actions, analysis of parts-orienting fixtures,
and synthesis of placing-by-dropping actions.

The thesis then presented an experiment designed to investigate the viability of the proposed
approach. The experimental procedure was to develop and implement the proposed algorithms, and
then measure the performance of the resulting programs. Performance metrics included robustness,
execution speed, and physical validity of the program output. This experiment is not complete,
but the results so far are encouraging: The programs have moderate to good robustness, run
in reasonable amounts of time,3 and produce accurate predictions of the physical systems that
were tested. Further, the programs demonstrated the ability to accomodate task constraints, and
construct plans that were not excessively conservative.

3Assuming that the performance of the BP i program will improve once it is completely implemented.
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In developing the algorithms, the thesis produced several key conceptual results:

• A complete kinematic analysis of the interaction of a pair of polygons confined to a plane.
This analysis identified all of the possible configuration obstacle features that can arise for
an arbitrary pair of interacting polygons, and developed analytic equations to describe the
metric properties of each feature. The analysis includes non-generic obstacle features, which
correspond to degenerate multiple-contact situations which must be identified for correct
physical analysis.

• A representation of planar forces, expressed as polygons on the surface of a sphere in force
space. This representation simplifies the analysis of multiple-contact friction problems, and
facilitates static and dynamic analysis of planar physical systems in the presence of uncer-
tainty in contact friction and applied force. This representation was developed jointly with
Matt Mason.

• A method for combining energy constraints with the configuration-space obstacle geometry
to identify a set of initial configurations that will reliably converge to a desired final con-
figuration, without requiring a model of the mechanical system trajectory. This method
is especially useful for predicting the behavior of mechanical systems that involve complex
collision mechanics in the presence of uncertainty.

• A representation of the behavior of a planar mechanical system, expressed as a field of non-
deterministic state-transition cones embedded in the configuration space. These cones are
defined for all points on the configuration-space obstacle surface, as well as in the free space
surrounding the obstacle. This field completely describes the set of possible motions for all
possible configurations of the system, and can include the effects of all sources of uncertainty
that affect the physical system behavior. This representation facilitates subsequent analysis
to predict the set of configurations that may possibly follow a given initial configuration,
or to construct a set of initial configurations that will reliably converge to a desired final
configuration.

Combined with the CO, STATIC, BPe, and BP i algorithms, these conceptual results comprise the
primary scientific contributions of this thesis. These contributions significantly extend our ability
to analyze planar mechanical systems, and to synthesize solutions to planar manipulation tasks.

Much work remains. The robustness of the CO program should be further improved, the
analysis and implementation of the BPe and BP i algorithms needs to be completed, techniques
must be developed to automatically identify a successful pushing direction and distance, and more
experimental verification should be performed. In resolving these issues, some difficulty may arise
that severely impacts the practical utility of these results — time will tell.

But suppose that these issues can all be successfully resolved. What then? What do these
results imply for future work in the analysis and planning of manipulation tasks? This section
explores this question. We begin by examining extensions to the current work that appear feasible,
and then proceed to discuss more ambitious extensions that may prove to be very difficult. Finally,
we conclude the section by discussing some important manipulation problems that appear to fall
outside the scope of this approach, requiring a completely different solution.
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Figure 25: A goal that requires a sense of time. To synthesize a pushing action to
achieve this goal, a minimum and maximum pushing distance must be computed.

Extensions

Other tasks. This thesis shows how the generic analysis algorithms may be used to synthesize
pushing motions, analyze part fixtures, and synthesize dropping motions. The results of the thesis
may be applied to other tasks as well.

The BP i algorithm may be applied to any task where the possible differential motions may
be computed using configuration information alone; this criterion is satisfied by several control
laws, including compliant motion using generalized spring or generalized damper control, and some
control schemes combining tactile and visual feedback. Single-step plans for actions under these
control laws may be synthesized by constructing the appropriate differential motion function D,
and then running the BP i program.

The STATIC and BPe algorithms may also be applied to other tasks, as long as the tasks meet
the necessary assumptions describing the applied force. Further, it may be possible to include
damping information to increase the height of the volume constructed by the BPe algorithm. For
example, in dropping tasks the coefficient of restitution may be used to bound the energy of the
falling body after it experiences its first collision; coefficients of restitution significantly less than 1.0
will allow dropping heights much higher than the conservative height constructed in the examples
above. The presence of ambient viscous damping (such as in underwater applications) may also be
exploited to increase the dropping height.

Adding a sense of time. The algorithms presented in this thesis rely on the assumption that the
goal configuration will persist indefinitely once it is achieved. While the algorithms do provide a
mechanism for checking this assumption, they are incapable of constructing plans to attain goals
that do not persist indefinitely, such as the example shown in Figure 25. To accomplish these goals,
the planner must compute a minimum and maximum execution duration to assure that the goal
is achieved; this problem is analogous to the familiar dead reckoning navigation problem. Perhaps
it will be possible to extend the BP i algorithm to synthesize duration bounds by adding extra
bookkeeping to the integration process.
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Figure 26: The configuration-space obstacle for a gripper with two fingers. The
configuration space of the gripper and object has four dimensions: x, y, θ, and s, the
finger separation. However, if both fingers are in contact with the object, only two
degrees of freedom remain. Thus the set of configurations corresponding to two-finger
contacts is a two-dimensional surface embedded in this space. This surface is displayed
here in the three-dimensional (x, s, θ) space; the missing variable y is implicit.

Grasping with two fingers. A key assumption underlying the algorithms in this thesis is that there
are only two objects in the world. Under this assumption, the set of possible configurations may
be represented by a three-dimensional (x, y, θ) space. It is possible to extend this representation
to include grippers with two fingers connected by a prismatic linkage; this extension is described
in Appendix 1. The resulting configuration-space is a four-dimensional (x, y, θ, s) space, where s
is the separation between the fingers. Figure 26 shows the configuration obstacle corresponding to
two-finger contacts for an example gripper. By combining this two-finger obstacle with the normal
configuration obstacles for each finger, it may be possible to extend the planning algorithms to
construct reliable grasping actions. In addition, it may also be possible to include grippers with
revolute and pantograph linkages by applying a suitable coordinate transformation when the two-
finger configuration obstacle is constructed.

Challenging Extensions

Expanding the notion of plans. This thesis addresses the problem of constructing reliable manipu-
lation plans. The approach taken thus far is to identify a set of actions that will definitely achieve
the goal, even for the worst-case combination of uncertainty conditions. This condition is very
strong, and results in provably robust plans. Unfortunately, in some situations the constructed set
of reliable actions is null, and the current algorithms provide no information.
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Figure 27: Computing probabilistic plans for the peg-in-hole task. (a) A set of prob-
abilistic plans computed by running the strong planning algorithm with a reduced
estimate of the task uncertainty, and then computing the probability that the true
uncertainty lies within the reduced estimate. (b) The maximal probabilistic plans for
the same task, constructed by manual analysis. Both diagrams assume that errors are
uniformly distributed.

We can take several approaches to improving this situation. First, we could take advantage of
previous results developed in the context of compliant-motion planning to extend the class of plans
that may be constructed. For example, recursive backchaining could be used to construct multi-
step plans that are more robust than any single-step plan [Lozano-Pérez et al. 1984]. Another
alternative would be to construct error-detection and recovery plans that either achieve the goal or
recognizably fail, allowing the task to be attempted again [Donald 1987a]. These previous results
are discussed in the next section.

We could also relax our insistence on 100% reliability. For example, suppose we are given a
task where 90% reliability is satisfactory. Can we compute plans for this reliability level? One
approach is to use the planning algorithms we already have, but with reduced uncertainty values.
The amount of the reduction is then used to estimate the success probability for the set of resulting
plans.

Figure 27(a) shows the result of applying this approach to the classic peg-in-hole insertion task
[Lozano-Pérez et al. 1984]. The goal of this task is to move a point robot to the bottom of the hole,
using compliant motion; there is uncertainty in motion direction and position sensing. We would
like to compute a set of initial starting positions from which the illustrated commanded motion
direction will succeed in moving the point robot to the bottom of the hole; in this example, the
robot reaches the starting position by lowering itself into the plane. The 100% contour in the figure
is the result of applying the usual strong planning algorithm. The 60% contour was computed by
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Figure 28: Situations where computing plans with reduced uncertainty estimates can
significantly increase the size of the constructed set. (a) Probabilistic plans constructed
using the same method as in Figure 27(a), but assuming a clipped Gaussian error dis-
tribution. This distribution allows increased expansion for a given reliability reduction.
(b) Coupling between friction uncertainty and motion direction uncertainty. In this
example, sticking occurs with probability 0.006; neglecting this possibility removes a
constraint that severely limits the set of successful starting positions.

reducing the direction error εδ by 23% and the position error εxy by 12%, and applying the same
strong algorithm. The estimated success probability was then computed by realizing that if the
distribution of errors is uniform, the true direction has a 0.77 chance of being within the reduced
limits, and the true position has a 0.77 chance of being within the reduced error radius (0.882).
The contour was computed under the assumption that both parameters are within the reduced
limits; this is true with probability 0.77 · 0.77 ≈ 0.60.

The 60% contour in Figure 27(a) is not substantially larger than the 100% contour, even though
the estimated reliability has dropped 40%. This is because we selected a particular subrange of the
uncertainty parameters that would occur with probability 0.6, and computed the initial positions
that would succeed for that subrange. Since there are uncertainty conditions outside the subrange
that might also lead to success, 60% is a lower bound on the true success probability. There
are other choices of subranges that also occur with probability 0.6, and these give rise to similar
sets of starting positions. To construct the maximal set of starting positions that will succeed
with probability ≥ 0.6, we must choose each possible subrange, compute the corresponding set of
successful starting positions, and form the union of all of the resulting sets. Figure 27(b) shows
this union for the probabilities 0.0, 0.5, and 1.0. These hand-constructed contours show the set of
all initial starting positions that will succeed with the associated probability; points outside the
contour have strictly lower success probabilities.
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Prismatic Revolute

Figure 29: Kinematic lower pairs in the plane. Revolute lower pairs cannot be repre-
sented without curved edges.

The 60% contour shown in Figure 27(a) is clearly a very conservative estimate of the maximal set
shown in Figure 27(b), which suggests that the approach described above will not yield substantially
increased action sets when the desired reliability is reduced. This conclusion is premature. In some
situations, the approach does produce significant gains for small changes in reliability; Figure 28
shows two examples. Further, good overall performance may still be obtained over a sequence
of actions even if the estimated reliability of a single action is significantly less than 100%; see
[Erdmann 1989] and [Goldberg 1990] for examples. This discussion has underscored the possible
advantages and difficulties of adding probability information to the algorithms described in this
thesis. Obviously, much further work is required.

Expanding the class of possible objects. The algorithms in this thesis assume that the objects in the
task are polygons with linear edges, and the shape of the polygons is precisely known. Relaxing
these assumptions would allow us to expand the scope of the planning algorithms to include a
broader range of manipulation tasks.

One possible extension is to allow polygons that have curved edges as well as linear edges.
This extension would allow representation of circular objects and fingers, which have some useful
inherent stability properties in grasping operations [Cutkosky 1985]. Further, curved edges are
necessary to represent revolute joints, which are one of two lower pairs required to represent planar
mechanisms (Figure 29). While these advantages provide an incentive to extend the algorithms
to include curved edges, substantial work is required to fill in the details. The enumeration of
possible configuration-obstacle features must be extended to include facets corresponding to edge-
edge contacts that have two degrees of freedom; the only facets currently possible are vertex-edge
and edge-vertex contacts. This new facet implies several new types of obstacle edges, which arise
wherever facets intersect. For each of these new features, the necessary topological and geometric
analysis must be worked out.
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Figure 30: Defining an object with shape uncertainty. The true shape of the polygon
may correspond to any simple closed curve contained between the inner and outer shape
limits. Some possible true shapes are shown.

A more important extension is to allow uncertainty in the object shapes. Currently the algo-
rithms allow uncertainty in every physical parameter except shape; this exception severely restricts
the scope of the planning algorithms. Past work has explored explicit representations of shape
uncertainty, where every admissible variation in shape is represented by an explicit parameter
[Donald 1987a]. Another approach is to implictly represent shape uncertainty, using boundaries
that constrain the extent of the possible shapes. Figure 30 shows a possible choice of constraining
boundaries.

This representation of shape uncertainty requires us to extend our representation of the set of
possible contact configurations. This set may still be expressed as a set in the (x, y, θ) configu-
ration space, but the familiar configuration-obstacle surface is “blurred” by the presence of shape
uncertainty. The facets of the blurred obstacle are volumetric slabs instead of two-dimensional
surfaces, and the obstacle edges and vertices are also volumes corresponding to the intersection of
two or more slabs. The interpretation of points in this configuration space is non-deterministic:
points outside the configuration obstacle are configurations where there is definitely no contact,
points strictly inside the configuration obstacle are illegal configurations where the objects def-
initely inter-penetrate, and points within the obstacle feature volumes are configurations where
several contact conditions are possible, including no-contact and all combinations that include or
exclude the contact-pairs associated with each slab that intersects the obstacle feature.

The toplogy of this blurred configuration obstacle is complex, and computing an exact rep-
resentation of this set may be very difficult. However, it may be possible to construct useful
approximations to the blurred obstacle. One approach would be to construct a polygon represent-
ing the innermost limit of the shape boundaries of each object, use these polygons to construct the
known-shape configuration obstacle, and then use an appropriate distance metric to determine all
of the applicable slabs for a given configuration-space point. This would provide an implicit rep-
resentation of the blurred configuration obstacle. A second approach might be to develop a voxel
representation, where occupied cells are labelled with free, occupied, or mixed flags; the mixed cells
would also have a list of all of the slabs that intersect the cell, so that contact information could
be derived.
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(a) (b)

Figure 31: The mechanics of interacting uncertain shapes. (a) Since any shape con-
sistent with the shape boundaries is possible, microscopic variations in shape can sig-
nificantly affect the system mechanics. (b) If the robot’s end-effector is known to have
no vertices sharper than a certain minimum radius, microscopic variations in the object
surface can only have a limited effect on the contact mechanics.

The proposed representation of shape uncertainty also requires an extension of the current me-
chanics analysis. This is because the object surface properties are underdetermined by this model.
Since we have only asserted that the true object shape is bounded by two extremal concentric
curves, any local shape is possible; Figure 31(a) shows an example. This weak shape model admits
the possibility of pathological microscopic interactions between surfaces which give rise to infinite
friction coefficients — two-dimensional “velcro,” as it were. In some tasks there may be so much un-
certainty that this is an appropriate model, but in other tasks we may have information describing
the smoothness of the objects. This information may be available from models of the objects and
their surface texture, knowledge of the manufacturing process used to fabricate the objects, history
information obtained during past manipulation actions, or knowledge of the minimum radius of
curvature of the robot’s end-effector (Figure 31(b)). Regardless of the source, this information
can be used to bound the set of possible contact normals for a given contact point, which in turn
modifies the effective maximum coefficient of friction. Thus microscopic surface irregularities can
be included in a macroscopic model of the object’s shape.
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Modeling more complex task spaces. With the exception of the two-finger grasping example de-
scribed above, all of the tasks addressed thus far can be analyzed in a three-dimensional (x, y, θ)
space. This space is not sufficient for all tasks; some tasks must be analyzed in a higher-dimensional
space, due to the intrinsic nature of their physical systems. Additional dimensions may be required
for a variety of reasons:

• The task may require more configuration variables. In general, three variables are required
to specify the position of a planar body, six variables are required to specify the position of
two planar bodies, nine variables for three bodies, and so on. In this thesis, we are able to
represent the configurations of a two-body system using only three variables; this is possible
because the relative configuration of the bodies is sufficient for analysis of the task mechanics.

This is not the case for some tasks. For example, to synthesize pushing actions where the
support surface has regions of varying friction properties, the object motion will depend on the
position of the object on the support surface, as well as the relative configuration of the object
and the pushing finger. Thus a pushing task with a non-uniform support surface requires a
six-dimensional configuration space, unless we use a very conservative mechanics model that
assumes that the object is anywhere on the support surface. More than three configuration
variables will also be required if additional objects are present. For example, pushing or
grasping in the presence of obstacles requires six configuration variables, because the world
position of the manipulated object determines whether it will collide with an obstacle during
the operation, which in turn affects the object’s motion.

• The task may require an extended notion of state. The (x, y, θ) space provides a kinematic
description of the state of the task; more information may be required to adequately predict
the behavior of the task’s physical system. For example, dynamic properties may be signifi-
cant, requiring velocity terms to be included. In these situations the configuration space must
be extended to a phase space that includes a velocity term for each configuration variable,
which doubles the number of required dimensions.

It may also be necessary to join the configuration space with other parameter spaces at certain
configurations. For example, we shall see in Part II that the behavior of rigid bodies in
contact is ambiguous in certain statically-redundant configurations; we may wish to associate
internal force parameters with these configurations in order to resolve the ambiguity. A
second example is the analysis of tasks involving collisions; these tasks may be analyzed by
treating the configuration-obstacle surface as a Poincaré surface that joins the configuration
space with an impulse space describing the change of momentum developed during a collision
event [Wang 1989].

• The task is not planar. This thesis assumes that the task objects are planar, and that all forces
and motions are confined to a plane. Real manipulation tasks are three-dimensional, but
under certain conditions this planar model provides a reasonable and practical approximation
of the task. These situations include tasks involving prismatic objects resting on a flat or
inclined support surface, where the height of the objects is small compared to their width.
However, other tasks may not satisfy these conditions.

We can extend the scope of this work by addressing nonplanar tasks. A simple extension
would be to add a third translational dimension, but only allow rotations about a single
axis. This extension would give us an (x, y, z, θ) configuration space, which corresponds to
the workspace of many SCARA-type manipulators found in industrial assembly lines. We
would then need to extend our algorithms to construct plans in this space. One approach
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would be to restrict the class of admissible objects to collections of stacked polygonal prisms,
with the axis of each prism aligned with the z-axis. This restriction would allow us to
represent the task configuration space with a discrete collection of (x, y, θ) configuration
spaces, each with an associated interval of z-values. Additional work would be necessary to
avoid tipping moments that cause unacceptable rotations. A second appproach would be to
again assume that rotations are only possible about the z-axis, but include objects that are not
prismatic, such as pyramids or tetrahedra. Accurately modeling the (x, y, z, θ) configuration
space for these objects will require a continuous representation that captures the coupling
between lateral and vertical displacements. An even more difficult extension would be to
allow general three-dimensional motion. This requires a six-dimensional configuration space,
with six-dimensional configuration obstacles. See [Donald 1987b] for methods of representing
and constructing these obstacles.

These issues are examples of features that add complexity to a task, requiring a more complex
space for task analysis. Possible directions are outlined for addressing some of these issues, but
much future work remains.

Unlikely Extensions

The above discussion focused on limitations of the work presented in this thesis, and methods for
removing some of these limitations. Some of the proposed extensions are difficult, but with enough
hard work and clever insights, we may eventually find practical solutions to these problems. In
contrast, this section considers problems that appear to be fundamentally outside the scope of the
methods presented in this thesis; these problems probably require a completely different approach.

Manipulating aggregates of objects. In some tasks, we may wish to manipulate large numbers of
objects simultaneously. For example, we may wish to sweep a pile of coins off the edge of a table
into our hand, or grab a handful of popcorn from a bowl. In these tasks, there are so many moving
objects that it seems hopeless to model the corresponding high-dimensional task configuration
space. More to the point, we probably don’t care about the detailed motion of the individual
objects, as long as suitable aggregate behavior is achieved.

Deformable objects. Our configuration-space algorithms rely on the assumption that the shape
of the objects is fixed. If we extend our representation to include shape uncertainty, it may be
possible to also model small shape deformations within this framework. However, gross shape
deformations seriously undermine one of the key properties exploited by the algorithms: that the
configuration-space obstacle is constant. This property does not apply to tasks involving modeling
clay, soil, liquids, rope, fabric, and other flexible or amorphous materials. Effective manipulation of
such objects may require consideration of other task properties, such as conservation of volume, the
behavior of flexible bodies suspended in a gravity field, elastic and plastic deformation properties
of materials, the angle of repose of a powdered material, and so on.

Control laws with state history. The mechanics algorithms presented in this thesis rely on the
assumption that the physical behavior of the task can be predicted using only information that
describes the task state. In the current algorithms, this state is represented by the task configu-
ration, but future extensions may also include velocities, internal forces, and other parameters to
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describe the state of the task. With or without these extensions, the analysis algorithms assume
that the combined behavior of the robot control law and natural task mechanics may be predicted
using only the current state of the physical system.

What if the task behavior also depends on the history of previous states as well as the current
state? Computer-controlled robots can easily produce such behavior, since the controlling program
may use past sensory information to guide control decisions. Such control laws may increase the
effectiveness of the manipulation system by performing an on-line constraint analysis during task
execution. Our planning algorithms would not be able to construct plans for these controllers,
however, since the task state is no longer sufficient to predict the system behavior. In some
situations it may be possible to extend the task state-space to include the state of the controller,
but this is infeasible for general control laws utilizing sensor history information. There has been
substantial past work exploring this topic; see [Lozano-Pérez et al. 1984; Mason 1984; Erdmann
1986; Natarajan 1988] and [Canny 1989] for examples.

* * *

So what have we learned? From the experimental results obtained thus far, the proposed
approach to planning reliable manipulation actions appears to be feasible for planar tasks involving
two polygonal objects with configuration-dependent task mechanics. For these tasks, most of the
required analysis and implementation work has been completed, resulting in programs and physical
experiments that support the theoretical analysis. However, some questions remain unresolved, and
should be addressed in future work.

Looking ahead, we have also examined ways to extend the scope of these results. Extensions to
include two-fingered grasping tasks and controllers with a sense of time appear to be within reach.
For other extensions the prognosis is less clear, but we have some leads on how to proceed; these
include adding multi-step or probabilistic actions, allowing objects with curved edges or uncertain
shapes, and modeling higher-dimensional spaces to accomodate the presence of other objects, more
complex task dynamics, or non-planar motion. Finally, we have seen tasks that appear to be
fundamentally outside the scope of this approach; these tasks include manipulating large numbers
of objects, manipulating deformable objects, or planning actions for control laws that employ a
general sense of history.

So the approach has been successful so far, and can likely be extended to include tasks of at least
slightly higher complexity. The approach also has clear limitations; these suggest that, like many
other analytical tools, the methods and algorithms developed in this thesis will be most useful for
a particular domain of problems, and unsuitable for others. Future research will further illuminate
these issues.

In this section, we have assessed the current status of this work, and considered the implications
of this thesis for future research. It is equally important to look into the past, and see how this
work is related to previous results which inspired it; developing this context will further clarify the
contribution of the thesis to the field of robotics research. This is the topic of the next section.
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Relationship to Previous Work
This thesis draws on the results of many previous authors, and is especially inspired by three major
lines of research:

• Geometric approaches to robot planning problems.

• Analysis of manipulation task mechanics.

• Modeling and compensation for task uncertainties.

The thesis attempts to bring together results from each of these areas to produce a unified approach
to the analysis and planning of planar manipulation tasks. We will now review the past work in
these areas, and emphasize the previous developments that led to this thesis. We begin with some
of the early robotics work that helped to identify these important problem areas.

Seminal Work

The earliest robotics efforts noticed the significance of task mechanics in the execution of manipu-
lation actions [Ernst 1961; Goertz 1963]. These authors remarked on the difficulty of certain tasks
due to limited control precision, and suggested alternative control schemes to ameliorate these
problems. One of the principle suggestions was to extend the manipulator’s controller to explictly
measure and respond to force information.

Inoue [1974] used a force-controlled robot arm to automatically assemble a collection of tight-
fitting parts. Inoue exploited the arm’s force control to develop strategies that succeeded in assem-
bling parts with tolerances much finer than the arm’s positioning resolution. As a part of these
strategies, Inoue explicitly considered the effects of uncertainty on the executed actions, and modi-
fied his strategies to succeed in the presence of uncertainty. In so doing, Inoue developed strategies
such as squeezing a washer multiple times to center it between the robot’s fingers, or tilting a peg
to increase the amount of acceptable position uncertainty. These techniques combined with the
force control capabilities of the manipulator to produce successful actions. All of Inoue’s strategies
were hand-designed and programmed. Similar strategies were also evident in other contemporary
experiments that demonstrated the assembly prowess that can be attained by carefully-designed
manipulation systems [Pingle et al. 1974; Bolles and Paul 1973].
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Meanwhile, other researchers attacked the problem of automatic planning. Perhaps most rele-
vant among these were the BUILD and STRIPS programs [Fahlman 1974; Fikes and Nilsson 1971].
These programs performed analysis in an abstracted blocks-world, where actions were represented
by logical state changes. In the BUILD program, actions corresponded to instaneous position
changes; a manipulated block was assumed to disappear from one position and reappear in another
position. Given a desired final configuration of blocks, the BUILD program identified a sequence
of these actions that would produce the desired final configuration, while also assuring that each
intermediate state corresponded to a stable configuration of the blocks. The STRIPS program rep-
resented actions as precondition/postcondition pairs, and assumed that if the action preconditions
were met, then execution of the action would produce the action postconditions. These conditions
were expressed in abstract geometric terms, such as INROOM(BLOCK-A,ROOM-1). While the plans
generated by the STRIPS program were executed on a real robot, the low-level issues of control
and geometry were left as engineering exercises for the designers of the experimental apparatus. A
third example in this genre was the HACKER program, which also considered simple blocks-world
problems [Sussman 1973].

While these programs deliberately ignored the details of task mechanics and uncertainty, they
did illuminate a variety of important and difficult issues involved in planning solutions to complex
problems. These problems included the interaction of plan subgoals, control of search procedures,
and the selection of suitable problem representations. As a result, these investigations defined a
research agenda for addressing problems that can be expressed via symbolic representations [Newell
and Simon 1976]. Much work has followed these seminal results, and we will not review it here.
However, the MOLGEN planner is especially relevant because the constraint-satisfaction methods
it introduced are analogous to our analysis of physical constraints inherent in manipulation tasks
[Stefik 1981].

Not all work in automatic planning was purely symbolic. Lozano-Pérez [1976] addressed the
manipulation planning problem, and attempted to bridge the gap between the continuous domain
of task geometry and the symbolic domain of other planners. Lozano-Pérez identified several
geometric sets that can be automatically constructed from a description of the task geometry.
Successful actions may then be identified by constructing various transformations and intersections
among these sets; the semantics of these sets are analogous to the preconditions and postconditions
of the symbolic planners. In a similar vein, Taylor [1976] addressed the problem of automatically
converting high-level task descriptions into detailed robot programs. Using representations of the
task goals, object geometry, object locations, and other descriptive parameters, Taylor developed
a frame-based program that selected relevant manipulation strategies from a database of canonical
strategies, and then constructed the necessary missing information required to convert the canonical
strategy into a concrete plan. Taylor’s work focused especially on the problems of representing and
manipulating task uncertainties.

These early results set forth an agenda for manipulation planning research. It became clear
that task mechanics and uncertainty play a critical role in real-world manipulation tasks, and
analysis of task geometry is essential to solving general manipulation problems. Thus the problem
of automatic manipulation planning became one of identifying ways of coping with task geometry,
mechanics, and uncertainty. Further, the results obtained in domain-independent planning research
showed that symbolic task representations may be used to address high-level planning issues; if
the low-level methods developed to plan manipulation strategies could eventually be converted to
symbolic representations, then these results may also be brought to bear.
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Efforts that followed addressed various chunks of this agenda, and this thesis is no exception.
The discussion below will group these efforts into investigations of task geometry, mechanics, or
uncertainty; however, this grouping is primarily for convenience, since many of the examples si-
multaneously addressed combinations of these areas.

Geometric Approaches

Several researchers have focused on the geometric aspects of manipulation tasks. The problem
that has received the greatest attention is the path-planning problem: Given a robot placed in
a world containing obstacles, how can we synthesize a path to a desired position that avoids
collisions with the obstacles? There have been several approaches to this problem. One of the
early breakthroughs in the area was the application of configuration space [Udupa 1977; Lozano-
Pérez and Wesley 1979]. The notion of configuration space was developed in the field of kinematics
for the analysis of mechanisms [Reuleaux 1876], and has a direct relationship to the problem of
analyzing robot motions in the presence of other objects. The configuration-space approach to robot
path planning has received considerable attention over the years, leading to several planners that
operate by manipulating configuration-space sets [Brooks and Lozano-Pérez 1985; Donald 1987b;
Lozano-Pérez 1987]. Further, the characterization of these sets has become a research area in
itself, and several researchers have developed exact representations of configuration-space obstacles
for various domains [Bajaj and Kim 1988; Avnaim et al. 1988a; Avnaim and Boissonnat 1989;
Brost 1989; Ge and McCarthy 1989; Dooley and McCarthy 1990].

Related approaches to the path-planning problem include the spatial decomposition approach,
where collision-free positions are grouped into regions that allow certain canonical motions any-
where within the region; these regions are then connected by motions that allow transitions from
one region to another. These regions may be identified either in configuration space or the original
space [Brooks 1983; Yap 1987; Tournassoud and Jehl 1988]. A different approach is the potential-
field approach, where an energy function is defined that attracts the robot to the desired position,
but repels it from obstacles. This heuristic technique may give rise to very efficient computation
of paths, but is sometimes thwarted by local minima in the energy function. Current research is
attempting to remove this limitation. As with the spatial decomposition approach, potential energy
path-planners have been formulated both in configuration space and the original space [Hogan 1985;
Khatib 1986; Rimon and Koditschek 1989; Barraquand et al. 1990; Volpe and Khosla 1990]. Fi-
nally, some researchers have addressed the inherent complexity of the general path-planning prob-
lem, showing that the complexity of complete solutions must grow exponentially in the number of
degrees of freedom, and polynomially in the environment complexity [Schwartz and Sharir 1983;
Canny 1987].

Other geometric problems have also been addressed. For example, researchers interested in
developing qualitative techniques for analyzing physical systems have studied the kinematics of
mechanisms and other physical systems using configuration-space constructions [Faltings 1987;
Joskowicz and Addanki 1988; Joskowicz and Sacks 1990]. Other researchers have developed grasp-
planning algorithms that use geometric constraints to identify a set of grasp configurations that
are feasible at the initial and final stages of a manipulation task; these constraints include the
presence of obstacles and robot workspace limits [Lozano-Pérez 1981; Lozano-Pérez et al. 1988;
Jones and Lozano-Pérez 1990].
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The above researchers developed methods for solving manipulation problems by constructing
and manipulating geometric sets. Other researchers concurrently attacked the problem of develop-
ing computer representations for these sets, and algorithms to perform the necessary transforma-
tions. The field of computational geometry is very large, and we will not present a thorough review
of it here. However, two especially relevant components of the field are the development of computer
representations of three-dimensional polyhedra, and the more recent study of methods to improve
the robustness of geometric computations. As we shall see in Part II, both of these developments
strongly affect the CO algorithm used to construct configuration-space obstacles. Seminal work on
representing polyhedra includes [Baumgart 1974; Requicha 1980; Wesley et al. 1980; Wesley 1980;
Fitzgerald et al. 1981]; see [Milenkovic 1988], [Hoffmann 1989], and [Sugihara and Iri 1989] for
excellent reviews of the issues related to robust geometric calculations.

Exploiting the Task Mechanics

The mechanics of a manipulation task decide whether the performed action will succeed. This basic
observation has motivated a terrific amount of manipulation research, which we will only briefly
review here. For a discussion of the general relationship between task mechanics and manipulation
actions, see [Mason 1985]. We will proceed by examining several of the areas that have been
investigated.

Compliant Motion. The earliest research in manipulation task mechanics focused on force control
and compliant motion. This illuminated two important problems: The design of force-controlled
manipulators,and the automatic transformation of task goals into force-controlled motion com-
mands. Early design results include [Whitney 1977]; see [Whitney 1987] for a survey of force
control schemes. In order to relate task requirements to force-controlled motion commands, Mason
proposed a method that used task constraints to divide the control freedoms into position-controlled
and force-controlled subspaces [Mason 1981]; an implementation of this hybrid force/position con-
trol scheme was used to demonstrate peg insertions and other tasks [Raibert and Craig 1981].
Several other methods have been proposed for converting task requirements into force-controlled
motion commands; we will review some of these in the next section.

Peg Insertion. Because of its significance in assembly applications, the task of inserting a peg into
a hole in the presence of control errors has received much attention. Several force-control schemes
were developed specifically to address this task; see [Goto et al. 1980] for an example. Other
researchers performed an analysis of the task mechanics in order to identify robust manipulation
strategies; these efforts have vastly improved our understanding of this important manipulation
task, and ultimately led to the development of simple passive mechanisms that allow open-loop
insertion of pegs with very tight tolerances and complex shapes [Simunovic 1975; Drake 1977;
Whitney 1982; Sturges 1988; Strip 1989; Caine et al. 1989]. In addition to solving an important
class of manipulation tasks, this work established a paradigm for solving manipulation problems
via careful analysis of the task mechanics.

Friction and Force Modeling. The work on peg insertion also underscored the importance of contact
friction in manipulation tasks. Friction has been studied for hundreds of years; significant advances
in our understanding of friction began in the eighteenth century [Coulomb 1781]. Since that
time, a series of abstractions have been developed to simplify the analysis of problems involving
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multiple frictional contacts [Moseley 1835; Reuleaux 1876; Ohwovoriole et al. 1980; Ohwovoriole
1980; Erdmann 1984; Rajan et al. 1987; Brost and Mason 1990]. Further, analysis of frictional
contact problems is complicated by the presence of ambiguities and inconsistencies inherent to the
Newtonian model of rigid bodies interacting in the presence of Coulomb friction; see [Featherstone
1986] and [Mason and Wang 1988] for discussions of these problems. These abstractions and
ambiguities play a central role in the analysis of manipulation task mechanics developed in this
thesis; we will review these results in detail in Part II.

Pushing. As shown above, pushing actions provide a robust method for orienting, acquiring, or
repositioning objects resting on a flat surface. Predicting the motion of a pushed object is difficult,
because of the ambiguities inherent to rigid-body mechanics with Coulomb friction, and due to
uncertainty in the distribution of support forces between the object and the supporting surface.
The motion of a body sliding along a support surface has been studied for many years, and we draw
upon these results in the pushing mechanics analysis presented in Part II [Jellet 1872; Prescott 1923;
MacMillan 1936; Mason 1986a; Mason 1986b; Peshkin and Sanderson 1988a; Goyal 1989]. Further,
other researchers have applied these basic mechanics results to analyze manipulation tasks involving
pushing. These efforts have produced planners that synthesize pushing motions for an infinite fence
in the presence of position and control error [Mani and Wilson 1985; Brost 1988], a planner that
constructs a sequence of fence-pushing operations to unambiguously orient a part [Peshkin and
Sanderson 1988b], a technique for analyzing two-finger pushing operations that remove uncertainty
in a part’s position and orientation [Balorda 1990], and a method for analyzing high-speed pushing
operations that include dynamic effects [Pham et al. 1990].

Grasping. The problem of selecting and achieving a useful grasp of an object is obviously an
important manipulation task. Therefore it is not surprising that many researchers have studied
various aspects of this problem [Salisbury and Craig 1982; Chelpanov and Kolpashnikov 1983;
Abel et al. 1985; Baker et al. 1985; Cutkosky 1985; Wolter et al. 1985; Barber et al. 1986; Kerr
and Roth 1986; Jameson and Leifer 1987; Mishra et al. 1987; Li and Sastry 1988; Montana 1988;
Markenscoff and Papadimitriou 1989; Park and Starr 1990]. Each of these papers addresses some
aspect of the mechanics of grasping; topics include grasp kinematics, frictional stability of grasps,
synthesis methods for certain classes of grasps, and the theoretical existence of stable grasps. For
a survey of these and other grasping results, see [Pertin-Troccaz 1989]. While most of the past
work in grasping is related to this thesis because of its similar mechanics analysis, a few papers are
especially relevant. Nguyen [1988] develops the notion of force closure, which plays a significant role
in the force analysis presented in Part II. Salisbury [1982] presents a taxonomy of three-dimensional
contacts that is similar to the planar contact taxonomy analyzed in this thesis. Finally, several
authors developed analysis and planning methods which consider finite motion of the object or
fingers during the grasp operation; these finite motions play a crucial role when actions are executed
in the presence of uncertainty [Hanafusa and Asada 1977; Fearing 1986; Mason and Brost 1986;
Brost 1988; Trinkle et al. 1988; Goldberg 1990].

Analysis of Fixtures. As mentioned previously, industrial automation systems typically make use
of special-purpose fixtures for orienting and constraining parts. Such fixtures are widely used, and
methods for automatic analysis of fixtures may yield substantial cost savings by streamlining the
development of automation systems. For parts-orienting fixtures, Boothroyd et al. [1972] addressed
the statistical distribution of rest configurations of parts, in an effort to aid the design of automatic
parts feeders. Grossman and Blasgen [1975] developed a general-purpose parts feeder that uses
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a combination of passive mechanics and active sensing to disambiguate the rest state of a fed
part. The computational aspects of part feeder design have also been addressed [Natarajan 1989].
For fixtures intended to constrain a part’s position, several authors have developed programs that
automatically design fixtures [Asada and By 1985; Englert and Wright 1986; Strip and Maciejewski
1990]; this problem is closely related to the grasping problem.

Assembling Snap-Fit Parts. In an unique extension of conventional configuration-space methods,
Donald and Pai [1990] developed an algorithm for predicting the motion of an ensemble of rigid
planar parts connected with spring-loaded hinges; these ensembles approximate the “snap-fit” parts
commonly found in commercial products. Using an extension of conventional configuration-space
representations and an analysis of friction, their program predicts the motion of the parts during
a specified assembly operation. This program may be used as an aid during the design of snap-fit
assemblies, as well as a tool for predicting the behavior of parts during assembly processes.

Collisions. Many of the mechanics analysis results described above assume that all motions are
quasi-static; that is, frictional forces dominate inertial forces. As long as motion speeds are slow
and there is significant ambient damping, this is a reasonable assumption. However, some ma-
nipulation tasks are highly dynamic, and involve high-speed collisions between the manipuator
and the manipulated object. This reality motivated several researchers to study the analysis
and control of collisions in manipulation tasks [Brach 1984; Wang and Mason 1987; Wang 1989;
Buhler et al. 1990]. This thesis also addresses manipulation actions involving dynamic collisions
(the placing-by-dropping task), but does not utilize these results because they require velocity in-
formation. Instead, the thesis applies a weak mechanics model and uses the task kinematics to
identify a set of successful initial dropping positions. This approach is related to the qualitative
inferences produced by the FROB system for a simpler geometric domain [Forbus 1981].

Simulation. The BP i algorithm may be viewed as a numerical simulation of the manipulation task
mechanics. There is a substantial amount of previous work devoted to the development of computer
simulations of mechanical systems; we will not review these results here. However, a few previous
simulation systems are especially relevant to this thesis, because they address the interaction of
two or more rigid bodies under various dynamical conditions [Lötstedt 1981; Featherstone 1986;
Hoffmann and Hopcroft 1986]. As mentioned above, some of the anomalous situations that chal-
lenged these systems similarly affect the BP i algorithm.

Grappling with Uncertainty

The earliest researchers in robotics noticed the significance of uncertainty in manipulation tasks, and
substantial effort has been devoted to developing systems that are robust in the face of uncertainty.
There have been several approaches to this problem, but one is especially relevant to this thesis.
We will review this most relevant approach first, and then discuss other approaches.

The LMT Approach

The approach that is most closely related to this thesis is the formalism developed by Lozano-
Pérez et al. [1984] for planning compliant motions in the presence of uncertainty. This approach
considers uncertainty in sensing and control, and models each source of uncertainty with a worst-
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case error bound describing the maximum possible discrepancy between the robot’s estimate of a
parameter and the true parameter. Under the assumption of generalized damper dynamics, the
approach identifies sets of initial positions that will achieve the goal under the execution of a given
action (Figure 27 shows an example). These sets are called preimages. Multi-step plans may
be constructed by recursively constructing preimages backwards from the goal; if any constructed
preimage fully contains the set of current possible robot positions, then the corresponding sequence
of actions may be executed to reliably achieve the goal.

This formalism provided a foundation for several subsequent studies of the nature of manipula-
tion planning in the presence of uncertainty. The ensemble of all of this work is often referred to
collectively as the LMT approach. Mason [1984] proved the correctness and completeness of the for-
malism, and explored the relative power of various motion termination predicates. Erdmann [1986]
continued this study of the computational aspects of preimages, and showed that preimages with
general termination predicates are not computable for arbitrary environments. Erdmann’s proof
required a recursive definition of the task environment; Canny [1989] later showed that preimages
are computable for more practical environments under the additional assumption that the maxi-
mum number of plan steps is specified in advance. The inherent complexity of motion planning
in the presence of uncertainty has also been studied using the LMT formalism. Natarajan [1988]
showed that the problem is PSPACE-hard under a termination predicate with a sense of time, and
Canny and Reif [1987] showed that the problem is non-deterministic exponential-time hard under
the general termination predicate proposed in the original LMT paper.

These theoretical results were accompanied by the development of efficient algorithms for com-
puting preimages under restricted termination predicates. In the same paper that presents his
computability result, Erdmann developed and implemented an algorithm for constructing preim-
ages under a stateless termination predicate; these simplified preimages are called backprojections.
Briggs [1989] extended Erdmann’s algorithm by showing how to efficiently construct backprojec-
tions while considering arbitrary motion directions. Latombe [1989] reformulated some of the
definitions in the original Lozano-Pérez, Mason, and Taylor paper, extended the previous work
by addressing maximal preimages and conditional actions, and presented extensions to Erdmann’s
backprojection algorithm.

Other authors extended the basic LMT formalism in various ways. Donald [1990] added two
significant extensions. In the first extension, Donald showed how variations in the task geometry
could be included by adding additional dimensions to the configuration space; preimages can then
be constructed in this higher-dimensional generalized configuration space. Donald’s second exten-
sion was to redefine task success by proposing the notion of error-detection and recovery strategies.
In these strategies, the goal of the task is extended to include either recognizable achievement of the
goal, or recognizable failure. Recognizable failures allow subsequent recovery actions to be taken;
these recovery actions depend on the details of the task and the nature of the failure. These error-
detection and recovery strategies allow plans to be constructed even though a guaranteed plan is
not available. Erdmann [1989] also extended the formalism by addressing tasks with no guaranteed
plans. Erdmann showed how randomized actions may be used to achieve the goal in a finite time,
even though sensor uncertainties prevent the construction of guaranteed actions. Buckley [1989]
extended the formalism in a different way by addressing tasks with three degrees of translational
freedom under generalized spring control, and showing how to construct backprojections for this
mechanical system. Brost [1988] addressed a parallel-jaw grasping task, and showed how to con-
struct regions of initial conditions that achieve a desired final configuration. These regions are
analogous to LMT backprojections.
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This thesis views the preimages and backprojections defined in the LMT approach as examples
of goal-achieving sets that exist for any manipulation task. The continuous nature of the physical
world assures that these sets exist for tasks with arbitrary task mechanics, provided that the task
description is formulated in the appropriate space. I have attempted to develop this notion by con-
structing backprojections for tasks that have very different physical properties from the generalized
damper dynamics previously studied. The sets Vstate and Vcommand may be viewed as backprojec-
tions of the goal under the specified action, but I have refrained from using the terms “preimage”
and “backprojection” in the above description because the relationship between these sets and the
LMT sets is muddled. For example, which of the two volumes is the preimage? Both sets are
constructed in different spaces, and neither are constructed in a space that corresponds exactly to
the configuration space defined in the LMT formalism. This distinction may seem academic, but
becomes increasingly problematic when multi-step actions are considered that require preimage
construction in several different spaces. Despite this ambiguity, I have named the BPe and BP i

algorithms after the backprojection algorithm developed by Erdmann, because these algorithms are
so closely related. Further, it is my hope that the many insights developed while studying the LMT
approach will be easily adapted to the methods developed in this thesis. For example, extending
the thesis analysis to include error-detection and recovery strategies or randomized actions would
allow planning of actions when guaranteed plans are unavailable.

Other Approaches

While the LMT approach to handling uncertainty is the most closely related to this thesis,
other approaches have also been successfully investigated. Some of these methods are similar to
the techniques applied in the thesis, while others are very different. We will examine each of these
approaches in turn.

Identifying Task Invariants. Sometimes it is possible to identify certain structural characteristics
of a manipulation task that enable the development of strategies that are robust in presence of
tremendous uncertainty. An example of such a strategy is the path-generation algorithm developed
by Lumelsky and Stepanov [1987]. This algorithm assumes that the environment geometry is
completely unknown, but that a moving robot can sense an obstacle when it is encountered, and
also keep track of positions it has visited. Under these assumptions Lumelsky and Stepanov derived
a simple motion-generation procedure that guarantees that the robot will eventually reach the goal
if it is reachable by any path.

Constraint Propagation. This thesis and the LMT formalism represent uncertainty conditions
using explicit geometric sets; it is also possible to represent uncertainty using systems of constraint
inequalities. Combinations of these inequalities form an implicit representation of the set of actions
that will succeed in the presence of uncertainty. Once these inequalities have been formulated,
symbolic manipulation may be used to identify successful actions, or to decide that additional
uncertainty-reduction steps are necessary [Brooks 1982]. In a related paper, Taylor and Rajan [1988]
also represent task uncertainties using collections of inequalities, but analyze these constraints
numerically instead of symbolically. The constraint inequalities implicitly define a polytope in a
high-dimensional parameter space, but the effect of these parameters ultimately arises in a task
space that has much lower dimension. Special numerical algorithms allow the authors to project
the high-dimensional polytope into the low-dimensional task space, which results in a region of
acceptable task parameters. This region is semantically similar to the Vcommand volume constructed
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in this thesis, since this volume also represents the cumulative effect of many uncertainty parameters
expressed in a low-dimensional space. However, Vcommand may be difficult to construct using
constraint inequality techniques, since some of the necessary task mechanics cannot be described
with closed-form equations.

Constraint Analysis in the Configuration Space. This thesis explicitly represents task constraints as
a set of inadmissible configurations C that should be avoided at all times. Further, the mechanics
of a manipulation task imposes contraints on the possible motions of the manipulated object, with
associated motion uncertainty. Analogs to these constraints were addressed by a path-planning
system developed for mobile robot navigation [Stentz 1990]. This system considers a variety of task
constraints, and expresses them in the (x, y, θ) configuration-space of a mobile robot. This space
is then searched for a path that reaches a desired destination while satisfying all constraints. The
representations and algorithms employed in this planner are very different from those presented
in this thesis, primarily due to differences in the underlying structure of the manipulation and
navigation problems. For example, configurations in free space are of greatest interest in the
navigation problem, while configurations on the configuration obstacle surface should be avoided.
In contrast, manipulation tasks often specify obstacle surface points as goal configurations, and
motion along the surface is required to remove task uncertainty. An interesting avenue for future
work would be to identify the common ground between these two results, in an attempt to construct
a single planner that treats both tasks equally well.

Search. In some manipulation tasks, uncertainty may be overcome by executing a sequence of
actions that progressively reduce uncertainty. The LMT formalism provides a vehicle for con-
structing such multi-step actions, but other approaches have also been explored. For exam-
ple, given an analysis of task mechanics and sensing, planning multi-step tray-tilting actions
may be reduced to the problem of searching an AND/OR graph [Erdmann and Mason 1988;
Taylor et al. 1988]. Peshkin and Sanderson [1988b] also developed a method for constructing
sequences of pushing operations using search procedures. Each of these examples demonstrated
planners capable of constructing a sequence of actions that unambiguously orient a part start-
ing from a completely unknown orientation. Goldberg [1990] developed a related algorithm that
constructs sequences of parallel-jaw grasping actions to orient parts. By exploiting monotonicity
properties that are present in certain manipulation tasks, Goldberg’s algorithm directly constructs
an action sequence to orient a planar part, regardless of its shape.

Statistical Representations. Most of the work reviewed so far has assumed that uncertainty con-
ditions may be modeled by bounded errors. Other researchers have applied statistical models of
uncertainty; these models have the advantage that they explicitly model the continuous reduction
in uncertainty that may be obtained over a sequence of uncertain actions or sensor measurements.
Several approaches have been successfully developed, including entropy models of the manipula-
tion task state [Sanderson 1984], position representations using multivariate Gaussian distributions
[Smith and Cheeseman 1986], direct analysis of the probabilistic effect of grasping actions [Gold-
berg and Mason 1990; Goldberg 1990], grid-based representations of probabilistic safe-navigation
regions [Elfes 1987], and Kalman filtering techniques for refining uncertain sensor interpretations
[Matthies and Shafer 1987; Ayache and Faugeras 1988]. As mentioned in the previous section,
including statistical information could enrich the planning algorithms presented in this thesis, but
the required analysis remains a difficult problem.
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Learning. Observations may also be used to identify actions that are robust in the presence of
uncertainty. Several researchers have investigated methods of using observations to improve task
performance in the presence of sensing and control errors; examples are found in the fields of
adaptive control, robot control, and machine learning. For a representative sample of these results,
see [Dufay and Latombe 1984; Dunn and Segen 1988; Aboaf et al. 1989; Christiansen et al. 1990;
Gross forthcoming]. This thesis does not employ learning techniques, but they may be included in
the D function used by the BP i algorithm. This function describes the task’s differential behavior,
and may be derived using either analytical or empirical techniques. Empirical learning techniques
are especially attractive when analytical approaches are either intractable or overly conservative.

Sensor Fusion. Another approach to reducing the effects of uncertainty is to combine information
from several sensors, each of which has its own particular uncertainty characteristics. Interpreting
the sensor measurements in combination may result in total uncertainty that is much less than
the uncertainty in any individual sensor. Examples of this approach include [Ikeuchi et al. 1986;
Stansfield 1988; Allen 1988; Durrant-Whyte 1988].

Restricting the Set of Admissible Tasks. Desai [1989] developed an execute-verify strategy that
executes compliant motions to solve a restricted class of manipulation tasks. Desai’s strategy
identifies the topological contact situation attained at the end of a compliant motion, and then uses
this information to construct an error-correcting motion. Desai points out that this strategy will fail
in certain geometric situations, and provides heuristics for preventing these failures by redesigning
the task geometry. Desai proposes the notion of contact formations, which are topological analogs
to the configuration-obstacle features constructed in this thesis.

Qualitative Reasoning. In some tasks, the relevant properties of the task physical system may be
inferred without performing a detailed metric analysis. In the field of qualitative physics, programs
have been developed that analyze and control physical systems using models that include only qual-
itative information, or qualitative information combined with limited metric information. These
systems implicitly include uncertainty by identifying system characteristics that are insensitive to
fine changes in metric properties. See [Forbus 1988] for a survey of qualitative physics research.

Other Related Work

There is other previous work that is related to this thesis, but which does not fit into the above
three categories. We will mention these briefly here.

Because this thesis employs many geometric constructions, it draws substantially from previous
work in geometric analysis. As we shall see in Part II, the configuration-space obstacle of two
interacting polygons is an ensemble of ruled surfaces. We expoit the intrinsic geometry of ruled
surfaces when developing the CO algorithm. We also utilize concepts from projective geometry
when representing sets of planar forces on the force sphere. See [Hilbert and Cohn-Vossen 1932] for
an excellent discussion of the geometry of ruled surfaces, spherical projections, and other geometric
constructions.

The dynamic analysis presented in this thesis is related to the control of mechanical systems with
time-varying topology. These topological variations may be present in the system control law, or in
the mechanical system itself. For example, in variable-structure control, regions of a state space are
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identified that are subject to different control laws. None of the individual control laws are stable,
but the ensemble of control laws is stable. The control laws are chosen so that ideal control will
cause the system to converge on a boundary between regions, and then slide along the boundary to
a stable final state. Since real control involves finite switching times, physical implementations of
these controllers tend to chatter back and forth across the boundary while converging to the stable
state. In this thesis, we study physical systems that have analogous properties. The behavior of a
pair of interacting polygons is often unstable for states on a configuration-obstacle facet, but stable
for states at the intersections of facets. In some cases, the system state even slides along a boundary
between facets before finally stabilizing, as in Figure 19. Since the switching between task dynamics
is performed by nature, the chattering evident in digital varible-structure control generally does
not occur. For a discussion of variable-structure control, see [Young 1978]. A related topic is the
design of control laws for physical systems that have discrete modes of physical behavior, such as
mechanical linkages driven by gears with backlash. See [Brockett 1984] for remarks on the control
of such systems.

Lastly, the BP i numerical integration algorithm bears a resemblance to Dijkstra’s classic algo-
rithm for finding the shortest path through a discrete graph. In Dijkstra’s algorithm, a moving
horizon is defined which progressively expands until the destination node is included; this expan-
sion is organized so that the shortest path is implicit once the destination node is brought inside
the horizon. This algorithm inspired the contour expansion technique used in the BP i algorithm,
although the semantics are slightly different. For a description of Dijkstra’s algorithm, see pages
204–208 in [Aho et al. 1983].

How This Thesis Fits In

We have seen how early work in robotics identified the important problem areas of task geometry,
mechanics, and uncertainty, and that subsequent work has continued to explore these areas. This
thesis attempts to combine these results and develop a unified approach to the analysis and plan-
ning of planar manipulation tasks. For example, one view of the thesis is that it extends the LMT
formalism to include nonlinear task mechanics, as well as simultaneous consideration of transla-
tion and rotation for linear mechanics. Another view of the thesis is that it extends past work
in mechanics analysis by producing general-purpose algorithms for analyzing arbitrary polygonal
tasks; much of the previous work was accomplished using a hand analysis of a specific task geom-
etry. Finally, the thesis contributes to the field of computational geometry by extending common
representations of planar polyhedra to include a specific class of curved surfaces.
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Conclusion
The previous sections have addressed an important problem facing manipulation research: the
problem of constructing reliable actions to manipulate objects into desired positions. We have
addressed a particular subclass of this problem that involves two planar polygonal objects, and
defined five generic algorithms that may be applied to a variety of problems within this subclass.
These algorithms have been implemented, and physical experiments have demonstrated that the
algorithms synthesize reliable actions, provided that the appropriate physical assumptions are main-
tained. We then explored the implications of these results for future research, and concluded this
Part by discussing the relationship between this thesis and the work that preceded it.

Reading up to this point has exposed you to all of the high-level results in this thesis. What
remains are the details. In Part II, we will explore the nature of the sets that have been introduced,
develop data structures to represent these sets, and present algorithms to construct the data struc-
tures. In order to improve readability, the hairy details are deferred to Part III, which addresses
several topics that may interest readers who seek a deeper understanding of this work.
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Kinematics
The Nature of Configuration-Space Obstacles

The kinematics of two polygons interacting in a plane can be completely described by identifying
the reachable configurations of the two polygons. The set of reachable configurations is the union
of the free configurations where the polygons do not touch, and the contact configurations where
the polygons touch at one or more points. Both of these sets may be expressed in the (x, y, θ)
space of relative polygon positions, or the configuration space. In the configuration space, the
contact configurations correspond to the surface of the configuration-space obstacle, while the free
configurations correspond to the points outside this surface.

The configuration-obstacle surface corresponds to the set of configurations where the polygons
are in contact. Features on this surface correspond to topological classes of contact configurations,
identified by the polygon features that are in contact. In order to describe these features, we will
introduce a simple notation for describing contacts.

We denote a single contact by the pair of features that are in contact, always listing the moving-
polygon feature first. For example, if vertex 1 of the moving-polygon is in contact with edge 4 of
the fixed-polygon, then we denote the contact v1e4 (Figure 32). Multiple-contacts are separated
by dashes, such as the v1e4-v2e3 contact shown in Figure 32(c). The order of the contact pairs

(a)

e4

v1

(b) (c)

e4

e1
e4

e3

v2v1

Figure 32: Example contacts. (a) v1e4. (b) e1e4. (c) v1e4-v2e3.
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is not significant, so v1e4-v2e3 is equivalent to v2e3-v1e4. We will also refer to types of contacts,
by dropping the subscripts that refer to specific polygon features. In the previous examples, the
first contact is a ve contact, and the second is a ve-ve contact. Whether specific or generic, these
descriptions denote the set of feature-pairs that are in contact, or the contact set for a given contact
configuration.

There is a direct correspondence between contact sets and configuration-obstacle features. For
each facet, edge, and vertex of the configuration obstacle, the contact configurations corresponding
to the obstacle feature all share the same contact set. Each feature corresponds to a single contact
set, but sometimes a contact set may correspond to more than one obstacle feature. For example,
we shall see later that two disconnected obstacle facets may share the same contact set.

In the discussion that follows, we will develop an intuitive understanding of the class of configu-
ration obstacles that can arise for arbitrary pairs of polygons. We will begin by considering simple
contacts and convex polygons, and then examine the more complex contacts that can arise for
non-convex polygons. In each case, we will focus on the relationship between the contact situation
and the corresponding configuration-obstacle feature.

Vertex-Edge Contacts

The simplest contact is the vertex-edge (ve) contact. Figure 33 shows an example ve contact;
what are the (x, y, θ) configurations where this contact is maintained? Here it is helpful to imagine
that the vertex is connected to the edge by a revolute hinge that is free to slide along the edge, as
shown in Figure 33(b). The configurations that maintain the vertex-edge contact are exactly the
configurations that are reachable by this two-link system.

Since the hinge allows rotation and sliding, this system has two degrees of freedom. Thus the
corresponding set of reachable configurations is a two-dimensional surface embedded in the three-
dimensional (x, y, θ) configuration space. Neglecting motion limits, this is an infinite, ruled surface
that stretches to infinity in the x and y dimensions and is defined for all θ values; we will refer to
such surfaces as c-surfaces. The c-surface for our ve example is shown in Figure 34, and can be
generated by sweeping a line along a sinusoidal curve.

If we choose a specific point on the line containing the slider, we can identify the set of con-
figurations where the slider-hinge is coincident with the chosen point. Since we have constrained
the position of the slider, the degrees of freedom of the system are reduced from two to one, and
the corresponding set of reachable configurations becomes a one-dimensional curve embedded in
the two-dimensional c-surface. This curve is a helix, and is shown in Figure 35(a). Similarly, if
we choose a specific hinge orientation, the set of reachable configurations is also a one-dimensional
curve (actually a straight line), shown in Figure 35(b).

These observations allow us to express the motion limits of the real ve contact, which arise
due to the finite length of the edge and the limited orientations reachable by the contact. The
edge endpoints give rise to curves where the vertex is superimposed with each endpoint; feasible
ve contact configurations must lie between these curves. Similarly, the edges on either side of the
vertex give rise to two lines on the c-surface; feasible configurations must lie between these lines.
Since both constraints must be simultaneously satisfied, only the points within both bands are
feasible ve contact configurations (Figure 36). If both polygons are convex, then this set of points
comprises the configuration obstacle facet for this ve contact. If either polygon is non-convex, then
some or all of these configurations may be unreachable, as we shall see later.

70



   

(b)

(a)

Figure 33: (a) A vertex-edge contact. (b) The corresponding abstract mechanism.

y

x

θ

Figure 34: The set of reachable configurations for the abstract mechanism correspond-
ing to a vertex-edge contact.
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(a)

(b)

Figure 35: Fixing the slider and revolute joint of the abstract mechanism.
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x

Figure 36: The locally-consistent subset of the unbounded c-surface for a vertex-edge
contact.
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Edge-Vertex Contacts

Figure 37 shows an example ev contact, and its analogous abstract mechanism. The set of
reachable configurations for this abstract mechanism is the infinite helical surface shown in Fig-
ure 38; this surface is called a helicoid. As with the c-surface for the ve contact, this surface can be
generated by sweeping a line; however in the ev case the orientation of the line varies continuously
as it is swept along the generator curve. This surface has the same edge-endpoint and adjacent-edge
motion limits as the ve case; these constraints are illustrated in Figure 39.

(b)

(a)

Figure 37: (a) An edge-vertex contact. (b) The corresponding abstract mechanism.
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θ

y

x

Figure 38: The set of reachable configurations for the abstract mechanism correspond-
ing to an edge-vertex contact.

θ

y

x

Figure 39: The locally-consistent subset of the unbounded c-surface for an edge-vertex
contact.
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Facet Neighbors

For configurations outside the limits imposed by the edge-endpoints or the adjacent-edges, a
different contact condition applies. This new contact condition will have its own facet of reachable
configurations. Thus the constraint curves form transitions between facets, and correspond to edges
of the configuration obstacle. Figure 40 shows the neighboring facets for the previous ve contact
example.

Since ve and ev facets account for all the possible contacts with two degrees of freedom, the
ensemble of possible ve and ev facets forms the entire configuration obstacle surface. Every facet
is surrounded by neighboring facets across all of its edges. Thus the configuration obstacle surface
is closed. Note that since the θ-axis wraps around, surface points at θ=0 are connected to surface
points at θ=2π. Figure 41 shows the configuration obstacle for a pair of convex polygons.
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x
y

Figure 40: Facet neighbors.

x
y

Figure 41: The configuration-space obstacle of two convex polygons.
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Multiple Contacts

So far we have seen all of the single-contact situations that are possible: ee, ev, ve, vv. These
contacts give rise to facets and edges on the configuration obstacle surface; these are the only
features that will appear if the moving and fixed polygons are both strictly convex. However, if
either polygon is not strictly convex, then multiple-contact situations will also arise.

Consider the example shown in Figure 42(a). Here it is possible for the triangle vertex v0 to
contact the fixed edge e0 at the same time that vertex v2 is contacting edge e1. Because of the
presence of edge e1, some of the v0e0 configurations cannot be reached without causing e1 to intersect
the triangle. Thus e1 restricts the reachable v0e0 contact configurations; similarly, e0 restricts the
reachable v2e1 configurations. These observations suggest that the corresponding facets of the
configuration obstacle will be reduced.

Figure 42(b) illustrates this situation in the configuration space. The infinite c-surfaces contain-
ing the v0e0 and v2e1 facets are shown, as well as the facet edges arising from the local constraints.
The c-surfaces intersect, defining the set of configurations satisfying both contacts. If we visualize
the v0e0-v2e1 contact as an abstract mechanism with hinge-sliders at each ve contact, then the
curve determined by the c-surface intersection corresponds to the set of reachable configurations
for the mechanism. The set of reachable configurations for the real v0e0-v2e1 contact is a subset of
this curve, delineated by the local constraints of the v0e0 and v2e1 facets.

The curve defining the intersection of two ve c-surfaces is always well-defined, as long as the
lines containing the fixed-polygon edges are not parallel. This is a direct consequence of the fact
that non-parallel lines lying in a plane always have a point of intersection. This implies that the
abstract mechanism corresponding to any ve-ve contact always has a set of reachable configurations,
as long as the fixed edges are not parallel. However, the real ve-ve contact may have no reachable
configurations, since there may be no points on the intersection curve that simultaneously satisfy
the local constraints of each facet (Figure 43).
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(a)

(b)

e0

e1

v0

v2

Figure 42: (a) A multiple-contact condition. (b) The corresponding situation in the
configuration space. The intersection of the c-surfaces corresponds to the reachable con-
figurations for the v0e0-v2e1 abstract mechanism, and the bold subset of this intersection
corresponds to the reachable configurations for the real v0e0-v2e1 contact.
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Figure 43: A multiple-contact condition that has no locally-consistent configurations.
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What if the fixed edges are parallel? In this case the ve-ve abstract mechanism will have
reachable configurations exactly when the distance between the vertices is greater than or equal to
the distance between the lines containing the edges. When this condition is met, the ve c-surfaces
will intersect in one or two lines (Figure 44). These lines form the set of reachable configurations for
the ve-ve abstract mechanism; it is evident from the labels in the figure that these configurations
may slide laterally, but have no rotational freedom. This is consistent with the fact that the lines
in the configuration space lie in a constant-θ horizontal plane. As in the case of non-parallel edges,
the existence of reachable configurations for the abstract mechanism does not imply the existence
of reachable configurations for the real ve-ve contact (Figure 45).

Up to now we have ignored the distinction between parallel and antiparallel fixed edges. Since
edges are in fact directed lines, parallel and antiparallel cases are not topologically the same.
When the fixed edges are parallel, the moving-polygon is free to rotate either clockwise or counter-
clockwise, maintaining one of the two ve contacts for each rotation direction (Figure 46(a)). When
the fixed edges are antiparallel, then rotation is only possible in one direction, and either ve contact
may be maintained for that rotation direction (Figure 46(b)).

Figure 44: The intersection of c-surfaces for a ve-ve contact with parallel fixed edges.
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(a) (b)

Figure 45: The effect of local-consistency constraints on multiple-contacts with parallel
fixed edges. (a) and (b) share the same abstract mechanism, but only (a) contains
locally-consistent contact configurations.
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(a) (b)

Figure 46: The distinction between parallel and antiparallel edges.
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The previous paragraphs have explored the nature of ve-ve contacts; we have considered cases
where the fixed-edges are intersecting, and where they are aligned (i.e, either parallel or antipar-
allel). These cases produced obstacle edges that were either functions of θ, or lines confined to
a constant-θ plane. Analagous cases are possible for ev-ev and ve-ev contacts; Figures 47 and 48
show some examples.

Since only ve or ev facets are possible, the only two-contact obstacle edges that are possible are
the 2-combinations of these facets: ve-ve, ev-ev, and ve-ev. For each of these, there are cases where
the edges involved are aligned, or non-aligned. Since these edges arise because of a conflict between
single contacts, we will refer to them as conflict edges. Similarly, we will refer to the vv or ee edges
that arise from the local edge-endpoint or adjacent-edge constraints as local edges. The local and
conflict edges exhaust the set of possible configuration obstacle edges, except for a special class of
non-generic edges that are presented in the next section.

(a)

(b)

Figure 47: Example ev-ev contacts. (a) Non-aligned. (b) Aligned.
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(a)

(b)

(c)

Figure 48: Example ve-ev contacts, with the ev surfaces omitted for clarity. (a)
General situations produce two disjoint c-surface intersection curves, each of which
is a function of θ that approaches infinity at certain critical values. (b) When the
vertex-edge distances are equal, the c-surfaces intersect in two curves, one of which is
a function of θ, and one of which is a constant-θ line. (c) When both vertex-edges
distances are zero, the c-surface intersection produces a helix and two constant-θ lines.
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Non-Generic Contacts

If the moving-polygon touches the fixed-polygon at more than two contact points, then the
moving-polygon cannot undergo a finite motion while maintaining the contacts unless all of the
contact normals lie on parallel lines. If this condition is met, the moving-polygon may translate
while maintaining all of the contacts. This implies that the only configuration-obstacle edges that
are possible with more than two contacts are constant-θ edges. Example configurations with more
than two contacts are shown in Figure 49.

Configuration-obstacle edges with more than two contacts arise only when geometric coinci-
dences are present; the polygon features involved must be separated by exactly the right inter-
feature distances. These contact situations are non-generic.

When constructing and manipulating configuration obstacle surfaces, it is useful to distinguish
between generic and non-generic situations. To illustrate the notion of generic topology, let’s
consider the simple example of planes intersecting in three-dimensional Euclidean space. In general,
two planes intersect at a line, three planes intersect at a point, and four planes have no common
intersection. This is the topology of generic plane intersections. However, it is possible to choose
singular configurations of planes that have very different intersection topologies; for example, an
arbitrary number of planes may intersect at a given line or point. Such configurations are non-
generic. Figure 50 shows examples of generic and non-generic plane intersections.

(a) (b) (c)

Figure 49: Contact situations with more than two contact points. (a) A contact
configuration with no degrees of freedom. (b) A contact configuration with one trans-
lational degree of freedom. (c) A contact configuration with one rotational degree of
freedom; only infinitesimal motion is possible.

(a) (b)

Figure 50: (a) Generic intersection of four planes. (b) Non-generic plane intersections.
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The intersections of c-surfaces are somewhat more complicated, but still have identifiable generic
and non-generic topologies. In general, two c-surfaces intersect at up to two curves, three c-surfaces
intersect at up to four points, and four c-surfaces have no common intersection. However, non-
generic intersection topologies are possible, and frequently arise in practice. Figure 51 shows several
non-generic contact situations, and their corresponding c-surface intersections. Notice that some
unusual intersection topologies arise; in (c–f), several c-surfaces intersect at a single line, while
in (a),(b), (g), and (h), several surfaces intersect at a common point. The resulting topology
of the configuration obstacle surface is also unusual. Cases (a–d) have normal surface topology,
but (e) produces an isolated obstacle edge in the middle of a facet, (f) produces a spur edge
that has no neighboring facets, (g) produces an isolated vertex on an obstacle facet, and (h)
produces an isolated obstacle vertex with no adjacent edges or facets. The possiblity of spur edges
and isolated vertices implies that general configuration-obstacle surfaces are not two-dimensional
everywhere; these singular cases place extra demands on algorithms that seek to produce complete
representations of configuration obstacles. In fact, the CO algorithm reported in this thesis does
not construct the features shown in (e–h), as we shall see in later sections.

The constant-θ edges that can arise in non-generic situations form the last type of edge that is
possible for configuration obstacles arising from a pair of polygons. Unlike the constant-θ obstacle
edges due to ee, ve-ve, ev-ev, or ve-ev contacts, these non-generic edges may have arbitrarily many
contacts that are simultaneously satisfied (Figure 52). Because these non-generic obstacle edges
may have arbitrarily complex contacts, we cannot denote this class of edges by a particular contact
specification. Instead, we will refer to these non-generic edges as multiple-class-0 edges, or simply
mc0-edges. This terminology alludes to the fact that these non-generic obstacle edges may be
viewed as the superposition of several different constant-θ edges, which we will later refer to as
class-0 edges when we describe configuration obstacle features mathematically. Note that this term
is more specific than the term “non-generic edge,” since it is possible for non-generic edges to arise
for ordinary two-contact conditions (Figure 51(e)).

Multiple-class-0 edges may give rise to obstacle edges that are physically significant, but are
not topologically significant features of the obstacle surface. Figure 53 shows an example. In this
three-contact multiple-class-0 edge, the outermost ve contacts are maintained over a wider interval
of configurations than the innermost ve contact. On the configuration-space obstacle surface, the
mc0-edge corresponding to this non-generic contact is bordered on either side by ve-ve edges that
are collinear with the mc0-edge, and the adjacent facets are the same for all three edges. The
reason that this edge has been set apart is not apparent from the obstacle surface topology, but
depends on the contact information associated with points on the surface.

87



   

(a)

(b)

(c)

(d)

Figure 51: Non-generic contact situations. Each case shows a non-generic contact, its
associated non-generic c-surface intersection, and the final set of reachable configura-
tions.
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(e)

(f)

(g)

(h)

Figure 51 (continued): Non-generic contact situations. Each case shows a
non-generic contact, its associated non-generic c-surface intersection, and the final set
of reachable configurations.

89



   

Figure 52: A complex non-generic contact.

Figure 53: A multiple-class-0 edge that is physically significant, but does not corre-
spond to a topological event on the configuration obstacle surface.
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Why Non-Generic Situations Are Important

Non-generic contact conditions exist only when a geometric coincidence is present. While these
coincidences may at first seem rare and implausible, many of them frequently arise in practical
situations. For example, the non-generic contacts (a) and (b) in Figure 51 require equal angles or
equal-length edges; these coincidences will arise multiple times whenever the moving-polygon and
the fixed-polygon are the same shape. The configuration shown in (c) arises when a polygon has
two collinear edges; physical objects with this characteristic can easily be constructed by cutting
a straight edge, and then cutting a notch in the edge. When the polygons describe parts that
are designed to fit together tightly, the contact situation shown in (f) will arise, unless detailed
tolerance information is included in the input description of the polygon shapes.

Many past algorithms for constructing configuration-obstacle surfaces have assumed that non-
generic situations do not arise. To handle the non-generic situations that do arise, the algorithms
perturb the input polygons slightly until the situation becomes generic. The result of this pertur-
bation is a configuration-space obstacle that contains no non-generic surface intersections — this
obstacle is topologically different from the true configuration obstacle. Since the change in shape
is small, this perturbation does not have a deleterious effect on path-planning, which has been the
principal application for which these obstacles have been constructed.

However, this change is inappropriate for a physical analysis of interacting polygonal objects,
because the modifications to the configuration-obstacle lead to incomplete descriptions of the con-
tact set for some configurations. Since interaction forces occur at contacts, this may lead to an
inaccurate description of the system’s physical behavior. For example, material differences may
cause the middle ve contact in Figure 53 to have a higher coefficient of friction than the outer ve
contacts, causing the behavior of configurations on the corresponding mc0-edge to differ from the
behavior of the adjacent ve-ve configurations. Failure to detect this non-generic contact could lead
to erroneous physical predictions.

General Properties of Configuration-Space Obstacles

So far we have seen all of the features that can appear on the surface of a configuration obstacle.
We have seen that the surface of a configuration obstacle is comprised of an ensemble of ve and
ev facets, each of which is a ruled surface. The edges connecting these facets correspond to more
constrained contact conditions that have only one degree of freedom; some of these edges may
be identified using purely local information (vv and ee edges), while others result from non-local
interactions of polygon features (conflict and mc0-edges). At the intersections of obstacle edges
are vertices that correspond to contact conditions that have zero degrees of freedom. Each of these
features can be described by a set of parameterized equations; these equations will be developed
in the next section.
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In addition to identifying the individual features that comprise a configuration obstacle surface,
we can also study the overall surface properties of configuration obstacles. Some of these overall
properties are listed below:

• The total surface is bounded, closed, possibly nested, not necessarily connected, and of arbi-
trary positive genus. Since the configuration obstacle is an ensemble of a finite number of
bounded facets, the obstacle surface is bounded. Further, since the obstacle surface separates
the free and impossible configurations, it must be closed. However, the total surface may be
comprised of multiple nested shells, as shown in Figure 54. Further, the surface may contain
disconnected non-nested shells, as shown in Figure 55. Finally, all configuration obstacles
have genus 1 or higher because the (x, y, θ) space in which they are embedded imposes the
topology of the torus. The genus may be arbitrarily large, because the geometry of the in-
teracting polygons may give rise to an arbitrary number of handles on the obstacle surface;
Figure 56 shows a geometric situation that produces a configuration-obstacle handle.

• Obstacle facets may be split, or have holes. As mentioned previously, it is possible for a single
contact set to correspond to multiple configuration-obstacle features. This occurs when the
locally-consistent subset of the contact c-surface is split by non-local feature interactions;
Figure 57 shows how this may occur. Notice that both the facet and the conflict edge are
split into disconnected parts. By a suitable choice of geometry, a facet may be split into
arbitrarily many disconnected parts (Figure 58). Further, holes may be pierced in the facet
that do not touch the local constraint edges; Figure 59 shows how there may be an arbitrary
number of these holes in a single facet. Note that these holes are not holes in the obstacle
surface, which is always closed. Rather, the holes result from the intersection of the facet
with some other portion of the obstacle surface.

• Not all facets are reachable. Non-local feature interactions may make some facets completely
unreachable (Figure 60).

• Configuration-obstacle surfaces are not manifolds. The term “manifold” has several inter-
pretations in the field of algebra and computational geometry; we will consider two of these
interpretations here.
In the first interpretation, manifolds are defined to be continuously differentiable surfaces; a
surface is a manifold if all of its derivatives are defined at every point on the surface. Under
this definition, all configuration obstacles are clearly not manifolds, because the sharp edges
between facets represent discontinuities in the surface orientation.
The second interpretation of manifolds is more commonly used in computational geometry,
and is concerned with the pure topology of the surface. Under this interpretation, a surface
is a manifold if the neighborhood of all points on the surface is homeomorphic to a disc. In
other words, the neighborhood surrounding any point of a manifold surface may be stretched
and deformed into a disc without tearing the surface. Most configuration obstacles satisfy
this definition, but some non-generic situations give rise to configuration obstacles that are
not manifolds. For example, the spur edge illustrated in Figure 51(f) violates this manifold
condition.

• Duality relationships abound. Vertex-edge and edge-vertex contacts are duals, which in turn
gives rise to a variety of other dual relationships. For example, if the moving-polygon and
fixed-polygon are interchanged, then the corresponding configuration-space obstacle has the
same topology as the original obstacle, except the ve facets become ev facets, and vice versa.

This section has examined the qualitative nature of configuration-space obstacles and the fea-
tures that comprise them. The next section will develop representations for these obstacles.
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Figure 54: A situation giving rise to nested shells in a configuration-space obstacle.
In Figures 54–56, a schematic representation of the obstacle is shown to clarify its
topology.
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Figure 55: A situation giving rise to disjoint configuration-obstacles.
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Figure 56: A situation giving rise to a handle on a configuration-space obstacle.
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Figure 57: A facet and conflict edge that are split.

Figure 58: A facet may be split into arbitrarily many components.
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Figure 59: A facet may contain arbitrarily many holes.

Figure 60: A facet may be completely unreachable.
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Representing Configuration-Space Obstacles

In this section we will develop methods for representing configuration obstacles. We will begin by
developing a metric representation of obstacle features, and conclude by developing a data structure
that encodes the obstacle’s metric and topological properties.

Metric Descriptions of Obstacle Features

Each feature of a configuration obstacle may be described by a collection of analytic equations
that describe the unbounded set that contains the bounded configuration obstacle feature. For
example, the equations for an obstacle facet describe the infinite c-surface containing the facet, and
the equations describing an obstacle edge describe the infinite curve containing the edge.

Facets. Configuration-obstacle facets are two-dimensional sets embedded in a three-dimensional
space. We can parameterize the facet surface by introducing the perimeter variable p. Figure 61
shows the definition of p for ve and ev facets. The reference point for measuring p is the clockwise
vertex of the contact edge; this point is unique for every ve or ev contact. For each facet, the ordered
pair (p, θ) provides an unambiguous specification of points on the facet. Our (p, θ) parameterization
allows us to write functions that describe the infinite c-surface containing each facet:

x = fx(p, θ)
y = fy(p, θ)

These functions are defined for each facet, and are of the following forms:

fxve(p, θ) = k1x + k2xp + k3x cos(θ + κ3x)

fyve(p, θ) = k1y + k2yp + k3y sin(θ + κ3y)

fxev(p, θ) = k1x + k2xp cos(θ + κ2x) + k3x cos(θ + κ3x)

fyev(p, θ) = k1y + k2yp sin(θ + κ2y) + k3y sin(θ + κ3y)

where the ve and ev subscripts indicate the functions for ve and ev facets, and the ki and κi terms
are constants that depend on the geometry of the facet’s contact features (see Appendix 3). We can
also define inverse functions that identify the parameter values given a point on the facet c-surface:

p = fp(x, y, θ)
θ = fθ(x, y, θ)
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p = 12mm p = 12mm p = 11mm p = −10mm

p p

p

p−

Figure 61: The facet parameter p.

Here fθ is simply an identity function, and fp may be computed by a vector dot-product:

fp(x, y, θ) = ecwv · ê

where ecw is the clockwise vertex of the contact edge, v is the contact vertex, ecwv is a vector
pointing from ecw to v, and ê is a unit vector pointing in the direction of the contact edge. For
ve facets, v is a function of configuration; for ev facets, ecw and ê are functions of configuration.
Notice that p is a signed quantity; negative values of p are possible for points on the infinite facet
c-surface. However, p is always non-negative for any point on the actual configuration obstacle
facet, because of the edge-endpoint limits.

Edges. Because configuration-obstacle edges have only one degree of freedom, they can be
parameterized by a single variable. Each configuration-obstacle edge is embedded in an unbounded
curve; these curves fall into one of four classes:

fxclass-0
(p) = k0x + k1xp

fxclass-1
(θ) = k0x + k1x sin(θ) + k2x cos(θ)

fxclass-2
(θ) = k0x + k1x sin(θ) + k2x cos(θ) + k3x cos(θ) sin(θ) + k4x sin2(θ)

fxclass-3
(θ) = k0x + k1x sin(θ) + k2x cos(θ) +

k3x + k4x sin(θ) + k5x cos(θ)
k6x sin(θ) + k7x cos(θ)

where each ki is a constant that depends on the geometry of the contact features, and p is
similar to the perimeter variable defined for facets. Each x-function has an analogous y-function of
the same form. All of these curves are functions of θ except for class-0 curves, which are straight
lines that lie in a constant-θ plane. A complete description of class-0 curves requires the θ-value of
the containing plane, as well as the fx(p) and fy(p) functions that describe the line.
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These classes of curves are generic, and some classes apply to more than one type of obstacle
edge. Further, a given edge type may give rise to more than one class of curves, depending on the
geometry of the contact features. The table below lists the possible curve classes that may arise
for each obstacle edge type:

Obstacle Edge Type Possible Unbounded Curves

ee class-0

vv class-1

class-1
ve-ve two class-0

class-0

class-2
ev-ev two class-0

class-0

two class-3
ve-ev class-3 and class-0

class-1 and two class-0

For each edge type, the possible curve classes are listed in order of increasing non-genericity;
that is, the most general cases are listed first. Figure 62 shows examples of contact conditions that
give rise to each case, along with a depiction of the unbounded curves in the configuration space.

These curves are generated by the intersection of two surfaces in the configuration space. We
could use combinations of surface equations to implicitly specify the equations of these curves, but
instead we will derive the curve equations directly by treating each edge contact condition as an
abstract mechanism, and identifying the mechanism’s reachable configurations. Figure 63 shows
an example derivation of a curve equation; similar derivations were used to produce the equations
given in Appendix 3.

Vertices. We have seen how the metric properties of configuration-obstacle facets and edges
may be described by collections of equations; vertices are much simpler. To represent the metric
properties of a configuration-obstacle vertex, we simply specify its (x, y, θ) coordinates.
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VV

VE-VE

EV-EV

VE-EV

EE

class-0

class-1

class-2

class-3

class-0

class-0

class-0

class-0

class-0

class-0

class-0
class-0

class-0

class-1

class-1

class-3

class-3

Figure 62: Edge types and associated unbounded curves.
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βf2−βf1

rm1

νm1

βf1

βf2

βm1m2

lm1m2

δ

w

z

θ

(xf1f2 , yf1f2)

(x′
m1 , y

′
m1)

(x, y)ef1

ef2

vm1

vm2

δ = (θ + βm1m2) − (βf1 + π)

δ = θ + βm1m2 − βf1 − π

(a)

y

x

fx(θ), fy(θ)

(b)

Figure 63: Derivation of the fx(θ) function for non-aligned ve-ve contact conditions.
(a) The contact condition. Here rm1, νm1, βf1, βf2, βm1m2, lm1m2, xf1f2, and yf1f2 are
constants that depend on the geometry of the contact features, and x′

m1, y
′
m1, δ, w, and z

are variables that depend on the (x, y, θ) configuration. (b) The relevant c-surfaces and
their intersection curve.
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x = x′
m1 − rm1c(θ+νm1)

x = xf1f2 + cβf1
z − rm1c(θ+νm1)

x = xf1f2 + cβf1
[lm1m2cδ − w] − rm1c(θ+νm1)

x = xf1f2 + cβf1

[
lm1m2cδ −

lm1m2sδ
tan(βf2 − βf1)

]
− rm1c(θ+νm1)

x = xf1f2 + lm1m2cβf1

[
c(θ+βm1m2−βf1−π) −

s(θ+βm1m2−βf1−π)

tan(βf2 − βf1)

]
− rm1c(θ+νm1)

x = xf1f2 + lm1m2cβf1

[
cθc(βm1m2−βf1−π) − sθs(βm1m2−βf1−π) −

sθc(βm1m2−βf1−π) + cθs(βm1m2−βf1−π)

tan(βf2 − βf1)

]
−rm1 [cθcνm1 − sθsνm1 ]

x = xf1f2 + sθ

[
lm1m2cβf1

(
−s(βm1m2−βf1−π) −

c(βm1m2−βf1−π)

tan(βf2 − βf1)

)
+ rm1sνm1

]

+cθ

[
lm1m2cβf1

(
c(βm1m2−βf1−π) −

s(βm1m2−βf1−π)

tan(βf2 − βf1)

)
− rm1cνm1

]

The transformation between polar and Cartesian coordinates implies that xm1 = rm1cνm1 and
ym1 = rm1sνm1 , so

fx(θ) = k0x
+ k1x

sθ + k2x
cθ

where

k0x = xf1f2

k1x
= lm1m2cβf1

(
−s(βm1m2−βf1−π) −

c(βm1m2−βf1−π)

tan(βf2 − βf1)

)
+ ym1

k2x = lm1m2cβf1

(
c(βm1m2−βf1−π) −

s(βm1m2−βf1−π)

tan(βf2 − βf1)

)
− xm1

(c)

Figure 63 (continued): (c) Derivation of the fx(θ) function. Here cα and sα are
abbreviations for cos(α) and sin(α). The functions fx(θ) and fy(θ) describe a family of
class-1 curves; all non-aligned ve-ve edges are embedded in a curve in this family.
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A Configuration-Obstacle Data Structure

The previous section showed how collections of analytic equations may be used to describe the
infinite surfaces and curves that contain configuration-space obstacle features. In this section, we
will show how to construct a topological data structure that represents the boundaries of these
infinite sets.

We will begin by examining the toplogical relationships between features on the configuration-
obstacle surface. Obstacle edges are segments embedded in unbounded curves; these segments
are bounded by a vertex at each end of the segment. Similarly, obstacle facets are embedded in
unbounded c-surfaces; these facets are bounded by a loop of edges that surround the facet, and
sometimes by additional loops of edges that form holes in the facet. In this way, each obstacle edge
and facet is bounded by the lower-dimensional features that surround it.

Similarly, low-dimensional features have higher-dimensional neighbors. Vertices are adjacent to
three or more obstacle edges, and edges are adjacent to two neighboring facets. In certain non-
generic situations, these basic topological relationships may be violated. Vertices may be isolated or
adjacent to only one edge, while edges may have zero or four adjacent facets. When these situations
arise, the configuration-obstacle is a non-manifold solid in the sense that there are points on the
obstacle whose neighborhoods are not homeomorphic to a disc. In the absence of these situations,
the configuration-obstacle is a manifold solid.

The CO algorithm reported in this thesis only constructs configuration obstacles that are man-
ifold solids. Issues involved in extending the algorithm to also construct non-manifold solids will
be discussed at the end of this chapter.

We can exploit the topological relationships outlined above to define a data structure that
represents a configuration-obstacle surface. This data structure is an ensemble of data records
connected in a way that encodes the adjacency relationships between obstacle features. These data
records are of four types:

c-obstacle The top-level data record, representing the entire obstacle surface.

c-facet A record representing a single obstacle facet.

c-edge A record representing a single obstacle edge.

c-vertex A record representing an obstacle vertex.

The toplevel obstacle record contains an array of facets, and pointers to the polygons that
gave rise to the obstacle. The remaining records describe obstacle features; these records contain
three principle kinds of information: contact information, metric information, and topological
information. In each case, the contact information is the set of polygon features that are in contact.
The metric information is a collection of functions and other parameters that describe the metric
properties of the feature, and the topological information is a set of pointers that identify adjacent
obstacle features. Figure 64 shows the definition of these data records. The CO algorithm includes
several additional fields to improve its efficiency; these are omitted for clarity.

The CO algorithm contructs a data record for each feature of the configuration obstacle. When
each record is constructed, the contact-set field is set to describe the feature’s contact condition,

102



  

and the metric fields are set to describe the unbounded set containing the feature. When the
algorithm terminates, the topological fields of each record point to the appropriate records rep-
resenting adjacent obstacle features. This arrangement of pointers encodes the topology of the
configuration-space obstacle, and may be used to identify topological relationships that are not
explicitly represented. For example, given a c-facet F and a c-edge E on the facet, the opposite
c-facet can be identified by examining the facetleft and facetright fields of E, and returning the entry
that is not F . Further, all of the c-facets neighboring F may be found by applying this process to all
of the c-edges in the edges field of F . Similar procedures may be used to answer other topological
queries.

The resulting aggregate data structure is very similar to the winged-edge data structure com-
monly used to represent plane-faced polyhedra [Baumgart 1974]. Both representations utilize a
combination of metric and topological attributes to describe object features, and both represen-
tations develop a network of pointers that encode the adjacency relationships between features.
However, our configuration-obstacle data structure is different in some key respects: First, the
metric information describing configuration-obstacle features is more complex than the linear ge-
ometric descriptions used in the winged-edge representation. Second, the orientation of edges is
arbitrary in the winged-edge representation, but is meaningful for configuration obstacles since the
parameters p and θ impose an implicit orientation on obstacle edges. Finally, we do not sort edges
into ordered cycles around faces or vertices; instead, the c-facet and c-vertex records contain an
unordered set of adjacent edges.

This section has developed a data structure that represents the metric and topological properties
of configuration-space obstacles. The next section will present an algorithm that constructs this
data structure, given two input polygons.
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c-obstacle

Polygons
moving-polygon
fixed-polygon

The input polygons.

Facet Array
facet-array A three-dimensional array, indexed by a moving-polygon in-

dex i, a fixed-polygon index j, and a flag ve-or-ev ∈ {0, 1}.
Each (i, j, ve-or-ev) array slot corresponds to a unique ve or
ev contact condition. Each slot contains a set of facets that
correspond to the slot’s contact condition.

c-facet

Contact Information
contact-set The set of feature-pairs in contact for this facet.

Metric Information
fx(p, θ)
fy(p, θ)

These functions return the (x, y) coordinates of points on the
facet c-surface, given the parameters p and θ.

fp(x, y, θ) This function returns the p-value of a point on the facet c-
surface, given an (x, y, θ) configuration-space point. If the
input point is not on the c-surface, then the function returns
the p-value of the closest point on the c-surface in the speci-
fied θ-plane.

Topological Information
edges The set of obstacle edges bounding this facet. When the

facet is only partially constructed, this is the set of candidate
obstacle edges that have been posted to the facet.

Figure 64: Data records for representing configuration-space obstacles. Some algo-
rithm control and optimization fields have been omitted for clarity.

104



       

c-edge

Contact Information
contact-set The set of feature-pairs in contact for this edge.

Metric Information
class One of 0, 1, 2, or 3.

θclass-0 If this is a class-0 edge, then this is the θ-value of the plane
containing the edge.

coefficientsx
coefficientsy

If this is a non-class-0 edge, then these are the coefficients of
the edge function.

fx(p-or-θ)
fy(p-or-θ)

These functions return the (x, y) coordinates of points on the
unbounded curve containing the edge. These are functions of
p if this is a class-0 edge; otherwise, they are functions of θ.

f ′
x(θ)
f ′
y(θ)

If this is a non-class-0 edge, then these functions return the
dx
dθ and dy

dθ derivatives of the unbounded curve containing the
edge, given an input θ-value.

fp(x, y) If this is a class-0 edge, then this function returns the p-value
of a point on the line containing the edge, given an (x, y)
point. If the input point is not on the line, then the function
returns the p-value of the closest point on the line.

Topological Information
vertexmin

vertexmax

The edge endpoints. vertexmin is at the end of the edge
that has the minimum edge parameter value (p or θ), while
vertexmax is at the end with the maximum parameter value.
Zero-length edges are never constructed.

facetleft
facetright

The facets adjacent to this edge. The left and right direc-
tions are defined as follows: If you stand on the surface
of the configuration-obstacle at vertexmin and look toward
vertexmax, then facetleft is on your left.

c-vertex

Contact Information
contact-set The set of feature-pairs in contact for this vertex.

Metric Information
x
y
θ

The (x, y, θ) coordinates of this vertex.

Topological Information
edges The set of edges adjacent to this vertex.

Figure 64 (continued): Data records for representing configuration-space obstacles.
Some algorithm control and optimization fields have been omitted for clarity.
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Constructing Configuration-Space Obstacles

This section will present the CO algorithm, which accepts a moving-polygon and fixed-polygon
as input, and produces a data structure representing the configuration obstacle surface. The CO
algorithm is structured so that it can construct the configuration obstacle incrementally; in other
words, the algorithm can completely construct an arbitrary obstacle facet, and then construct
additional facets as desired until the entire obstacle is completed. This feature speeds planning
and analysis of manipulation tasks by allowing calling programs to construct only the required
portions of the obstacle surface.

The CO algorithm is fairly complicated; this is largely due to subtleties in the incremental
construction procedures and the presence of optimization strategies that improve the algorithm’s
average running time. To clarify this explanation, we will first examine a simplified version of the
algorithm that does not contain these nuances. The simplified algorithm demonstrates the basic
procedures used to identify and construct features of the configuration-space obstacle, and gives
an intuitive understanding of the overall computational process. After presenting this simplified
algorithm, we will discuss the extensions incorporated in the full CO algorithm.

A Conceptually Simple Algorithm

Our simplified algorithm for constructing configuration-space obstacles is summarized in Fig-
ure 65. This algorithm constructs every feature that can possibly arise on the configuration obstacle
surface, and then deletes features that are buried within the obstacle interior. Except where ex-
plictly specified otherwise, the necessary contact, metric, and topological fields are set when each
feature is created. When the algorithm terminates, the configuration-obstacle data structure is fully
constructed, and contains only features that are actually on the obstacle surface. Each algorithm
step will be elaborated below.

Initialize the obstacle. The algorithm begins by creating a c-obstacle data record and initializing
the input-polygon fields. The algorithm then uses the number of moving-polygon vertices m and
the number of fixed-polygon vertices n to create an m × n × 2 array with a slot for every ve and
ev contact condition. This array is placed in the c-obstacle’s facet-array field.

Initialize the facet-array. The algorithm visits each slot of the facet-array, and uses a local
geometric test to determine whether contact configurations are possible for the corresponding facet.
If the facet’s contact vertex is strictly convex, then contact configurations are locally possible, and
the facet-array slot is initialized to a set containing a single c-facet data record. The contact-set of
the c-facet is set appropriately, and the metric description of the facet’s c-surface is constructed.
This is accomplished by using the geometry of the contact features to construct the fx(p, θ), fy(p, θ),
and fp(x, y, θ) functions that describe the c-surface, using the equations listed in Appendix 3. If
the contact is locally impossible, then the facet-array slot is initialized to the null set.

Construct local edges. The algorithm constructs all local edges by forming every possible vv
and ee contact between the input polygons, and constructing the local edges consistent with the
contact. This process is illustrated in Figure 66. Given a vv or ee contact, the local geometry of
the contact features is used to identify the unbounded curve containing the corresponding obstacle
edges, as well as the edge endpoints and facet-neighbor relationships. This analysis constructs
a collection of c-edge and c-vertex data records that describe the local edges consistent with the
contact; these edges are added to their neighboring c-facets.
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simplified-CO (Pm,Pf )

Initialize the obstacle.
Construct the c-obstacle data record, setting the moving-polygon and fixed-polygon fields to
Pm and Pf . Set the facet-array field to an empty array of the appropriate size.

Construct all possible features.

Initialize the facet-array.
Fill each slot of the facet-array with a c-facet data record. Construct the contact and
metric information for each facet.

Construct local edges.
Construct the local edges for each facet, and add each edge to its neighboring facets.

Construct conflict edges.
Consider every pair of facets, and call the procedure simplified-construct-conflict-edges,
which constructs the edges corresponding to the facet intersection.

Construct mc0-edges.
Call the simplified-construct-mc0-edges procedure, which identifies sets of superimposed
class-0 edges, and merges them to form multiple-class-0 edges.

Connect edge intersection points.
Assure that all intersecting edges are topologically connected; split edges and create or
merge vertices as necessary to produce this connectivity.

Remove buried features.
For each facet F :

Remove extraneous edges of F .
Use the local topology of each facet vertex to identify and remove extraneous edges bor-
dering F . When this step is complete, the remaining edges form a collection of closed
loops bounding F .

Remove completely buried components of F .
After extraneous edges are removed from F in the previous step, it is still possible that F
contains unreachable configurations. This occurs when an entire connected component of
F is unreachable. Remove these unreachable components using the following steps:

Assemble edges into loops.
Assemble F ’s remaining edges into closed loops. Some of these loops will be outermost
bounding loops, and others will be nested loops forming holes and islands.
Split F into connected components.
If the loops constructed in the previous step define two or more disconnected com-
ponents, split F into separate c-facets, each defining a single component that is con-
nected without boundary. Update the facet-array to include the new c-facets.
Discard buried components.
For each connected component of F , choose a point strictly inside the component and
construct the corresponding configuration of the input polygons. If the chosen config-
uration is unreachable, then all configurations within the component are unreachable,
so remove the corresponding c-facet from the facet-array.

endfor

Return the obstacle.

Figure 65: The simplified-CO algorithm.
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Figure 66: Constructing local edges. A vv contact condition may give rise to several
obstacle edges; the endpoints and facet-neighbors of these edges are constructed di-
rectly. This figure shows the case of a vv contact with a moving-vertex that is sharper
than the fixed-vertex. Four critical configurations are constructed that produce the
edge endpoints; these critical configurations correspond to changes in the facets ad-
jacent to the vv edge. Similar diagrams apply when the fixed-vertex is sharper than
the moving-vertex, or when either vertex is concave. The construction of ee edges is
analogous.
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Once this step is complete, the algorithm has constructed all of the facets and local edges that
appear on the configuration obstacle. If both input polygons are strictly convex, then the features
constructed so far correspond exactly to the features that appear on the obstacle surface. In this
case the algorithm may return after connecting the vv and ee edges that share common endpoints.
However, if either input polygon is not strictly convex, then additional non-local analysis must be
performed; the remainder of this algorithm performs this non-local analysis.

Construct conflict edges. The algorithm constructs the possible conflict edges by considering
all pairs of facets, and producing a set of c-edges representing the intersection of each pair. Given
a pair of c-facets (F1, F2), the c-edges representing the intersection of F1 and F2 are constructed
using the simplified-construct-conflict-edges procedure, shown in Figure 67. When the procedure
exits, all possible conflict edges will be constructed and will appear in the edges field of F1 and
F2. These edges represent the configurations that lie on the intersection of the facet c-surfaces and
within the local constraints of both facets.

Construct mc0-edges. When all of the conflict edges have been constructed, some class-0 edges
may be superimposed. These coincidences in the configuration-space correspond to non-generic
contact conditions. The algorithm identifies these geometric coincidences by applying the simplified-
construct-mc0-edges procedure, shown in Figure 68. When this procedure exits, all superimposed
class-0 edges in the configuration obstacle have been resolved into multiple-class-0 edges, with the
facetleft and facetright fields set appropriately.
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(a)

(b) (c)

(d)

F1

F2

I1

I2
I1 ∩ I2

Figure 67: Constructing the conflict edges corresponding to the intersection of two
facets F1 and F2. (a) Constructing the unbounded curves comprising the intersection of
the facet c-surfaces. (b) Identifying the portion of the unbounded curve that intersects
F1. The local constraints of the F1 contact are used to directly construct a set of
minimum and maximum limit points on the unbounded curve; the innermost of these
limits delineate the portion of the curve that intersects F1. (c) Identifying the portion
of the curve that intersects F2. (d) Intersecting the previous results to identify the
portion of the unbounded curve that simultaneously intersects both F1 and F2.
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simplified-construct-conflict-edges (F1, F2)

Intersect the c-surfaces.
Construct the set of unbounded curves C corresponding to the intersection of the F1 and F2

c-surfaces, using the kinematic equations listed in Appendix 3. If C = ∅, then return.

Analyze the resulting curves.
For each unbounded curve C ∈ C:

Intersect the curve with F1.
Use the local geometry of the F1 contact features to identify a set of intervals I1 that delimit
the curve’s intersection with F1. I1 is a discrete collection of intervals I1i

= [pmin1i
, pmax1i

] or
I1i

= [θmin1i
, θmax1i

], depending on whether the curve is class-0 or non-class-0. For every p or
θ chosen from an I1i interval, the corresponding point on the curve lies on or within the local
constraints of F1. If I1 = ∅, then return.

Intersect the curve with F2.
Similarly, use the local geometry of the F2 contact features to identify a set of intervals I2 that
delimit the curve’s intersection with F2. If I2 = ∅, then return.

Intersect the previous two results.
Intersect the intervals in I1 and I2 to construct I, the set of intervals delimiting curve segments
that simultaneously satisfy the local constraints of both F1 and F2. If I = ∅, then return.

Construct c-edges.
For every interval I ∈ I:

Create a c-edge data record E.
Set the contact set.
Set E’s contact-set to the union of the F1 and F2 contact-sets.

Set the metric information.
Set E’s metric information fields to the functions describing the unbounded curve C.

Set the endpoints.
Use the minimum value in I and the curve functions to compute the point (xmin, ymin, θmin)
on C; construct a c-vertex at this point, and set E’s vertexmin field to this c-vertex.
Similarly, use the maximum value of I to construct a c-vertex at (xmax, ymax, θmax), and
set E’s vertexmax field. Add E to the edges field of both c-vertex records.

Set the facet neighbors.
Set E’s facetleft and facetright fields to F1 and F2, using hand-coded decision procedures
that consider the contact geometry to identify the left/right ordering. Add E to the edges
field of F1 and F2.

endfor

endfor

Figure 67 (continued): The simplified-construct-conflict-edges procedure.
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(a)

(b)

(c)

Figure 68: Constructing multiple-class-0 edges. (a) The intersection of three facets
which form a multiple-class-0 edge. (b) The three class-0 conflict edges that result from
intersecting all 2-combinations of the three facets. The contact-set of each conflict edge
is indicated by the highlighted polygon vertices on the label associated with the edge.
(c) The result of merging the three conflict edges. A multiple-class-0 edge is formed
where the collinear conflict edges overlap; the contact-set of this mc0-edge is the union
of the contact-sets of the contributing edges.
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simplified-construct-mc0-edges

Form classes of collinear edges.
Assemble all of the class-0 edges that have been constructed, and partition them into classes
{E1, E2, . . . , En} such that all edges within a given class Ei lie on the same line in configuration
space. Superimposed edges can only occur between edges within a given class.

Construct mc0-edges within each class.
For each class Ei:

Topologically merge superimposed edges.
While there is a pair of edges (E1, E2) in Ei that share a finite overlap:

Topologically merge E1 and E2, producing a merged edge Em corresponding to the overlap
interval. Split or delete E1 and E2 as necessary to properly represent the non-overlapping
portions of each edge. If the merge produces two disconnected E1 edges, add the new edge
E′

1 to Ei and the facets neighboring E1; if the merge eliminates E1, then remove E1 from
Ei and the facets neighboring E1. Apply similar consistency operations to E2.

Set the contact-set of Em to the union of the contact-sets for E1 and E2.

Set the facetleft field of Em to the union of the facetleft and facetright fields of E1 and E2.

Add Em to Ei.
endwhile

Convert merged edges into valid mc0-edges.
Now Ei contains only non-superimposed edges. Some of these edges are the result of merging
operations; they are recognizable by their multiple contacts and facet-neighbors.
For every merged edge Em ∈ Ei:

Remove Em from its contributing facets.
The facets that appear in Em’s facetleft field correspond to the set of facets F that non-
generically intersect to form Em. Remove Em from the edges field of every facet in F ;
this operation and the next step will assure that Em only appears in the edges field of its
neighboring surface facets.

Analyze neighboring facets.
Using the geometry of the non-generic contact condition, identify the facets in F that lie
on the obstacle surface, rather than buried in the interior. There are three possibilities:

Zero surface facets. Em is a non-manifold spur edge, which we do not represent.
Discard Em.

Two surface facets. Em is a manifold edge, and the left and right adjacent facets
Fleft and Fright may be identified. Set Em’s facetleft field to Fleft, and set Em’s
facetright field to Fright. Add Em to the edges field of Fleft and Fright.

Four surface facets. Em is a non-manifold 4-neighbor edge, which we do not
represent. Discard Em.

endfor

endfor

Figure 68 (continued): The simplified-construct-mc0-edges procedure.
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(a) (b)

Figure 69: A facet before (a) and after (b) its vertex-connectivity is established.

Connect edge intersection points. Since the previous step resolved all situations where edges
overlap for a finite interval, the current configuration obstacle data structure contains edges that
can only intersect at a finite number of points. In this step the algorithm assures that for every
edge intersection point, there is a c-vertex that topologically connects all of the edges intersecting
at the point.

This is accomplished as follows: For every pair of obstacle edges, identify the points where the
edges intersect. Then for each intersection point, topologically connect the edges, applying the
necessary edge-splitting, vertex-creation, or vertex-merging operations (see Figure 69). Care must
be taken to insure that all pairs of edges are intersected, including the new split-edges that are
created as a side-effect of the intersection process.

To identify the points where a pair of edges intersect, the algorithm intersects the unbounded
curves that contain the edges, and then checks to see if the resulting intersection points lie within
the edge endpoints. To intersect the unbounded curves containing the edges, the algorithm applies
the following case-based procedure:

• Both edges are class-0: If both edges have the same θ-value, then return the intersection point
of the two lines.

• One edge is class-0, and one is non-class-0: Use the θ-value of the class-0 edge to compute a
point on the non-class-0 edge. If this point lies on the line containing the class-0 edge, then
return the point.

• Both edges are non-class-0: Use the coefficientsx field of each edge to form the equation
fx1(θ) = fx2(θ), which can be written as:

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ + k9c3
θ

where each ki is a constant that depends on the coefficients of fx1 and fx2 . Find the roots
of this equation as described in Appendix 2; the resulting θ-values correspond to points
where the edge fx(θ) functions intersect when projected onto the (x, θ) plane. Some of these
intersections may be artifacts of the projection; remove these by discarding the θ-values
which do not produce equivalent results when substituted into the fy(θ) functions of each
edge. The role of the fx and fy functions may be reversed in this procedure, based on whether
the coefficientsx or coefficientsy fields exhibit the maximum spread between the two curves.
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Remove buried features. At this point, all of the topological features that appear on the surface
of the configuration obstacle have been constructed and connected. The algorithm has constructed
every obstacle facet, edge, and vertex that can arise, and the topological connectivity between these
features has been identified.

However, features have also been constructed that are buried inside the obstacle; the remainder
of this algorithm is concerned with removing these buried features. The algorithm proceeds by
visiting each facet in turn, and removing all buried features associated with the facet. When
this has been completed for every facet, then the only features that remain are the features that
comprise the obstacle surface.

Remove extraneous edges of F . To remove extraneous edges from a facet, the algorithm exploits
the property that all facets on the obstacle surface are bounded by a collection of closed edge loops.
A consequence of this is that for every vertex V on a loop bounding F , the following is true: If
E is the set of edges adjacent to V , there is a subset EF ⊆ E , of edges that neighbor F . Further,
EF can be partitioned into a set of edge-pairs {(E1cw , E1ccw), (E2cw , E2ccw), . . . , (Encw , Enccw)}, such
that for every pair (Eicw , Eiccw), there are no edges in EF that lie between Eicw and Eiccw , and Eicw

and Eiccw form clockwise and counter-clockwise boundaries of F with respect to V . This property
is illustrated in Figure 70.

(a) (b)

(c) (d)

F

V

E1cw

E1ccw

E2cw

E2ccw

Figure 70: The topology of an obstacle vertex. (a) An example facet F , containing a
vertex V . (b) The set of edges E adjacent to V . (c) The set of edges EF adjacent to V

that border F . (d) The edge-pairs {(E1cw , E1ccw), (E2cw , E2ccw)}.
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The algorithm uses this property to identify extraneous edges in the following way: For each
vertex on F , the algorithm forms the set EF , and then for each edge E ∈ EF , the algorithm
constructs a unit vector ÊV in the facet’s (p, θ) space that points away from the vertex tangent to
the edge. For class-0 edges, ÊV is either [1 0]T or [−1 0]T . For non-class-0 edges, ÊV is computed
using a combination of the edge f ′

x(θ) and f ′
y(θ) derivative functions, and the facet parameter

function fp(x, y, θ).

Once all the ÊV vectors have been constructed, they are sorted by azimuth and associated with
clockwise and counter-clockwise constraints according to their facet neighbor relationship with
F . The algorithm then finds the innermost clockwise/counterclockwise pairs of edges; these pairs
correspond to edges that are not extraneous at V . After constructing all innermost pairs, the
remaining unpaired edges in EF are extraneous. Figure 71 illustrates this process. In situations
where two ÊV vectors have equal azimuths, a non-local analysis is necessary to sort the associated
edges about V (Figure 72).

After visiting a facet vertex and identifying the extraneous edges, the algorithm then examines
each extraneous edge E, and removes the sequence of edges E E′E′′E′′′. . . that form a singly-
connected string of edges bordering F . All of these edges must be removed because the vertices
connecting them do not reveal the fact that they are extraneous. Figure 73 illustrates this process.

After applying this procedure to every vertex in F , the edges that remain form a collection of
closed loops bounding the facet. Note that in some cases this collection may be null, implying that
F contains no reachable configurations.

(a) (b) (c)

(d)

V

(e)

cw
ccw

ccw

cw
ccw

(f)

Figure 71: Identifying extraneous edges at a vertex. (a) An example facet F , contain-
ing a vertex V . The hash marks associated with an obstacle edge indicate F ’s left/right
adjacency relationship with the edge; edges with no hash marks are not adjacent to F .
(b) The set of edges EF adjacent to V that neighbor F . (c) After tangent vectors and
directional constraints are computed. (d) The edge-pairs found by finding the inner-
most directional constraints. (e) Edges that are not part of an edge-pair are extraneous;
these are shown highlighted. (f) An example where all edges incident to a vertex are
extraneous.
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E1

E2

E3

ÊV 1 , ÊV 2

ÊV 3

Figure 72: A singular situation arising from two collinear tangent vectors. Sorting
ÊV 1 and ÊV 2 requires additional analysis. The CO program includes heuristics for
handling these situations, but numerically robust general solutions remain an open
research problem.

(a)

1 2

3

4

5

6

789

(b)

1

(c)

2

(d)

*

*

*

Figure 73: Removing extraneous edges from a facet. (a) A facet F containing local
edges and conflict edges, with all edges connected at their intersection points. The hash
marks indicate F ’s left/right neighbor relationship with the associated edge. Some of
F ’s vertices are also connected to edges that do not border F ; these edges have no
hash marks. The order in which the vertices are analyzed may be chosen arbitrarily;
the numerals indicate the order used in this example. (b) Analyzing vertex 1. Two
adjacent edges border F , and may be arranged to form an edge-pair. Therefore no
edges are locally extraneous at vertex 1, and the algorithm proceeds to vertex 2. (c)
Analyzing vertex 2. Three adjacent edges border F ; the highlighted edge is extraneous.
(d) After removing the extraneous edge and the following sequence of edges that form a
singly-connected string of edges bordering F . Notice that the edges that do not border
F are ignored. Subsequent processing will ignore vertex 3 because it was deleted from
F , and vertices 4-9 will reveal no further extraneous edges. Thus (d) shows the final
result of removing extraneous edges from F . The edges marked (*) are also extraneous,
and will be removed when their neighboring facets are analyzed.
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Remove completely buried components of F . The previous procedures have assured that all
of the edges that can possibly arise on the c-surface of F have been created, and that any edges
that are not part of a closed loop of edges on F have been removed. Thus F now contains a set of
edges that form a collection of closed loops bounding F . These loops may delineate disconnected
patches on the surface of F , but since F contains a finite number of edges, the number of separate
connected patches is also finite.

In some cases, one or more of F ’s connected patches is unreachable. Figure 74 shows an example
where this occurs. In this example, non-local constraints cause the ve facet to be completely
unreachable. However, no conflict edges were created for the facet, because no multiple-contact
conditions are possible that are consistent with the facet’s local constraints. As a result, the original
local constraints remain intact after the extraneous-edge analysis, forming a closed loop of edges
bounding the facet.

From this example it is evident that the existence of a closed loop of edges bounding a facet is a
necessary but not sufficient condition for concluding that the enclosed facet patch comprises part
of the configuration obstacle surface. Therefore, after the algorithm constructs bounded patches
of a facet, it must apply additional tests to determine if the configurations contained within each
patch are reachable.

Figure 74: An example of a completely unreachable facet that has no edges removed
during its extraneous-edge analysis. The two curves illustrate why no conflict edges
were constructed for the facet.
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(a) (b) (c)

Figure 75: The definition of a set that is connected without boundary. A continuous
set is connected if there exists a continuous path between every pair of points in the
set, such that the entire path remains in the set. A set is connected without boundary
if the set remains connected when its boundary is not included. (a) A connected set.
(b) A set that is not connected. (c) A set that is connected, but not connected without
boundary. The set in (a) is connected without boundary.

Fortunately, this may be determined by only checking the reachability of a single point within
each connected facet patch. This is because either all configurations within a connected facet patch
are reachable, or all are unreachable. This assertion requires that the connected facet patch satisfy
the condition of being connected without boundary; this condition is explained in Figure 75.

We can prove this assertion by assuming that the opposite is true, and demonstrating a con-
tradiction. Suppose that the algorithm up to this point has produced a facet patch P that is
connected without boundary, and further suppose that P contains a reachable configuration xA

and an unreachable configuration xB. Because P is connected, there must be a curve connecting xA

and xB that lies entirely in P . Further, because P is connected without boundary, there must be a
curve connecting xA and xB that lies in P but never touches P ’s boundary. This curve corresponds
to a configuration path in the facet patch that moves the polygons from the reachable configura-
tion xA to the unreachable configuration xB; since this path never touches an edge bounding P ,
configurations along this path must all be single-contact configurations. But since the path takes a
reachable configuration to an unreachable configuration, there must be a transition point where the
configuration changes from a valid single-contact configuration to an illegal configuration where the
polygons inter-penetrate. Since the entire path is on the facet c-surface and within the local con-
tact constraints, the facet contact features cannot produce this transition. Therefore the transition
must occur because some other pair of polygon features cross, producing the illegal configuration.
But such a crossing would correspond to a multiple-contact condition, which would give rise to a
conflict edge. This implies that all paths in P that connect xA and xB must touch at least one
obstacle edge, which contradicts our assumption that P is connected without boundary. Thus we
conclude that it is not possible for the algorithm to produce a connected facet patch that contains
both reachable and unreachable configurations.

This allows the algorithm to identify an unreachable facet patch by simply choosing any point on
the interior of the patch, and determining whether the corresponding contact configuration is legal.
The Boolean outcome of this test will be valid for all points within the patch. The algorithm uses
this procedure to identify and discard unreachable connected patches of F ; it begins by assembling
the edges of F into connected loops, uses these loops to split F into disconnected patches, and then
discards each patch that is unreachable. These steps are described below.
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(a) (b)

Figure 76: An example looping operation. (a) A complex facet, with all extraneous
edges removed. (b) The loops formed for the facet. For clarity, vertices that appear in
more than one loop are drawn twice, slightly separated.

Assemble edges into loops. The previous procedures applied to F assure that the edges bound-
ing F form a collection of closed loops. However, these loops are not explicitly represented. The
algorithm identifies the loops bounding F by a simple procedure that traces sequences of edges
enclosing connected patches of F ; this procedure has the desirable feature that it separates patches
that are connected, but not connected without boundary.

The loop-finding procedure begins by choosing an arbitrary edge E from the set of facet edges
E . The procedure then finds the edge E′ that would be encountered next if tracing the boundary of
the facet counter-clockwise. Remembering the sequence E E′, the algorithm then finds the edge E′′

that would follow E′ if tracing counter-clockwise, and so on until the original edge E is encountered
again. The sequence of edges E E′E′′. . . E is then assembled into a loop, and these edges are
removed from E . If additional edges remain in E , then the algorithm chooses a new seed edge from
E and repeats this process until all edges in E are exhausted. This procedure places the resulting
loops into a set L, and temporarily stores L in the edges field of F . This procedure is illustrated
in Figure 76.

Split F into connected components. The edge-loops described in L define closed curves that
bound F . These closed curves may be recursively nested, producing facet holes, islands within
holes, holes within islands within holes, and so on. Here the algorithm uses the metric properties
of each loop to identify the nesting relationship between loops. Since the loop-finding procedure
assures that two loops L1 and L2 do not cross, the nesting relationship between L1 and L2 must
correspond to one of three cases:

• L1 contains L2. Because all obstacle edges are either functions of θ or constant-θ lines, L1

must contain a vertex not on L2, and L2 must contain a vertex not on L1.

• L2 contains L1. As with the previous case, L1 and L2 must each contain a vertex that is not
on the other loop.

• L1 and L2 circumscribe disjoint point-sets. In this case all of the vertices in L1 may be
contained in L2, and all of the vertices in L2 may be contained in L1.
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L1 contains L2 L2 contains L1

L1 and L2 are disjoint

L1

L1

L1
L1

L1 L1

L2

L2

L2
L2

L2 L2

Figure 77: Possible relationships between loops.

These cases are illustrated in Figure 77. The algorithm can distinguish between these cases using
the following decision procedure:

Find a vertex V1 ∈ L1 such that V1 does not lie on any edge in L2. If no such V1 exists,
then L1 and L2 are disjoint.

Find a vertex V2 ∈ L2 such that V2 does not lie on any edge in L1. If no such V2 exists,
then L1 and L2 are disjoint.

If L1 contains V2, then L1 contains L2.

Else if L2 contains V1, then L2 contains L1.

Else L1 and L2 are disjoint.

Figure 78 shows how the procedure determines whether a vertex V is contained within a loop L.

Using the above decision procedure, the algorithm identifies the nesting relationship between ev-
ery pair of loops in L, and assembles a collection of trees representing these relationships. Figure 79
shows an example set of loops and the corresponding nest trees.

The algorithm then uses the nest trees to identify the connected patches of F . These patches
are immediately evident from the nest trees: The root of each tree corresponds to an outermost
bounding loop, and its immediate children correspond to disjoint holes inside this loop. These
loops delineate a connected facet patch; further children similarly define other connected patches.
The algorithm exploits this outer/inner alternation to identify all of the connected facet patches
for each tree; each of these patches will be comprised of an outermost loop and a set of contained
holes. Figure 79(c) shows the patches constructed for the example loops.

After identifying all of the connected patches, the algorithm creates a c-facet data record for
each patch. To construct a c-facet F ′ for a given patch P , the algorithm copies F ’s contact-set and
metric description fields into F ′, and sets the edges field of F ′ to a set containing the union of the
edges that appear in the loops defining P . Performing this operation for every patch produces a
set of c-facet data records F that partition F into connected components; this set is placed in the
facet-array slot for F .
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(a)

(b)

(c)

(d)

(e)

E1

E2

E3

E4

p1p2 p3 p4

pmin1 pmax1 pmin2 pmax2

(xV , yV , θV )
θV

(x1, y1, θV )(x2, y2, θV ) (x3, y3, θV ) (x4, y4, θV )

Figure 78: Deciding whether a vertex V is contained in a loop L. (a) Given a
point (xV , yV , θV ) on the facet c-surface, the algorithm identifies the set of edges
{E1, E2, E3, . . .} that contain θV . (b) The algorithm then computes the points
{(x1, y1, θV ), (x2, y2, θV ), . . .} where these edges intersect θV . (c) Then, using F ’s inverse
parameter function fp(x, y, θ), the algorithm computes the p-values of these points. (d)
These values are then sorted and collected into intervals; if the p-value of the input
point is contained in one of these intervals, then V is contained in L. (e) Some example
non-generic situations; care must be taken to handle these cases properly.
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(a)

L1 L2

L3

L4

L5 L6

L7 L8

L9

(b)

C1: L1

C2: L2, L3

C3: L4

C4: L5

C5: L6, L7, L8

C6: L9

(c)

Figure 79: (a) A complex collection of loops. (b) The collection of trees representing
the nesting relationships of the loops. Note that loop L9 is not contained in loop L6.
(c) The resulting patches that are connected without boundary.
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(a) (b)

p1 p2 p3 p4

θmax

θmiddle

θmin

*
*

Figure 80: Generating a point in a connected facet patch. (a) A generic situation; the
returned point is marked *. (b) A non-generic situation.

Discard buried components. The facet-array slot for F now contains a set F of c-facet data
records that represent patches of F , where each patch delineates a subset of the facet c-surface
that is connected without boundary. From the previous discussion, it follows that all configurations
within a given patch are either entirely reachable, or entirely unreachable. The algorithm now filters
F to include only patches that contain reachable configurations. This is accomplished by choosing
a point strictly inside each patch F ′ ∈ F , and determining whether the corresponding configuration
is reachable.

Figure 80 shows how the algorithm selects a point from a patch. Given a facet patch F ′ bounded
by a set of edges E , the algorithm checks the endpoints of the edges in E to find the minimum and
maximum θ-values, and then computes the midpoint θmiddle of the resulting [θmin, θmax] interval.
Using the same subroutines illustrated in Figure 78, the algorithm identifies the edges in E that
contain θmiddle, constructs points on these edges at θmiddle, computes the p-values of these points
using the inverse parameter function for F ′, and sorts these p-values to produce a set of p-intervals
that define the points on F ′. The algorithm then chooses the largest of these p-intervals and
computes its mean pmiddle. This computation identifies a point (pmiddle, θmiddle) on F ′; the forward
parameter functions fx(p, θ) and fy(p, θ) are then applied to compute the configuration-space point
(xmiddle, ymiddle, θmiddle).

In certain situations the point (xmiddle, ymiddle, θmiddle) lies on an edge of F ′ (Figure 80(b)). This
is not acceptable, since we require a point strictly on the interior of F ′. In these situations the
algorithm computes a new θ-value halfway between θmiddle and θmax, and then repeats the above
process using the new θ-value. This subdivision is repeated until a suitable point is found.

Once a point strictly on the interior of F ′ has been identified, the algorithm determines whether
the point corresponds to a reachable configuration of the input polygons. This may be accomplished
by moving the moving-polygon into the chosen configuration and confirming that the only polygon
intersection point is the contact point expected for F ′ (Figure 81). If the configuration is not
reachable, F ′ is removed from the set F in the facet-array. After this process has been applied to
all patches F ′ ∈ calF , F will contain only reachable facet patches.
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(a) (b) (c)

Figure 81: Determining whether a configuration is reachable. (a) A reachable config-
uration; the only intersection between the two polygons is at the contact point, shown
highlighted. (b) An unreachable configuration; the shaded regions show unexpected
intersection points. (c) One among many special cases that must be considered.

Return the obstacle. After completing the above analysis for every ve and ev facet, the c-obstacle
facet-array contains a collection of sets {F1,F2, . . .}, where each Fi is a set of c-facet data records
{Fa, Fb, Fc, . . .} that collectively describe all reachable configurations of the corresponding ve or ev
contact condition. Since all possible ve or ev contact conditions are represented by a slot in the
facet-array, the ensemble of these c-facets completely spans the obstacle surface. Further, since
the construction of each c-facet included construction of its bounding edges and vertices, these
lower-dimensional sets are also present in the data structure. Finally, the topological connectivity
between features is represented, since this information was constructed and maintained during the
algorithm’s execution. Thus, the configuration-obstacle data structure is completely assembled at
this point, and the algorithm returns the c-obstacle data record.

Correctness of the Simplified-CO Algorithm

We can prove the correctness of the simplified-CO algorithm by induction. First we will make
a preliminary observation regarding the steps that remove buried features from a facet F :

Lemma: If F contains all of its reachable edges at the beginning of the extraneous edge
analysis step, then when the remove-buried-components step terminates, the c-facets in
F will (i) still contain all of these reachable edges, and (ii) all unreachable edges in F
will be removed.

Proof: Condition (i) holds because edges in F are only removed because they are ex-
traneous or part of an unreachable connected patch of F . Since all reachable edges are
present in F by assumption, every reachable edge must be part of a closed loop of reach-
able edges on F . All unreachable edges must lie outside these reachable closed loops, so
the extraneous edge analysis will never remove a reachable edge. The remove-buried-
components step will also never remove a reachable edge, because every configuration
within a closed loop of reachable edges is reachable.

Condition (ii) holds because every unreachable edge is either part of a closed loop
of unreachable edges, or it is not. If an unreachable edge is not part of a closed loop
of unreachable edges, it will be removed during the remove-extraneous-edges step. If
it is part of a closed loop of unreachable edges, it will be removed during the remove-
buried-components step.
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Thus correctness is maintained, as long as all reachable features are present in Fi before the
remove-buried-features analysis begins for Fi. Notice that it is not necessary that Fi also contain
all unreachable edges; this is important because some unreachable edges may have been removed
during the analysis of previous facets. We are now in a position to prove the correctness of the
simplified-CO algoroithm:

Theorem: When the simplified-CO algorithm terminates, the returned data structure
contains all of the configuration obstacle features that are reachable, and no features
that are unreachable (non-manifold features are excluded).

Proof: We proceed by induction, and show that all reachable edges are present in every
Fi before the remove-extraneous-edges step is applied to Fi. For the first facet F0, all
reachable edges are present because all possible obstacle edges were constructed during
the previous construction steps. Thus the processing of F0 retains reachable edges and
discards all unreachable edges on F0. For some subsequent facet Fi, if all unreachable
edges are present before processing, then by the previous lemma all reachable edges
will be retained while all unreachable edges on Fi will be discarded. This completes the
induction.

The CO Algorithm

The simplified-CO algorithm constructs a data structure representing the configuration-space
obstacle of two input polygons. The full CO algorithm is a modified version of this algorithm, and
includes several optimization strategies designed to improve the algorithm’s performance. These
optimizations are summarized below:

Incremental surface construction.
Some planning algorithms only require a small portion of the obstacle surface for their anal-
ysis. The CO algorithm constructs the configuration obstacle incrementally, completing each
facet and its surrounding features before proceeding to the next facet. This allows calling
programs to specify the facets needed for analysis and planning, thus avoiding the expense
of constructing irrelevant features. Additional facets may be constructed later as needed.

Global convexity checking.
In some geometric situations it is possible to determine that a given obstacle facet cannot
experience non-local contacts; this occurs when the contact edge and vertex are both globally
convex, which we will define later. The CO algorithm checks this geometric condition and
omits the non-local analysis computation when constructing facets that are globally convex.

Checking for obvious non-intersections.
Constructing a configuration-obstacle surface requires the intersection of many pairs of ob-
stacle facets. While constructing the intersection of two obstacle facets is difficult, simple
tests can often determine that two facets cannot intersect (for example, if the facets have
disjoint θ-intervals). The CO algorithm applies a variety of simple tests to decide that two
facets do not intersect.

Reducing the number of edge-intersections.
When the local edges bordering a facet are constructed, their connectivity is implicit; connect-
ing these edges at this time reduces the number of edge-intersection decisions required later.
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Further, a local edge and conflict edge on a given facet may only intersect at an endpoint of
the conflict edge; these edges may be intersected without the full numerical edge-intersection
analysis. The CO algorithm exploits these and other observations to reduce the number of
edge intersections performed.

Parameter caching.
The features of a configuration-obstacle are described by equations whose terms contain
parameters describing the input polygons. These parameters often correspond to implicit
properties that must be computed from the polygons’ (x, y) vertices, such as the length
or slope of a polygon edge. The CO algorithm caches these parameters to avoid repeated
computation of these implicit properties.

These optimizations modify the control structure of the simplified-CO algorithm to reduce un-
necesary computation. The resulting CO algorithm employs the same basic construction procedures
as the simplified-CO algorithm, but can avoid a tremendous amount of computational effort in some
cases. For example, the CO program requires 250.6 seconds to construct the entire obstacle for
the most complex example in the 1600-case test suite, but is able to construct individual facets of
this obstacle in as little as 0.37 seconds, with a median time of 3.24 seconds. Thus if the calling
program needs only a few facets to perform its physical analysis, then the computation time may
be reduced by up to three orders of magnitude. See Figure 82 for detailed performance data. Be-
cause these optimizations involve several intricate details, we will defer further discussion of these
optimizations until Appendix 5. This Appendix defines the notion of global convexity, discusses
the subtleties of constructing obstacle surfaces incrementally, and presents a pseudo-code summary
of the CO algorithm.
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Figure 82: Execution times observed for the 1600-case test suite. The horizontal axis
of each plot is the input complexity m + n, where m is the number of moving-polygon
vertices and n is the number of fixed-polygon vertices. (a) The minimum, median,
and maximum execution times required to construct the entire obstacle. Five of the
1600 cases are not shown; these cases required double-precision arithmetic to produce
a correct solution, resulting in execution times between 250 and 820 seconds. (b) The
minimum, median, and maximum execution times required to construct a single obstacle
facet, given the input polygons and an (i, j, ve-or-ev) facet specification. These times
include all required initialization steps, and were measured for every facet of each of the
1600 obstacles. The vertical axis of (b) is magnified compared to (a); the single-facet
times are also included in (a) for comparison.
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Critique

Comparison with the Avnaim and Boissonnat Algorithm

Avnaim and Boissonnat previously developed an algorithm that is closely related to the CO
algorithm [Avnaim and Boissonnat 1989]. These algorithms were developed independently, al-
though the Avnaim and Boissonnat algorithm was developed first. This section will compare these
algorithms.

Avnaim and Boissonnat’s algorithm constructs a representation of the configuration-space ob-
stacle for a pair of interacting polygons, and is designed to support a subsequent search procedure
that finds collision-free paths [Avnaim et al. 1988a]. The algorithm operates by considering every
ve and ev contact C, and applying the following steps:

1. Form a (θ, ξ) parameter space for the contact C. In this parameter space, θ varies over [0, 2π),
and ξ is a linear parameter that varies over [0, 1].

2. Consider every pair of edges (em, ef ), where em is an edge of the moving-polygon, and ef
is an edge of the fixed-polygon. For each (em, ef ) pair, use a parallelogram construction to
produce a pair of curves in the (θ, ξ) space that delineate a region of configurations that cause
em and ef to properly intersect; these curves are functions of θ. The configurations in this
region are clearly unreachable because they produce an intersection of the moving-polygon
and fixed-polygon edges. The union of these regions for all pairs of edges gives the set of
configurations in the (θ, ξ) space that cause at least one pair of polygon edges to properly
intersect. This region of illegal configurations is constructed using a plane-sweep algorithm.

3. The complement of the region constructed in the previous step corresponds to the set of
configurations where the boundaries of the moving-polygon and fixed-polygon do not cross.
The algorithm cuts this complement into subregions φi, where each φi is bounded by a single
pair of curves limiting its extent in ξ. See Figure 83.

4. The configurations in each subregion φi may be legal or illegal, depending on whether the
polygons are disjoint, or one polygon contains the other. The algorithm chooses a typical
point in each φi region, and determines whether the associated configuration is reachable.

5. The algorithm then considers each reachable subregion and applies a transformation to the
subregion to produce a subfacet in the (x, y, θ) configuration space. The resulting ensemble
of subfacets corresponds to all reachable configurations for the contact C.

After the algorithm has applied these steps to all of the possible ve and ev contacts, the algorithm
identifies the connectivity of the resulting subfacets by considering each type of curve bounding a
subfacet, and forming a list of all subfacets containing the type of curve. The resulting subfacets
are then sorted, and the subfacet θ-intervals are used to identify adjacency relationships between
subfacets. After this process has been applied to all curve types, a complete representation of the
configuration-space obstacle has been constructed.
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Figure 83: Subregions constructed by the Avnaim and Boissonnat algorithm. The
facet subregions φ1, φ2, φ3, and φ4 would be represented by separate data records.

This algorithm is obviously very similar to the CO algorithm; what are the differences? Most
of the differences are due to the different purposes for which each algorithm was designed; the CO
algorithm was designed to support physical analysis, while the Avnaim and Boissonnat algorithm
was designed to support path-planning. These differences are explored below:

• The first major difference is conceptual; each algorithm employs a different approach to con-
structing the reachable configurations on a facet. The CO algorithm considers intersections of
facet c-surfaces, while the Avnaim and Boissonnat algorithm considers intersections of trans-
formed edges in the original space. This is manifested in the facet-construction procedures:
The CO algorithm identifies unreachable features by constructing edges corresponding to
facet intersections, topologically connecting these edges, and then using the vertex topology
to discard extraneous edges. In contrast, the Avnaim and Boissonnat algorithm constructs
regions that are unreachable because they cause polygon edge intersections; these regions are
identified through a plane-sweep algorithm. A preference among these conceptual approaches
is left to the taste of the individual reader.

• The CO algorithm splits the set of reachable configurations corresponding to a given contact C
into subfacets that are connected without boundary. The Avnaim and Boissonnat algorithm
produces subfacets that are split further, so that each subfacet is bounded by only two
θ-function edges. This causes the Avnaim and Boissonnat algorithm to produce a larger
number of facet data records than the CO algorithm. In view of the intended application
of each algorithm, each of these choices is appropriate: The finer subdivision employed by
the Avnaim and Boissonnat algorithm simplifies the search for a collision-free path, while the
coarser subdivision employed by the CO algorithm is natural for subsequent physical analysis.

• The CO algorithm constructs information that is not constructed by the Avnaim and Bois-
sonnat algorithm. This includes the full topological adjacency relationships of generic and
non-generic obstacle vertices, and non-generic multiple-class-0 edges. The Avnaim and Bois-
sonnat algorithm does not need to compute this information because it is not required for
path planning; however, the CO algorithm must compute this information to assure proper
physical analysis.
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• The CO algorithm is explicitly designed to construct the configuration obstacle surface incre-
mentally; the Avnaim and Boissonnat algorithm does not provide this capability. However,
extending the Avnaim and Boissonnat algorithm to produce its data structure incrementally
would not be very difficult, since each obstacle facet is analyzed individually.

• Both algorithms include unique performance-optimizing features. For example, the CO algo-
rithm exploits local consistency constraints to avoid the construction of many conflict edges
that are inevitably constructed by the Avnaim and Boissonnat algorithm. On the other hand,
the Avnaim and Boissonat algorithm is able to employ a simpler and more efficient test to
determine whether each given subfacet is reachable. The asymptotic complexity of both al-
gorithms is the same, and the performance of the implemented programs is virtually identical
for constructing full obstacle surfaces. For example, Avnaim and Boissonnat report execution
times of 92 and 270 seconds for the two examples presented in [Avnaim et al. 1988b]; my
CO program constructed the configuration obstacle in 116 and 273 seconds for similar input
data.

To summarize these differences, each algorithm is strongly influenced by the application for
which it was designed. The Avnaim and Boissonnat algorithm constructs a finer division of facets
that facilitates subsequent path-planning, and the CO algorithm includes incremental construc-
tion and analysis of non-generic obstacle topology to support subsequent physical analysis. Each
algorithm contains features that could be used to improve the other, and further study of both
algorithms could lead to a hybrid algorithm that is superior to each of these results.

Implementation and Robustness Issues

I implemented the CO algorithm and performed experiments to measure its robustness and
efficiency. The resulting program is comprised of about 9600 lines of Common Lisp code, excluding
substantial debugging and rendering routines.

This program is an approximation of the CO algorithm in several respects. First, the program
performs its numeric calculations using floating-point arithmetic; this finite-precision limitation
leads to inaccuracies in the metric representation of obstacle features. Second, certain procedures
in the program do not exactly match the procedures described here; for example, the procedure
that identifies closed edge-loops uses a transitive-closure method that will fail to separate facet
patches that are connected, but not connected without boundary. These latter differences between
the algorithm and the program logic are relatively minor, and are chiefly due to insights I gained
while writing this document.
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However, the use of finite-precision arithmetic produces a much deeper discrepancy between the
ideal CO algorithm and the implemented program. Because of the finite precision of floating-point
arithmetic, small errors pervade the geometric description of obstacle features; these errors can
lead to failures in simple numeric decision predicates (such as =), with concomitant errors in the
constructed obstacle topology. In an effort to improve the robustness of the CO program, I included
several approaches to reducing the impact of these errors:

• Fuzzy arithmetic. All numeric decision procedures in the CO program use fuzzy arithmetic;
that is, two numbers are equal if they are within a certain tolerance, et cetera. I took great
care to apply these tolerances as consistently as possible; this required a fair amount of
thought when analyzing nonlinear geometric features.

• Utilize raw geometry. In an attempt to minimize the effects of numerical error propogation,
the CO program attempts to base its decisions on the original polygon geometry as much
as possible. For example, endpoints of local and conflict edges are computed using the
local contact features, rather than through intersection of configuration-obstacle features.
Depending on the specific feature geometry, this can be a mixed blessing (see below).

• Explicitly include non-generic cases. The CO program includes specific code to detect and
handle degenerate geometric cases whenever possible. This led to very tedious programming,
but contributed strongly to the program’s overall robustness.

• Compute edge intersections numerically rather than analytically. Analytical methods may be
used to directly indentify the intersection points of obstacle edges in all but the most complex
cases; however, all of the analytical methods that I implemented proved to be numerically
brittle, and the current program uses a robust numerical procedure for all edge intersections
(see Appendix 2).

This combination of approaches proved to be fairly successful. I tested the program using a
suite of 1600 test cases, comprised of all pairs of the 40 polygons displayed in Figure 14; 35 of
these polygons were hand-designed to assure that all of the possible edge types arose, and the
remaining 5 polygons were randomly-generated to reduce the presence of human bias. Appendix 6
gives the coordinates of these polygons. The 1600 test cases were given to the program, and post-
processing tests were applied to check the validity of the program output. These tests assured that
the returned data structure represented a non-null, closed, orientable manifold surface, and that
all nested surface shells were properly oriented. These topological tests were augmented by metric
tests that chose a sampling of points on the obstacle surface, and assured that the corresponding
configurations were reachable. In addition to these post-processing tests, run-time checks were
added to test certain critical invariants; for example, an error would be flagged if an edge was ever
deleted from a facet whose remove-buried-features step had already been completed. After some
debugging effort, all 1600 cases passed these tests without an error.

These results are encouraging, but weaknesses still remain. For example, the polygon shown
in Figure 84 consistently causes the program to fail. These failures occurred because the two
edges marked (*) are very nearly parallel, but not aligned closely enough to be considered parallel.
Consequently these edges give rise to conflict-edges that are nearly horizontal. These non-class-0
edges are numerically sensitive; small errors in θ give rise to large errors in x and y. Consequently,
small errors in the CO algorithm’s interval analysis lead to large errors in the constructed edge
endpoints.
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*

*

Figure 84: A polygon that causes the CO program to fail. The edges marked * have
orientations separated by just 0.048◦; these nearly-parallel edges give rise to numerically
sensitive conflict edges.

This problem is symptomatic of the singular nature of c-surface intersections. An inspection of
Figure 62 reveals that singular transitions between class-0 and non-class-0 edges can occur for a
variety of gemetric conditions. These singular transitions correspond to dramatic changes in the
representation and analysis procedures employed by the CO algorithm. Given that class-0 and
non-class-0 edges are manipluated in very different ways, it is not surprising that problems occur
near the boundary separating these two cases.

One can imagine several approaches to solving this problem. For example, condition numbers
could be applied to select the most robust analysis procedures for a given geometric situation.
Another approach might be to formulate the metric representation of the obstacle features in a dif-
ferent space with more favorable numerical properties; the formulations employed by [Avnaim and
Boissonnat 1989] or [Canny 1986] come to mind as possible alternatives. A third approach might
be to use a more robust scheme for representing and manipulating obstacle surface elements; new
results in modelling planar polyhedra might be applicable to this domain as well [Milenkovic 1988;
Hoffmann 1989; Sugihara and Iri 1989]. Which approach will ultimately yield the most practical
and robust programs for constructing configuration-space obstacles remains an open question.

Extending the Algorithm to Include Non-Manifold Obstacle Features

The CO algorithm will construct a configuration obstacle for an arbitrary pair of input polygons;
however, if the polygons give rise to non-manifold features on the configuration obstacle, these
features will be omitted in the output data structure.4 To extend the CO algorithm to include non-
manifold obstacle features, several modifications are required. We will address the modifications
required for non-manifold edges and vertices separately.

Including non-manifold edges is relatively straightforward. For example, the construct-mc0-
edges procedure already constructs non-manifold multiple-class-0 edges, but discards them; this
procedure could be modified to retain these edges. Retaining these non-manifold edges would
require additional modifications to assure correctness; for example, the procedure that identifies
the extraneous edges at a vertex would have to be modified to handle edges that contain the current
facet in both the facetleft and facetright fields of a given edge. Care must be taken to properly handle

4An exception is the case shown in Figure 51(e), which gives rise to a non-manifold 4-neighbor edge that is not
superimposed with any other class-0 edge. Special code must be included to address this case, or errors may result.
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non-manifold edges that are not multiple-class-0 edges, such as the case illustrated in Figure 51(e).
Several data structure modifications would also be required; for example the c-edge facetleft and
facetright fields must be redefined to properly represent the adjacent facets for spur and 4-neighbor
edges. Further, the c-obstacle data record must be extended to contain a field for isolated spur
edges, since these edges may be completely disconnected from all obstacle facets.

Including non-manifold vertices is more challenging. Some of the modifications are similar to
the modifications required for non-manifold edges — for example, extra fields must be added to
the c-obstacle and c-facet data records to store isolated vertices. However, recognizing these non-
manifold vertices is a more fundamental problem. Since the topological construction procedures
and reachable/unreachable decision procedures are predicated on the existence of a finite range
of configurations, these non-manifold vertices may fall through the cracks of the analysis. One
possible approach would be go ahead and construct zero-length conflict edges, and include them
in the analysis in some consistent way. This may lead to an algorithm that can detect non-generic
coincidences in obstacle vertices, and efficiently identify non-manifold vertices on the obstacle
surface. To recognize isolated obstacle vertices, we could add a step that checks the reachability
of every discarded vertex; this test would be expensive, but it might be difficult to generate the
corresponding form-closure configurations any other way. In all of these extensions, numerical
robustness will be a critical concern.
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Statics
Friction and Planar Forces

One of the simplest and most widely-used models of dry friction was proposed by Coulomb in the
eighteenth century [Coulomb 1781]. This model asserts that the maximum lateral force Ff that
may be generated by a frictional contact is proportional to the normal force FN ; this gives rise to
the familiar friction equation Ff ≤ μFN , where the friction coefficient μ depends on the type and
surface condition of the materials interacting at the contact. Empirical studies have shown that this
model is realistic for dry contacts moving at low speeds, especially if μ is considered an uncertain
parameter. This chapter adopts Coulomb’s model, and treats μ as an interval of possible values
[μmin, μmax], where these bounds are obtained by observation of both kinetic and static frictional
interactions between the materials of interest.

The Ff ≤ μFN specification of Coulomb’s law is useful for algebraic analysis, but geometric
interpretations of the law are more convenient for some problems. One common interpretation is
the friction cone, first described by Moseley [1835]. The friction cone expresses Coulomb’s law
in the (Fx, Fy) force space, as shown in Figure 85. In this figure, a particle is in contact with a
frictional constraint, and the friction cone expresses the set of possible contact reaction forces.

An example applied force Fa is shown, both in the original space and in the (Fx, Fy) space. Since
Fa points opposite and into the friction cone, it is possible for the contact to generate a reaction
force that balances Fa. Thus static equilibrium is possible for the situation shown in Figure 85.

x

y

Fa

Fx

Fy

α = arctan(μ)α

Fa

Figure 85: The friction cone [Moseley 1835]. The dashed lines indicate the negated
friction cone.
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Figure 86: Since the applied force Fa lies outside the negated friction cone, the particle
accelerates toward the right.
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Figure 87: The configuration-space friction cone [Erdmann 1984]. The friction cone
rays Fl and Fr both exert a positive torque about the polygon center of mass, so the
c-space friction cone rays F′

l and F′
r are both above the (Fx, Fy) plane in the force-torque

space. F′
r is elevated higher than F′

l because the ray Fr exerts a larger torque than Fl.

However, if Fa did not point opposite and into the contact friction cone (as in Figure 86), then no
contact reaction force may balance the applied force, and static equilibrium is impossible. These
situations are distinguished by the relationship between Fa and the negated contact friction cone;
static equilibrium is possible only when the applied force lies within this cone.

So far we have considered the case of a particle experiencing a frictional contact; frictional
contacts applied to extended bodies are more complex. Figure 87(a) shows a contact between a
polygonal object and a frictional surface. As in the case of a particle, a friction cone may be used
to illustrate the set of reaction forces that may be exerted at the contact. However, because the
contact point is not collocated with the polygon’s center of mass, these contact reaction forces exert
torques about the center of mass that were not present in the particle case.
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Figure 88: A multiple-contact configuration-space friction cone [Erdmann 1984].

Erdmann [1984] extended the friction cone construction to include these torques. By extending
the (Fx, Fy) space with a third dimension for an applied torque τ , Erdmann was able to express the
contact friction cone as a sector of an inclined plane in this space (Figure 87(b)). The elevation of
each ray bounding this sector corresponds to the torque applied by the corresponding friction-cone
ray. Because the linear and angular units of the force and torque axes are incompatible, Erdmann
scaled the third axis by the polygon’s radius of gyration ρ, producing an (Fx, Fy, τ/ρ) space of
generalized forces. Because of the direct correlation between the contact normal expressed in the
(Fx, Fy, τ/ρ) force space and the outward-pointing normal of c-surfaces expressed in the (x, y, ρθ)
configuration space, Erdmann referred to this construction as the configuration-space friction cone.
We will adopt Erdmann’s term, sometimes using c-space friction cone for brevity.

Erdmann also showed how to formulate configuration-space friction cones for multiple-contact
situations. Since the total contact reaction force is a positive linear combination of the contact
forces arising at individual contact points, the set of possible total reaction forces corresponds to
all positive linear combinations of the individual c-space friction cones. This amounts to forming
the convex hull of the c-space friction cones, as shown in Figure 88. This infinite polyhedral cone
contains all of the contact reaction forces that can possibly be generated by the multiple-contact
situation.

As in the particle example, static equilibrium is only possible when the applied force falls within
the negated c-space friction cone. Otherwise, no contact force may be generated to exactly balance
the applied force, and motion must occur. Thus the configuration-space friction cone gives us
a direct method for determining whether static equilibrium is possible for an arbitrary contact
situation: We simply form the negated c-space friction cone, and check whether the applied force
ray is contained within the resulting infinite polyhedral cone.
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This test may be simplified by projecting the three-dimensional force-torque space onto the sur-
face of a unit sphere, which we will refer to as the force-sphere (Figure 89). This mapping preserves
the validity of our possible-equilibrium test, but simplifies the required geometric analysis. For ex-
ample, the three-dimensional infinite polyhedral cone becomes a convex polygon with great circle
edges, and the required ray-in-polyhedral-cone test becomes a point-in-polygon test (Figure 90).
This mapping first appeared in [Brost and Mason 1990], and was developed in a collaborative effort
between Matt Mason and myself.

In addition to analyzing static equilibrium problems, configuration-space friction cones may
also be used for full dynamic analysis and motion prediction. See [Erdmann 1984] for a complete
review of dynamic analysis using configuration-space friction cones. Brost and Mason [1990] also
address dynamic analysis, and show how Erdmann’s analysis techniques may be simplified using
two-dimensional constructions. Erdmann’s results are also closely related to an independently-
developed algebraic technique for analyzing multiple-contact friction problems [Rajan et al. 1987].
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Figure 89: Projecting a configuration-space friction-cone onto the unit sphere [Brost
and Mason 1990].
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Figure 90: Determining whether static equilibrium is possible for a given contact
configuration. The polygon on the sphere is the projection of the negated configura-
tion-space friction cone; the highlighted point is the projection of the applied force.
Equilibrium is possible if and only if the polygon contains the point.
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Figure 91: A force-closure contact condition, and the corresponding configura-
tion-space friction cone.

Special Situations

Force-Closure

In some contact situations, static equilibrium is possible for any applied force. These situations
correspond to force-closure conditions [Nguyen 1988], and are indicated whenever the configuration-
space friction cone spans the entire force sphere. Figure 91 shows an example force-closure situation.
In this situation, each contact friction cone contains the opposite friction cone’s contact point. This
condition allows aribtrary internal forces to develop in the polygon, thus producing arbitrarily large
contact normal forces. These arbitrarily large contact normal forces can in turn produce arbitrarily
large frictional reaction forces, and thus this contact situation may generate a reaction force to
balance any finite applied force.

This example underscores the nature of our static-equilibrium analysis. When the applied force
is contained in the negated configuration-space friction cone, then static equilibrium is possible;
however, it is not guaranteed. To see why, imagine that two polygons have been placed in the
configuration shown in Figure 91, and a 5-Newton leftward force is applied as shown in Figure 92(a).
In this situation, static equilibrium is possible, but motion is also possible. If a large internal force
is present in the triangle, then the contact reaction forces will be only slightly perturbed by the
applied force, and static equilibrium will occur (Figure 92(b)). On the other hand, if little or no
internal force is present, sufficient friction will not be available to balance the applied force, and the
triangle will break contact (Figure 92(c)). These two outcomes cannot be distinguished without
a priori knowledge of the triangle’s internal stress, which is not represented in our rigid-body model
of objects.

In order to assert that static equilibrium must occur, it is necessary to show that motion is not
possible. This generally requires a full dynamic analysis, including an exhaustive test of all possible
contact modes at each contact point. See [Erdmann 1984] or [Brost and Mason 1990] for details.

140



   

(a) (b) (c)

5N5N

5N

Figure 92: An ambiguity resulting from the rigid-body model of objects. (a) A force of
5 Newtons is applied to the triangle as shown. (b) The upper diagram shows a situation
before the 5-Newton force is applied, where large contact forces exert internal stress on
the triangle. The lower diagram shows the effect of applying the external force; the
contact forces are perturbed slightly, but still balance the applied force. (c) A situation
where the initial contact forces are small. These contact forces cannot balance the
5-Newton applied force, and the triangle slips away.
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Adding Uncertainty

In most physical contacts, the coefficient of friction μ is not precisely known. We can include
uncertainty in μ by constructing the configuration-space friction cone for both the minimum and
maximum values of μ; this gives us the reliable and possible configuration-space friction cones,
respectively. The reliable c-space friction cone corresponds to the set of contact reaction forces
that can definitely be generated by the contact configuration, while the possible c-space friction
cone corresponds to the set of forces that can possibly be generated by the contact configuration.

We may also include uncertainty in the applied force by expressing the applied force as a
polygon of possible forces, instead of as a single known force. Under these assumptions, static
equilibrium is possible whenever the applied force-polygon intersects the negated possible c-space
friction cone. Similarly, static equilibrium will not reliably occur unless the applied force-polygon
is completely contained in the negated reliable c-space friction cone. Because of the possiblity
of motion ambiguities, this is a necessary but not sufficient condition for asserting that static
equilibrium must occur. Figure 93 illustrates these constructions.
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Figure 93: (a) The possible c-space friction cone, formed using μmax. Since the polygon
of possible applied forces intersects the possible c-space friction cone, static equilibrium
is possible. (b) The reliable c-space friction cone, formed using μmin. Since the polygon
of possible applied forces is not fully contained within the reliable c-space friction cone,
static equilibrium will not occur reliably. (c) The reliable c-space friction cone, with
less uncertainty in the applied force. Since the applied-force polygon is fully contained
within the reliable c-space friction cone, static equilibrium will occur reliably, as long
as there are no motion ambiguities.
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Figure 94: Example vertex-vertex contacts.

Vertex-Vertex Contacts

Constructing the c-space friction cone for a contact between two polygonal objects is generally
straightforward; however, vertex-vertex contacts involve some subtleties. Figure 94 shows some
example vertex-vertex contact conditions. Discerning a reasonable friction model for such con-
tacts can be confusing. For example, for two very acute convex vertices in contact, what is the
corresponding friction cone?

We can gain insight to this question by examining vertex-vertex contacts at a microscopic level.
While our polygonal model of objects treats vertices as ideal points, real vertices of physical objects
must have a finite radius of curvature. Figure 95 shows an example contact between two acute
convex vertices. In the magnified views of this contact, it is apparent that several different contact
normals are possible, depending on the microscopic relative positioning of the object vertices.
Further, each of these contact normals has an associated friction cone, defined in the usual way.

These observations allow us to define the possible and reliable friction cones associated with
a vertex-vertex contact. The possible friction cone is the set of contact reaction forces that can
be generated by the contact, allowing any choice of microscopic contact geometry. The reliable
contact friction cone is the set of contact reaction forces that can be generated by the contact, for
every choice of microscopic contact geometry (Figure 96).

For pairs of convex vertices, these friction cones may be constructed as follows: First, construct
the set of contact normals consistent with the vertex-vertex contact. This is accomplished by
forming the set of outward-pointing-normals consistent with the fixed-vertex, and forming the set
of inward-pointing normals consistent with the moving-vertex. These sets are then intersected to
form the set of possible vertex-vertex contact normals. The possible contact friction cone is then
constructed by growing this set by ± arctan(μmax). The reliable contact friction cone is constructed
by growing each endpoint of the contact-normal interval by ± arctan(μmin), and intersecting the
two resulting friction cones. Figure 97 illustrates these constructions.
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Figure 95: Magnified views of a vertex-vertex contact.

(a) (b)

Figure 96: The (a) possible and (b) reliable contact friction cones for a vertex-vertex
contact. In this example, μmin = μmax.
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Figure 97: Constructing the possible and reliable contact friction cones at a ver-
tex-vertex contact. (a) and (b) show two examples. Here αmin = arctan(μmin), and
αmax = arctan(μmax).
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Figure 98: Magnified views of a concave vertex-vertex contact. In the upper view the
concave vertex is sharper than the convex vertex, causing a microscopic force-closure
condition. In the lower view the convex vertex is sharper, and microscopic force-closure
does not occur.

Figure 97(b) illustrates an anomaly that can occur in the possible contact friction cone. Here
the possible friction cone spans an interval of directions greater that 180◦; convex-combinations
of these forces will span all directions. Thus, if we apply the usual convex-hull operations on the
force-sphere, the resulting c-space friction cone will predict that this contact can produce reaction
forces that resist pulling the vertices apart — clearly an erroneous prediction.

A similar anomaly can arise if either vertex is concave, as shown in Figure 98. A microscopic
view of this case reveals that it is possible for the contact to apply a reaction force in any direction,
depending on the relative radius of curvature of the two vertices. If the concave vertex is sharper
than the convex vertex, then a local force-closure contact condition may develop that is similar to
the contact situation shown in Figure 91. If the convex vertex is sharper, then this local force-
closure situation cannot occur.

We will resolve these anomalous situations by defining our model of possible and reliable friction
cones to include these microscopic effects. For contacts involving convex vertices, we will apply the
construction procedure defined above, and note that convex combination cannot be applied in cases
where the resulting possible friction cone spans more than 180◦. For contacts involving a concave
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(all directions)

(empty)

Possible Friction Cones Reliable Friction Cones

Figure 99: The interpretation of vertex-vertex contacts adopted in this thesis.
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(a) (b) (c)

Fa Fa Fa

Fc
Fc

Figure 100: The microscopic displacement assumption. The microscopic contact in
(a) can balance arbitrary forces instantaneously. The microscopic contact in (b) cannot
instantaneously balance arbitrary forces, but will undergo a microscopic displacement
to balance forces within the negated reliable friction cone. (c) An example microscopic
displacement.

vertex, we will modify the construction procedure to (1) include all force directions if the possible
friction cone spans more than 180◦, and (2) to form the reliable friction cone by growing the interval
of contact normals by ± arctan(μmin), instead of applying the previous intersection procedure. If
the resulting interval spans more than 180◦, then we will add a note that convex-combination
should not be applied. These modifications produce the interpretation of vertex-vertex contacts
illustrated in Figure 99.

The construction of reliable friction cones for concave vertices requires further explanation. If the
concave vertex is sharper than the convex vertex, then the convex vertex is in simultaneous contact
with both edges adjacent to the concave vertex, and the contact can generate all forces within
the reliable friction cone (Figure 100(a)). On the other hand, if the convex vertex is sharper than
the concave vertex, then all forces within the reliable friction cone are not simultaneously available
(Figure 100(b)). In light of this, why does the above construction procedure consider these forces to
be reliably available? This seemingly contradictory conclusion is justified by assuming that applied
forces within the reliable friction cone will either be countered by immediate contact reaction
forces, or result in microscopic displacements that will eventually produce a countering reaction
force (Figure 100(c)). This assumption is not necessarily justified by a full dynamic analysis, but is
adopted because it yields a plausible macroscopic description of the contact forces that are reliably
available at a concave vertex-vertex contact.

The interpretation shown in Figure 99 is one among several possible choices for modeling vertex-
vertex friction cones. I have chosen this model because it provides a plausible macroscopic inter-
pretation of the microscopic interactions that can occur at vertex-vertex contacts. For each force
within a possible friction cone, there exists a microscopic contact condition that can produce the
force. For each force within a reliable friction cone, every microscopic contact condition can produce
the force, assuming that stabilizing infinitesimal displacements will occur. Moreover, as either ver-
tex approaches a flat edge and μmin → μmax, the possible and reliable friction cones both approach
the ordinary friction cone originally developed by Moseley.
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v̂1

v̂2

n̂
E

n

Figure 101: Representing a great-circle arc E with its endpoints v̂1 and v̂2.

Representing Sets of Forces

The previous section presented Coulomb’s model of dry friction, and described several geometric
interpretations of this model. Among these interpretations were the configuration-space friction
cone, and the possible and reliable contact friction cones. This section begins by developing a
general data structure for representing polygons on the surface of a unit sphere, and then describes
how to construct this data structure for the negated configuration-space friction cone. The section
concludes by explaining how to construct a polygon of possible applied forces, given the applied-
force description outlined in Figure 12 of Part I.

Representing Polygons on the Unit Sphere

The force sphere construction described above allows three-dimensional sets of forces to be
represented by polygons on the surface of a unit sphere, with edges that are great-circle arcs.
Often these polygons are convex; we will concentrate on this case first.

Points on the sphere may be represented with v̂ = [x y z]T unit vectors. A pair of these points
(v̂1, v̂2) forms a great-circle arc on the sphere. The cross-product of these vectors is a vector n,
normal to the plane containing v̂1 and v̂2; this vector implicitly represents the full great circle
containing the arc (Figure 101). We will represent great-circle arcs with a triple 〈v̂1 v̂2 n̂〉, where
n̂ is the result of normalizing n.

Convex polygons on the sphere may be represented by a collection of edges, each of which is a
great-circle arc. The endpoints of each edge are ordered so that their normal vectors point toward
the polygon interior (Figure 102). This representation allows us to write a simple procedure for
determining whether the polygon contains a given point v̂: The polygon contains v̂ if and only
if v̂ · n̂i ≥ 0, for every polygon edge Ei. Determining whether two polygons intersect is also
straightforward: The polygons intersect if and only if either polygon contains a vertex of the other
polygon, or there exists a pair of edges selected from each polygon that intersect. The intersection
point of a pair of edges may be constructed by computing the cross-product of their normal vectors,
and normalizing and negating the result (Figure 103).
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v̂1

v̂2

v̂3

Figure 102: Representing a convex polygon on the sphere.

A = normalize (n̂1 × n̂2)

A

B = −normalize (n̂1 × n̂2)

B

n̂2

n̂1

E1

E2

Figure 103: Computing the intersection of two great-circle edges E1 and E2. We first
compute the intersection points of the great-circles containing E1 and E2. These points
are obtained by forming the cross-product of the edge normal vectors n̂1 and n̂2; the
resulting vector is normalized and negated to construct the two intersection points A

and B. Point A is returned only if it lies between the endpoints of both E1 and E2;
a similar test is applied to point B. Special code must be included to handle the case
where E1 and E2 lie on the same great circle. The magnitudes of n̂1 and n̂2 are reduced
for clarity.
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Full Sphere
Hemisphere

Figure 104: Special cases of convex polygons on the sphere.

convex-G-polygon
full-sphere? A Boolean flag.

hemisphere? A Boolean flag.
hemisphere-pole A unit vector [x y z]T .

full-great-circle? A Boolean flag.
full-great-circle-normal A unit vector [x y z]T .

vertices A set of unit vectors, containing the endpoints of each edge
in the edges field. If this is a single-vertex polygon, then this
set contains one vertex, while the edges field contains the null
set.

edges A set of G-arcs.

G-arc
v̂1 Vertex 1, specified as an [x y z]T unit vector.

v̂2 Vertex 2, specified as an [x y z]T unit vector.

n̂ The edge normal vector, determined by normalize(v̂1 × v̂2).

Figure 105: Data records for representing convex polygons on the unit sphere.

The geometry of the sphere allows special convex polygons that we will represent with special
data structure fields. These include single-vertex polygons, full great-circles, arbitrary hemispheres,
and the full sphere; these cases are illustrated in Figure 104. This expands our representation of
convex polygons on the sphere to the data structure shown in Figure 105.

Extending this representation to include non-convex polygons on the sphere is straightforward:
We simply form the union of several convex polygons. Thus our toplevel representation of a polygon
on the sphere is a set of convex-G-polygon data records; convex polygons are represented by a set
containing only one convex-G-polygon data record, while non-convex polygons are represented by
a set containing several convex-G-polygon data records.
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φ

F

−F

d

Figure 106: Parameters used in mapping a friction-cone ray F to its corresponding
point on the force sphere. Since we are constructing the negated configuration-space
friction cone, φ and d describe the negated ray −F rather than F. The parameter d

is a signed quantity, and assumes a negative value when the reference point is on the
opposite side of the ray −F.

Representing Configuration-Space Friction Cones

The force-sphere representation of planar forces allows us to represent configuration-space fric-
tion cones using the spherical-polygon data structure described in the previous section. Given a
contact configuration (x, y, θ, contacts) between two polygonal objects and a table of friction co-
efficients Tμ, we can construct a polygon on the force sphere representing the negated possible or
reliable configuration-space friction cone. This is accomplished by the following procedure:

1. Form the possible or reliable contact friction cone for every contact-pair, using the friction
table Tμ to look up the appropriate μmin or μmax friction coefficients.

2. Map the bounding rays of each contact friction cone into the (Fx, Fy, τ/ρ) force-torque space
using the equation:

− F =

⎡
⎢⎣ cos(φ)

sin(φ)
−d

ρ

⎤
⎥⎦ (1)

where φ and d are defined in Figure 106. Here ρ denotes the radius of gyration of the moving-
object; however, since we will not be using the configuration-space friction cone to perform
dynamic analysis, any positive value of ρ may be chosen.

3. Normalize the resulting vectors and construct their convex hull, producing a spherical-polygon
data structure. If one or more of the contact friction cones is attached to a note indicating that
convex combinations should not be applied, split each such cone into two subcones, and form
a convex-G-polygon for all combinations of these subcones with the other friction cones. The
total negated configuration-space friction cone is then the union of these convex-G-polygons.
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Pη

η

Figure 107: An example applied force that satisfies the criterion.

Representing the Set of Possible Applied Forces

The previous discussion has described a method for determining whether static equilibrium can
occur, given a contact configuration and a polygon of possible applied forces. This method gives
rise to the question: How do we convert a physical representation of an uncertain applied force into
a polygon on the force sphere?

The answer to this question depends on the physical system producing the applied force. In the
remainder of this chapter, we will restrict our attention to a particular class of physical systems;
analysis of systems outside this class will be left to future work.

The systems we consider are characterized by an applied force that satisfies the following cri-
terion: When the system is in static equilibrium, a nonzero relative applied force passes through
a particular point Pη on the moving-object, in a constant direction η defined in the fixed-object’s
reference frame. Here “relative applied force” refers to the total force applied to the moving-object,
minus the contact reaction force. This condition is illustrated in Figure 107.

While this criterion may seem abstract, it is satisfied by several physical systems. One example
is an object falling in a uniform gravitational field; the criterion is satisfied if Pη is the object’s center
of mass, and η is the direction of the gravity vector. A second example is the compliant motion of
an object moving under generalized damper control; here η is the nominal motion direction, and
Pη is the control law’s center of compliance. A third example is linear pushing, where Pη is the
center of friction of the pushed object, and η opposes the pushing direction.

The criterion only considers forces that arise when the system is in static equilibrium; arbitrary
forces are allowed at other times. This is emphasized by the linear pushing example, where the
criterion is not satisfied except in situations where there is no relative motion between the pushing
finger and pushed object. At all other times, the relative applied force is either zero or includes a
moment that causes the line of force to pass to one side of the center of friction.
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Pη

rη

ηmin

ηmax

Figure 108: Modelling uncertainty in the relative applied force. The rays in the exam-
ple configurations show typical applied forces that satisfy the uncertainty conditions.

One benefit of this criterion is that a force satisfying the criterion corresponds to a constant
point on the force sphere, as long as the (Fx, Fy, τ/ρ) space is defined with respect to the point
Pη. This requires that the moment d be measured relative to the moving-object’s center of mass,
center of compliance, or center of friction for the gravitational, compliant motion, and linear pushing
examples. This represents a departure from Erdmann’s standard of measuring all moments relative
to the moving-object’s center of mass, but this is not a problem for our purely static analysis.

We can include uncertainty in the applied force by treating the parameters Pη and η as uncertain
variables. These modifications are illustrated in Figure 108, and lead to an extension of the applied-
force criterion: When the system is in static equilibrium, a nonzero relative applied force passes
through a point P ′

η on the moving-object, in a direction η′. Here P ′
η is a point inside a circle of

radius rη centered at a point Pη on the moving-object, and η′ is in the interval [ηmin, ηmax], defined
in the fixed-object’s reference frame. This criterion corresponds to the applied-force specification
given for the STATIC algorithm in Figure 12.

155



    

If the moving-object coordinate system is suitably defined, this criterion defines a set of forces
that correspond to a constant polygon on the surface of the force sphere. This polygon is shown
in Figure 109. Unlike the force-polygons seen previously, some edges of this polygon are not
great circles; these edges correspond to latitude lines defining the maximum positive and negative
moments that the applied force can exert with respect to Pη. As the error term rη increases, these
latitude lines move further from the force-sphere equator. The vertices of this polygon are given
by the following equations:

FA = normalize

⎡
⎢⎣ cos(ηmin)

sin(ηmin)
rη
ρ

⎤
⎥⎦ FB = normalize

⎡
⎢⎣ cos(ηmax)

sin(ηmax)
rη
ρ

⎤
⎥⎦

FC = normalize

⎡
⎢⎣ cos(ηmin)

sin(ηmin)
− rη

ρ

⎤
⎥⎦ FD = normalize

⎡
⎢⎣ cos(ηmax)

sin(ηmax)
− rη

ρ

⎤
⎥⎦

where ρ has the same value used in the configuration-space friction cone construction, and normalize
indicates the vector-normalization operator.

We could represent this polygon exactly by extending our spherical polygon data structure
to include latitude edges as well as great-circle edges, but instead we will construct a conservative
approximation of the polygon using our existing data structure. This approximation is produced by
using rη and [ηmin, ηmax] to construct the four polygon vertices, and then forming their convex hull.
Figure 110 shows the result of this approximation; the discrepancy between the approximation
and the true polygon increases as the applied force direction and moment errors increase. The
implications of this approximation will be discussed at the end of this chapter.
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Fx

Fy

τ
ρ

(a) (b)

ηmin
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rη
ρ

− rη
ρ

FA
FB

FC
FD

Fx

Fy

τ
ρ

Figure 109: Converting the applied-force uncertainty defined in Figure 108 into a
polygon on the force sphere. (a) The direction bounds ηmin and ηmax constrain the
applied force to lie between two meridians on the sphere, while rη gives rise to two
latitude lines constraining the maximum positive and negative moments that can be
exerted by the applied force. (b) The polygon of possible applied forces is the set of
points on the sphere that satisfy all four constraints.

Fx

Fy

τ
ρ

(a) (b)

Fa

Fa

Figure 110: The significance of our conservative approximation of the applied-force
polygon. (a) The shaded region on the sphere shows the additional forces included by
the conservative approximation. (b) The impact of the approximation in the original
space. The approximation includes forces between ηmin and ηmax that pass through the
shaded regions. Fa shows an example force that is included by the approximation, but
not consistent with the uncertainty conditions.
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Constructing Possible-Equilibrium Configurations

This section describes the STATIC algorithm, which constructs the set of configurations where
static equilibrium is possible, given two polygonal objects Pm and Pf , a table of friction coeffi-
cients Tμ, and a description of an applied force Fa. Figure 111 shows an example set of possible-
equilibrium configurations identified by the STATIC algorithm.

The STATIC algorithm uses the output of the CO algorithm as the basis for its analysis. Since
equilibrium is possible only when the relative applied force is balanced by contact reaction forces, all
possible-equilibrium configurations must correspond to contact configurations. This further implies
that the set of possible-equilibrium configurations must be a subset of the configuration-obstacle
surface.

The STATIC algorithm exploits this observation by (i) calling the CO algorithm to construct
the configuration-obstacle surface, (ii) visiting each obstacle feature and constructing the possible-
eqauilibrium subset of the feature, and (iii) returning the ensemble of the resulting subsets. As
with the CO algorithm, the STATIC algorithm constructs its output incrementally, so that calling
programs can avoid unnecessary computation.

The substance of the STATIC algorithm lies in the procedures used to construct the subset of
each obstacle feature where static equilibrium is possible. A different approach is used to construct
this subset for obstacle facets, edges, and vertices; these approaches are described in the following
sections.

x y

FxFy

tau/rho

FxFy

tau/rho

FxFy

tau/rho

Figure 111: An example of the output generated by the STATIC algorithm. The
highlighted features correspond to the set of contact configurations where static equi-
librium is possible. In this example, μ ∈ [0.23, 0.48], η ∈ [190◦, 198◦], and rη = 0.08l,
where l is the length of the longest triangle edge.
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Obstacle Vertices

Since an obstacle vertex V is a single (x, y, θ) point, the subset of the vertex where static
equilibrium is possible is either the point, or the null set. The STATIC algorithm determines
whether or not equilibrium is possible for V by fetching V ’s contact set, constructing the negated
configuration-space friction cone, and determining whether the polygon of possible applied forces
intersects the configuration-space friction cone.

Obstacle Edges

Every obstacle edge is embedded in an unbounded curve in the configuration space; this curve
is a one-dimensional set parameterized by p or θ, depending on whether the edge is class-0 or
non-class-0. In the discussion that follows, we will only consider non-class-0 edges; the analysis of
class-0 edges is analogous.

As the contact configuration varies along the unbounded curve, the configuration-space friction
cone also varies. Figure 112 illustrates this variation for a typical ve-ve obstacle edge. Notice that
the c-space friction cone and the applied-force polygon intersect for some configurations on the
edge, but not for others; the STATIC algorithm is concerned with identifying the subset of the
edge where intersection occurs.

This subset can be described by a set of intervals {[θ1, θ2], [θ3, θ4], . . .}, where each θi corresponds
to a configuration where the force-polygon and c-space friction cone transition from an intersecting
to non-intersecting topological relationship. There are three types of these transitions, as shown in
Figure 113.

The STATIC algorithm constructs the set of possible-equilibrium configurations on an edge
by first identifying all of the θ-values that may give rise to a critical configuration on the force
sphere, and then using these θ-values to assemble a collection of contiguous intervals where static
equilibrium is possible. This computation is summarized in Figure 114.
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Figure 112: Variation of the negated c-space friction cone along an obstacle edge.
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Figure 113: Critical configurations on the force sphere. The third configuration is a
transition between a force-closure and a non-force-closure contact condition, and does
not depend on the applied-force polygon.
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(a) (b) (c) (d)

I1

I2E

max? = false

midpoint? = false

max? = true

midpoint? = true

possible
equilibrium
subset

construct-edge-possible-equilibrium-subsetθ(E,Fa)
Identify critical θ-values.
Using the critical-value analysis described in the text, identify the set of θ-values Θcritical that
correspond to possibly-critical configurations on the force sphere.

Assemble θ-intervals.
Discard all of the θ-values in Θcritical that are not between the (θmin, θmax) endpoints of E. Sort the
remaining θ-values to form a sequence of intervals I = [θmin, θ1] [θ1, θ2] [θ2, θ3] . . . [θn, θmax]
that partition E.

Check the middle and maximum of each interval.
For each interval [θa, θb] ∈ I, construct the negated c-space friction cone for the midpoint θmiddle,
and determine whether or not it intersects the applied-force polygon Fa. Apply a similar test to θb,
and construct a record 〈 [θa, θb] midpoint? max? 〉, where midpoint? and max? are set to true if an
intersection occurred for θmiddle and θb, respectively. This process produces a sequence of records
Iflags = 〈 [θmin, θ1] midpoint? max? 〉 〈 [θ1, θ2] midpoint? max? 〉 . . . 〈 [θn, θmax] midpoint? max? 〉.
Form possible-equilibrium intervals.
Merge adjacent intervals in Iflags that have the same midpoint? field, forming the alternation
Imerged = 〈 [θmin, θ

′
1] possible? 〉 〈 [θ′1, θ

′
2] possible? 〉 . . . 〈 [θ′n, θmax] possible? 〉, where the possible?

flag of each record is the boolean complement of the preceding possible? flag. Include measure-zero
intervals, which arise when the max? flag of an interval Ii is true, and the midpoint? flags of Ii and
Ii+1 are both false.

Return the subset of E where equilibrium is possible.
For every interval Ii ∈ Imerged with a possible? flag of true, construct a data record describing the
subset of E defined by Ii. This will produce a c-edge data record for every finite interval where
equilibrium is possible, and a c-vertex data record for every measure-zero interval where equilibrium
is possible. Return this collection of data records.

(e)

Figure 114: Constructing the subset of an obstacle edge E where static equilibrium
is possible. (a) Critical θ-values. (b) I1 and I2 are θ-intervals that partition E into
two subintervals; configurations within each interval produce the same force-sphere
topology. (c) The result of applying the possible-equilibrium test to the middle and
maximum θ-values of I1 and I2. (d) The segment of E where equilibrium is possible.
(e) The construct-edge-possible-equilibrium-subsetθ procedure. This assumes that E is
a non-class-0 edge; a similar procedure analyzes class-0 edges.
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To identify the critical θ-values, we begin by observing that each critical condition illustrated
in Figure 113 corresponds to a coincidence between a vertex and edge on the force sphere:

a. A vertex of the negated configuration-space friction cone is coincident with an edge of the
applied-force polygon.

b. A vertex of the applied-force polygon is coincident with an edge of the negated configuration-
space friction cone.

c. A vertex of the positive configuration-space friction cone is coincident with an edge of the
negated configuration-space friction cone. This corresponds to the transition between a force-
closure and non-force-closure configuration.

These coincidences can only occur when v̂ · n̂E = 0, where v̂ is the force-sphere vertex, and
n̂E is the normal vector of the force-sphere edge. Therefore these coincidence conditions may be
expressed by the following three equations:

0 = −Ff(θ) · [Fa1 × Fa2]

0 = Fa · [−Ff1(θ) ×−Ff2(θ)]

0 = Ff1(θ) · [−Ff2(θ) ×−Ff3(θ)]

where Fa is a vertex of the applied force-polygon, −Ff(θ) is a vertex of the negated configuration-
space friction cone, and Ff(θ) is a vertex of the positive configuration-space friction cone. These
equations can be developed for each type of obstacle edge by substituting the edge fx(θ) and fy(θ)
functions appropriately and re-arranging terms to produce an equation of the form:

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ + k9c3
θ

where sθ and cθ are abbreviations for sin(θ) and cos(θ), and each ki is a constant that depends
on the type of obstacle edge and the critical condition. Figure 115 shows an example equation
derivation; a complete table of these equations is given in Appendix 4.

The STATIC algorithm uses these equations to identify the critical θ-values for an obstacle
edge. Given an obstacle edge E and an applied-force polygon Fa, the STATIC algorithm forms
these equations for all appropriate combinations of edges and vertices of the corresponding c-space
friction cone and applied-force polygon, and finds the roots of these equations using the numerical
procedure described in Appendix 2. The resulting roots contain all possible critical θ-values, and are
passed back to the construct-edge-possible-equilibrium-subsetθ procedure for interval construction
and analysis.
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φ1 = β1 + π
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d(θ) = r sin(δ)

d(θ) = r sin(θ + ν − φ)

d(θ)

θ
νδ

r

φ

θ + ν

θ

r
νr

ν

From equation (1) we have:

−Fve(θ) =

cφ
sφ

−d(θ)
ρ

Substituting d(θ) shown at left gives:

−Fve(θ) =
cφ
sφ

− r
ρ s(θ+ν−φ)

−Fve

Fve

(c)

Fa

−F2

−F1

−F2

F2

−F1

F1

Figure 115: Derviation of a critical-θ equation. (a) A ve-ve contact condition. The
r, ν, β, and φ terms are constants; θ varies with configuration. (b) The critical condition
we seek; a vertex of the applied-force polygon is coincident with an edge of the negated
c-space friction cone. The friction-cone rays defining this edge are highlighted in (a).
The vertices of the c-space friction cone define six possible connecting edges; all must be
checked because the topology of the c-space friction cone may change with configuration.
(c) An initial derivation step. The boxed equation maps a ve-contact friction-cone ray
into the (Fx, Fy, τ/ρ) space. This equation exploits the fact that the ray’s direction is
constant, but the moment exerted by the ray varies with configuration.
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0 = Fa · [−F1(θ) ×−F2(θ)]

0 =

⎡
⎣ xa

ya
za

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφ1

sφ1

− r1
ρ s(θ+ν1−φ1)

⎤
⎦×

⎡
⎣ cφ2

sφ2

− r2
ρ s(θ+ν2−φ2)

⎤
⎦
⎞
⎠

0 =

⎡
⎢⎢⎢⎢⎣

xa

ya

za

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

sφ1

(
− r2

ρ s(θ+ν2−φ2)

)
− sφ2

(
− r1

ρ s(θ+ν1−φ1)

)
cφ2

(
− r1

ρ s(θ+ν1−φ1)

)
− cφ1

(
− r2

ρ s(θ+ν2−φ2)

)
cφ1sφ2 − cφ2sφ1

⎤
⎥⎥⎥⎥⎥⎥⎦

0 =

⎡
⎢⎢⎢⎢⎣

xa

ya

za

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎣

cθ
[
r1
ρ sφ2s(ν1−φ1) − r2

ρ sφ1s(ν2−φ2)

]
+ sθ

[
r1
ρ sφ2c(ν1−φ1) − r2

ρ sφ1c(ν2−φ2)

]
cθ
[
r2
ρ cφ1s(ν2−φ2) − r1

ρ cφ2s(ν1−φ1)

]
+ sθ
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(d)

Figure 115 (continued): (d) Derivation of the critical-θ equation. The θ-roots of this
equation correspond to all configurations on the obstacle edge where the force-polygon
vertex Fa lies on the great-circle defined by −F1 and −F2.

165
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Figure 116: Non-critical force-sphere configurations.

Optimizations

The above technique always identifies all θ-values that give rise to critical conditions on the force
sphere, but it also identifies additional non-critical θ-values (Figure 116). These values are discarded
during later interval merging operations, but the algorithm’s performance can be improved by
discarding non-critical θ-values early on. This is accomplished by applying the following three
tests to each θ-value as it is constructed:

a. If the θ-value is outside the [θmin, θmax] limits of the obstacle edge, it is discarded immediately.

b. The θ-value is used to construct the force-sphere edge and vertex being analyzed. If the
vertex lies outside the edge endpoints, the θ-value is discarded.

c. The θ-value is used to construct the force-sphere edge being analyzed and all vertices of the
applied-force polygon and the c-space friction cone. The θ-value is discarded if any of the
following conditions are violated:

1. All applied-force polygon vertices are on the same side of the edge.

2. All c-space friction cone vertices are on the same side of the edge.

3. The applied-force polygon vertices and c-space friction cone vertices are on opposite
sides of the edge.

These conditions ensure that the edge/vertex coincidence condition separates the applied-
force polygon and the c-space friction cone into disjoint half-spaces. If these conditions are
not satisfied, the θ-value is not critical, and it is discarded.

These tests eliminate the non-critical θ-values illustrated in Figure 116 (a), (b), and (c), respectively.
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The performance of the algorithm can also be improved by realizing that certain critical condi-
tions can never occur. For example, a force-closure critical condition cannot occur for a ve-ve or
ev-ev obstacle edge if the contact friction cone directions for one edge do not overlap the negated
contact friction cone directions for the other edge. Similarly, static equilibrium is never possible for
a ve-ve obstacle edge if the applied force-direction interval [ηmin, ηmax] does not overlap the convex
span of the negated contact friction-cone directions for both fixed-polygon edges. The STATIC
algorithm includes these and other tests to avoid unnecessary critical-value analysis.

Obstacle Facets

Facets of the configuration-space obstacle correspond to single-point contact configurations.
Because of the simplicity of these contacts, we can construct the set of possible-equilibrium config-
urations directly.

Static equilibrium with a single-point contact is only possible when the line of applied force
passes through the contact point, in a direction within the negated possible contact friction cone.
These conditions implicitly define a region of the facet c-surface where equilibrium is possible; the
STATIC algorithm constructs this region, and then intersects it with the facet to construct the set
of reachable possible-equilibrium configurations. This process is illustrated in Figures 117 and 118.
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(unstable)
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Figure 117: Identifying the possible-equilibrium configurations for a ve facet. The
possible-equilibrium subset of the facet c-surface is a pair of infinite horizontal bands;
these bands are delineated by critical θ-values corresponding to conditions where only
one possible line of force can give rise to static equilibrium. These critical conditions
are labelled, and the critical ray is highlighted. These bands do not always appear
on the infinite c-surface; if [ηmin, ηmax] does not overlap the negated contact friction
cone, the bands vanish. Once these bands are constructed on the infinite c-surface,
they are intersected with the facet to identify the set of reachable possible-equilibrium
configurations (shown heavily shaded).
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Figure 118: Identifying the possible-equilibrium configurations for an ev facet. The
possible-equilibrium subset of the facet c-surface is a bounded region. This region always
exists on the ev c-surface, but may be reduced to a single point if there is zero friction
and no uncertainty in the applied force. The region may have up to ten bounding
edges; only six appear in this example. Intersecting the region with the facet gives the
set of reachable possible-equilibrium configurations; in this example, the entire region
is reachable. This example region contains only unstable configurations; regions are
also possible that contain stable or stable/unstable configurations. See Appendix 4 for
a table of equations describing the edges bounding these regions.
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Critique

The STATIC algorithm constructs the set of all configurations where static equilibrium is possi-
ble between two arbitrary polygonal objects, under a specified applied force. The algorithm allows
uncertainty in a variety of physical aspects of the system, including:

• Bounded variation in the coefficient of friction μ.

• Bounded variation in the force applied when the system is in static equilibrium.

• Unlimited variation in the force applied when the system is not in static equilibrium.

• Unlimited variation in the mass properties of the objects. Unlimited variation is always
allowed in the radius of gyration ρ, and is also allowed in the center of mass whenever the
static-equilibrium force is independent of the center of mass (as in compliant motion control,
for example).

• Unlimited variation in the microscopic interaction occuring at each vertex-vertex contact,
subject to the special assumptions described above. These assumptions require that the mi-
croscopic shape of each object vertex is monotonically convex or concave, and that stabilizing
microscopic displacements will occur for certain concave vertex-vertex contacts.

This spectrum of uncertainty conditions allows the STATIC algorithm to be applied to problems
where a complete and precise physical model is not available. However, the algorithm does assume
perfect knowledge of the object shapes, and that the objects are perfectly rigid; these strong
assumptions limit the algorithm’s suitability for some problems.

The results produced by the algorithm are exact, up to the precision of the conservative ap-
proximation in the applied-force polygon. This approximation may cause the algorithm to return
additional configurations where static equilibrium is not possible, such as the configuration shown
in Figure 119. The algorithm will only produce these additional configurations on obstacle edges
and vertices, since obstacle facets are analyzed without the conservative approximation.

Removing this approximation would not be difficult; this would require extending the convex-
G-polygon representation to include latitude lines, and derivation of additional critical-value equa-
tions. However, this modification of the algorithm is of questionable value, for the following reasons:
First, the effect of the approximation is small, especially when the error in the applied force is not
large. This is emphasized by Figure 110, where a large force error was chosen to make the effect
of the approximation clearly visible. Second, the approximation represents a small change to a
representation that is already a conservative approximation of the true physical system. For ex-
ample, a more detailed uncertainty model might constrain the possible applied-force points more
precisely than the simple (Pη, rη) model currently used, or include coupling between errors in the
applied-force direction and application point. Such refinements of the applied-force model could
continue ad infinitum, but would not dramatically reduce the set of possible-equilibrium states
returned by the STATIC algorithm, except in cases where the applied-force error is very large.
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Fa
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Figure 119: (a) A configuration that would be returned by the STATIC algorithm,
even though static equilibrium is impossible. This additional configuration is returned
as an artifact of the conservative approximation illustrated in Figure 110. (b) The
negated configuration-space friction cone and true applied-force polygon. Static equilib-
rium is impossible because these sets are disjoint. (c) The negated configuration-space
friction cone and approximate applied-force polygon. Since these sets intersect, the
STATIC algorithm concludes that equilibrium is possible. The point Fa corresponds
to the force illustrated in (a).

Implementation and Robustness Issues

I implemented the STATIC algorithm and performed experiments to measure its robustness and
efficiency. The resulting program is comprised of about 6700 lines of Common Lisp code, excluding
debugging and rendering routines, and the code required by the CO program.

Like the CO program, the STATIC program uses floating-point arithmetic, and thus is an
approximation of the ideal STATIC algorithm. In order to improve the robustness and accuracy of
the program, I included several approaches to reducing the impact of numerical calculation errors:

• Fuzzy arithmetic. All numeric decision procedures in the STATIC program use the same
fuzzy-arithmetic operators employed by the CO program, with the same numerical tolerance
values.

• Vector normalization. All (Fx, Fy, τ/ρ) vectors constructed by the program are normalized
as soon as they are constructed. This uniform normalization is required so that point-on-
great-circle tests will return consistent results when fuzzy arithmetic is used.

• Moderate ρ values. Since static equilibrium is a purely geometric condition, it is independent
of the mass properties of the moving-object. Thus ρ can be chosen to be any value, without
changing the results of the ideal STATIC algorithm. However, the choice of ρ does affect
the robustness of the STATIC program; extreme values of ρ cause the features on the force
sphere to cluster near the poles or equator of the force sphere, leading to numerically-sensitive
computations. Thus the STATIC algorithm uses a value of ρ roughly near the moving-object’s
physical radius of gyration, assuming a uniform mass distribution. Since this value is related
to the size of the moving-object, it provides a moderate scaling factor for a broad class of
objects. Degenerate situations can still occur (for example, if an object edge passes very near
the point Pη); these are treated as special geometric cases.
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• Overlapping subcones. When a contact friction cone is split into two subcones because convex-
combinations should not be applied, the subcones are chosen to overlap slightly. This over-
lap reduces the numerical sensitivity of the corresponding configuration-space friction cones,
without compromising correctness.

The resulting program appears to be very robust. However, checking the correctness of the
STATIC program is more difficult than checking the correctness of the CO program, because
the set constructed by the STATIC algorithm does not have the strong topological structure that
characterizes the configuration-obstacle surface. Metric tests are also difficult, because of the nature
of the constructed set: For every point returned by the algorithm, there must exist some choice of
uncertainty conditions and force-magnitudes where static equilibrium occurs; similarly, for every
point excluded from the algorithm, static equilibrium should never be possible, for any choice of
uncertainty conditions or force magnitudes. Verifying these conditions is a difficult computational
problem, so I did not implement an automatic test procedure for the STATIC program. Instead,
I manually checked the algorithm using a collection of interactive test programs, paying special
attention to the various boundary conditions that can arise. These manual test were further
reinforced by the physical experiments described in Part I.

As with the CO program, several optimizations were included to improve the performance of the
STATIC program. These optimizations are similar to those used in the CO program, and include
incremental computation and simple decision procedures to determine when expensive analysis
steps can be trivially avoided. I measured the performance of the algorithm over a suite of 30
test cases, most of which addressed the STATIC program’s ability to handle various boundary
conditions correctly. The following table shows execution times for some of the examples that
appear in this thesis:

Example CO (seconds) STATIC (seconds)
Figure 8 (4 facets) 3.7 8.6
Figure 20 (Full obstacle) 124.5 56.5

Figure 111 (Full obstacle) 8.6 30.6
Figure 18 (8 facets) 4.5 7.1
Figure 19 (3 facets) 2.4 6.1

The last three entries of this table correspond to the same pair of input objects, analyzed under
different conditions. These examples reflect typical execution times for the analysis of full and
partial obstacles; the total execution time is the sum of the CO and STATIC execution times. The
execution time tended to grow as the friction and uncertainty increased; this was primarily due to
the fact that fewer computations could be trivially avoided.

One lesson learned from the implementation is that explicit representations of configuration-
space sets are far more useful than implicit representations. The data structure employed by the
CO algorithm is an example of an explicit representation, since all obstacle features and their
extent are explicitly represented. In contrast, the set returned by the STATIC program is implicit,
where each set of reachable possible-equilibrium configurations is represented as an intersection
of an obstacle feature and a set of possible-equilibrium features. The significance of this becomes
apparent for ev facets, where the reachable and possible-equilibrium configurations may be disjoint,
but this is not detected. This proved to be a handicap for later applications of the algorithm, so
modifying the STATIC program to return an explicit representation would be an improvement.
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Extending the Algorithm to Perform Reliable-Equilibrium Analysis

The STATIC algorithm constructs the set of configurations where equilibrium is possible; can
we also construct the set of configurations where equilibrium reliably occurs? Perhaps, but first we
must define the notion of “reliable equilibrium.” Here are some possibilities:

1. When the system is in a given configuration, it will remain at rest in the configuration.

2. When the system is at rest in a given configuration, it will remain at rest in the configuration.

3. When the system is at rest in a given configuration, it will remain at rest in the configuration,
even in the presence of small perturbations.

Definition 1 is the simplest, but constructing the set of reliable-equilbrium states under this
definition requires information describing the system’s mechanical behavior, both at rest and in
motion. This is required to assure that when the system is in a reliable-equilibrium configuration
and initially in motion, it will immediately come to rest. However, no configuration will ever
satisfy this criterion, unless the system is quasi-static or perfectly plastic. This is because the
configuration might have been reached as an intermediate state in a high-velocity collision; such a
state will generally be followed by an immediate rebound motion.

Definition 2 is more reasonable, since it does not require a model of the system’s behavior
when in motion, and also does not admit the possibility of collisions. However, it will predict
that unstable equilibrium configurations will reliably remain at rest, which is implausible for most
physical systems (Figure 120).

Definition 3 includes stability as a criterion for reliable equilibrium, and thus produces a more
plausible prediction for the scenarios illustrated in Figure 120. However, things become muddy
again when uncertainty is included, as shown in Figure 121. In this scenario, stable equilibrium will
reliably occur somewhere in the shaded interval, but the exact configuration cannot be determined.
What should the reliable version of the STATIC algorithm return? One possibility might be to
return the entire interval of orientations, with an associated flag indicating that equilibrium will
reliably occur at some unknown orientation within the interval. But then what if only part of this
interval is reachable, as shown in Figure 121(c)?

Fa

Fa

Figure 120: Stable and unstable static equilibrium situations.
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Figure 121: A stable static equilibrium situation, with uncertainty. (a) The contact
condition. (b) The corresponding facet in the configuration space. Static equilib-
rium will reliably occur somewhere in the shaded region, but the exact configuration
is unknown because it depends on the uncertain applied force direction. (c) A similar
situation, but where part of the reliable-equilibrium region is unreachable.

These considerations reveal that construction of reliable-equilibrium configurations is a seman-
tically slippery issue. Preferences among these and other possible definitions of reliable equilibrium
will affect the algorithm used to construct these sets; these preferences will be closely tied to the
particular physical system being analyzed.

Once these aspects have been determined, it may be possible to extend the STATIC algorithm
to construct the desired reliable-equilibrium states. For example, it would be straightforward to
modify the STATIC algorithm to construct the set of configurations Ccontain where the applied-force
polygon is fully contained within the reliable configuration-space friction cone. As mentioned above,
this is a necessary but not sufficient condition for static equilibrium to reliably occur; therefore
the set of reliable-equilibrium configurations must be a subset of Ccontain. A dynamic analysis could
then be applied to discard ambiguous configurations where motion is also possible; the techniques
presented in [Erdmann 1984] or [Brost and Mason 1990] provide possible approaches.

Another approach would be to adopt the view that the reliable-equilibrium states of interest
are those where the system will come to rest from a given set of initial conditions. This view
relegates the reliable-equilibrium question to the purvey of dynamic analysis, and identifies a set of
reliable-equilibrium states that are utilitarian in the sense that equilibrium not only occurs reliably,
but can be achieved reliably. This is the point of view adopted in this thesis, and the necessary
dynamic analysis is discussed in the next chapter.
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Dynamics
Classical dynamics addresses the following questions:

• Given a physical system, an applied force, and an initial state, what is the time-history of
subsequent states?

• Given a physical system, an applied force, and a final state, what is the time-history of
preceding states?

We may choose to ignore the time-history information associated with these questions, and only
consider the set of states visited by the system before or after a specified state. This amounts to
considering the path of the system in state space, rather than the trajectory of the system. This
simplification modifies the above questions:

• Given a physical system, an applied force, and an initial state, what is the set of states that
will follow the initial state?

• Given a physical system, an applied force, and a final state, what is the set of states that will
precede the final state?

All of the above questions are relevant to the analysis and planning of manipulation tasks, because
they correspond to predicting the outcome of a manipulation action, and synthesizing manipulation
actions to achieve a desired goal. However, these questions do not capture the uncertainty that is
inherently present in manipulation tasks. We can re-frame these questions to include uncertainty
as follows:

• Given a physical system, a set of possible applied forces, and a set of possible initial states,
what is the set of possible subsequent states?

• Given a physical system, a set of possible applied forces, and a set of desired final states,
what is the set of preceding states that will reliably produce one of the desired final states?

These questions define the forward projection of a set of initial states, and the strong backprojection
of a set of desired final states; these notions were previously explored in [Lozano-Pérez et al. 1984]
and [Erdmann and Mason 1986]. This chapter will focus primarily on the strong backprojection,
formulated through a modified version of the above question:
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• Given a physical system, an applied action, a set of desired goal states G, and a set of
constraint states C, what is a set of preceding states Vstate that will reliably produce a final
state in G, never encountering a state in C?

This question differs from the preceding question in several key respects. First, the notion
of an applied force is replaced by an applied action, which is an abstraction that simplifies the
specification of the physical system and its dynamical behavior. Second, the set C augments the
previous specification of desired system behavior by constraining the set of acceptable paths to
the final state. Finally, this question is less restrictive than the previous question, since it asks for
“a set” rather than “the set” of satisfactory preceding states. This allows subsets of the maximal
strong backprojection as acceptable solutions.

The BPe and BP i algorithms defined in Figure 12 of Part I address the problem of construct-
ing strong backprojections under this definition. These algorithms are specifically concerned with
physical systems that are comprised of two polygonal objects, where the (x, y, θ) relative configu-
ration of the objects provides sufficient state information for dynamic analysis. As of this writing,
these algorithms have not been fully developed or implemented. In the sections that follow, we will
present the geometric constructions that the algorithms employ to identify strong backprojections,
and sketch procedures for implementing these constructions. Some of the details are missing from
these sketches; these are left for future work.

Constructing Vstate Using Energy Arguments

The BPe algorithm constructs strong backprojections for physical systems whose behavior can be
bounded by an invariant analogous to the conservation of mechanical energy. These systems include
objects falling in a gravity field, and objects controlled by certain compliant-motion control laws,
such as generalized damper control.

To gain an intuitive understanding of the invariant, consider the simple example of a particle
falling in a gravitational field amidst polygonal obstacles (Figure 122). In this physical system, the
energy of the particle is bounded by the potential energy of its release height. Once the particle is
released from a height yo, it can never reach a height greater than yo. This implies that the particle
can follow a complex trajectory involving thousands of collisions, but the particle will never leave
the half-space defined by y < yo.

We can view the bounded energy of the particle as a geometric constraint defined at the particle’s
release position. By placing the particle in the initial position and constructing a line perpendicular
to the gravity direction, we can identify a half-space corresponding to the set of all reachable particle
positions (Figure 123). This construction gives us a geometric interpretation of the potential-energy
bound, expressed in the configuration space of the particle.
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g

y = yo

xo

Figure 122: Dropping a particle amidst fixed obstacles. The particle may experience
numerous collisions, resulting in a complex trajectory. However, the trajectory will
never pass above the y = yo line (shown dotted), because the particle’s mechanical
energy is bounded.

g

xo

Figure 123: Expressing the mechanical energy bound as a geometric constraint in the
configuration space. The particle might reach any point in the shaded region, but will
never reach a point outside the region.
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xo

nominal
motion
direction

Figure 124: A “potential energy” constraint for generalized damper control. (a)
This motion control law will never backtrack relative to its nominal motion direction,
so it can never escape the half-space defined by the normal to this direction and the
initial position xo. This constraint is weaker than the forward-projection described in
[Lozano-Pérez et al. 1984], which utilizes a more detailed model of the task mechanics.

Generalizing the Notion of Mechanical Energy

We can generalize this construction to apply to other systems where a similar constraint can
be identified. Compliant motion under generalized damper control is one example (Figure 124).
Uncertainty in the physical system may also be included, as shown in Figure 125.

These observations lead us to define the following invariant that must be satisfied to support
the half-space constructions described above:

The Half-Space Invariant: If the system is initially at rest in a configuration xo, then
all subsequent configurations must lie in the half-space defined by a configuration-space
hyperplane normal to ηtrue and containing Ptrue, where ηtrue is a direction in [ηmin, ηmax],
and Ptrue is a point within a distance rη of xo.

This invariant is defined in generic terms, and may be shown to apply to a variety of physical
systems. For example, the invariant holds for a rigid body falling in a gravity field amidst fixed
obstacles, if the origin of the body is chosen to be within rη of the center of mass.

This invariant makes very weak assumptions about the system’s dynamic behavior; arbitrary
trajectories are allowed, as long as the trajectory is confined to the appropriate half-space in the
configuration space. This is at once a dramatically powerful and limiting assumption. Because
the requirement is so weak, we can analyze some very complex physical systems, such as systems
involving dynamic collisions. However, this weak mechanics model also prevents the BPe algorithm
from finding solutions to apparently simple problems, as we shall see later.
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Figure 125: The effect of uncertainty on the set of reachable configurations. (a) The
set of reachable configurations after releasing the particle from an initial configuration
xo, without uncertainty. (b) If the particle’s center of mass is uncertain, the half-space
must be expanded to include the highest possible initial center-of-mass position. (c)
If the gravity direction is uncertain, the half-space must be expanded to include all
possible orientations of the half-space constraint. (d) The combined effect of both
sources of uncertainty; if the particle is initially released from xo, it cannot escape the
shaded region, regardless of the choice of uncertainty conditions.
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Figure 126: Combining half-space and kinematic constraints. After release from an
initial position xo, the particle is constrained to the shaded region V .

The Pigeonhole Principle

The half-space constraints developed above may combined with kinematic constraints to further
localize the set of reachable configurations for a physical system satisfying the half-space invariant.
Figure 126 illustrates this for our falling-particle example. Here the particle is constrained to the
shaded region V , since it cannot reach other portions of the half-space without gaining mechanical
energy.

This result may be combined with a possible-equilibrium analysis to identify the final position
of the particle. The particle can only come to rest in a configuration where static equilibrium is
possible; otherwise a force imbalance would occur. If V contains only one such configuration, then
the final position of the particle is uniquely determined (Figure 127).

Further, the particle must come to rest in a finite amount of time. This assertion is a direct
consequence of the third law of thermodynamics, which implies that perfectly elastic materials and
frictionless contacts cannot exist in real physical systems. These observations imply the following:

Let W be the intersection of the half-space constraints and the kinematically reach-
able configurations of a physical system satisfying the half-space invariant. Let V ⊆ W
be the connected component of W containing the initial configuration. If V is bounded,
then the system must come to rest in one of the possible-equilibrium configurations
within V .

Therefore we can predict the final state of a physical system given its initial state, even though we
know virtually nothing about the trajectory that connects the initial and final states.

This observation forms the foundation of the BPe algorithm: Given a goal G and an action that
satisfies the half-space invariant, the algorithm attempts to find the highest half-space constraint in
configuration space that encloses a connected region V where all possible-equilibrium configurations
within V are goal configurations. V will correspond to a strong backprojection of G, since any initial
configuration within V will come to rest in a configuration in G.
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Figure 127: Q1, Q2, and Q3 show the possible-equilibrium configurations for the
particle, while V shows the set of reachable configurations for the particle after initial
release from the position xo. The particle must come to rest in configuration Q3.

Representing “Puddles” in Configuration Space

The backprojections formed by the BPe algorithms are volumes in configuration space that
are analogous to “puddles” of water on the configuration obstacle surface. These puddles are
connected sets of configuration-space points that are kinematically reachable and also satisfy one
or more half-space constraints.

The boundary of each puddle is comprised of two distinct surfaces: The “top” and “bottom”
of the puddle. The top of the puddle corresponds to the flat surface formed by the half-space
constraint(s), while the bottom of the puddle corresponds to the surface formed by the interface
between the puddle and the configuration-space obstacle. We can represent the entire puddle
surface by representing these two surfaces and their adjacency relationship.

The bottom of the puddle is easy to represent. Since each portion of this surface corresponds di-
rectly to a configuration-obstacle feature, we can use the normal c-obstacle data structure, applying
the necessary transformations to turn the obstacle surface inside out.

The top of the puddle is also straightforward. The planar half-space constraints in the (x, y, θ)
configuration space correspond to degenerate ve facets; these facets arise on the surface of a config-
uration obstacle whenever a vertex of the moving-polygon is coincident with the moving-polygon
origin. We can construct these facets by constructing an imaginary fixed-edge at the desired po-
sition and orientation, and an imaginary vertex at the moving-polygon origin. These imaginary
features define an infinite c-surface corresponding to the planar half-space constraint. Further, the
intersection of the half-space constraint with the configuration obstacle is comprised of ve-ev and
ve-ve obstacle edges that have already been derived (see Appendix 3).

Thus we can represent a configuration-space puddle using a slightly modified version of the
c-obstacle data structure developed previously. It is convenient to include additional control fields
in this data structure (such as a flag indicating which facets correspond to half-space constraints);
we will omit these details here.
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The BPe algorithm uses five operations to construct puddles in configuration space:

• Initialization. A measure-zero puddle is constructed to include an input set of locally-minimal
configurations; this operation is trivial.

• Expansion. Water is added to a puddle until it reaches a specified height. In configuration
space this amounts to constructing a ve facet c-surface corresponding to the specified wa-
ter level, intersecting this facet with the obstacle surface, and selecting the patch from the
resulting collection of patches that is part of a connected surface containing the initial puddle.

• Merging. Adjacent puddles are combined before additional expansions are performed; this is
a purely topological operation.

• Intersection. Two puddles are intersected to include uncertainty in the applied-force direction.
This intersection is much simpler than a general configuration obstacle intersection, since the
bottom surfaces of each puddle correspond to identical obstacle features, and the top surfaces
are planar ve facets.

• Retraction. This is similar to puddle expansion, except water is removed from a puddle
instead of added. Special code must be included to properly handle cases where the puddle
is completely drained.

These operations are similar to the constructions previously described for the CO and STATIC
algorithms. Because of the similarity between configuration-space puddles and configuration-space
obstacles, implementing these construction operations should be a relatively straightforward exten-
sion of the construction procedures employed in the CO algorithm. Partial implementations have
been developed as of this writing; the remaining details are left for future work.
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The BPe Algorithm

The BPe algorithm accepts the following input:

• A polygonal moving-object Pm.

• A polygonal fixed-object Pf .

• A table of friction coefficients Tμ.

• A set of possible applied forces Fa, described by an interval of force directions [ηmin, ηmax],
and a nominal force application point Pη, and an error distance rη. To simplify the following
discussion, we will assume that Pη is coincident with the origin of Pm.

• A set of desired goal configurations G.

• A set of task constraints C, defining a set of configurations that should never occur.

Given this input, the algorithm constructs a set of configurations Vstate that will reliably achieve
a final configuration in G, never encountering a configuration in C. The BPe algorithm constructs
Vstate by identifying the largest puddle on the configuration-space obstacle that contains reliably-
stable configurations in G, but no undesirable configurations (that is, possible-equilibrium config-
urations not in G, or configurations in C). Figure 128 shows several example results produced by
the algorithm, and Figures 129 through 131 summarize the algorithm in pseudo-code.
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Figure 128: Example backprojections constructed by the BPe algorithm. The co-
ordinate axes show a generic configuration space. The diagrams on the left show the
input, and the diagrams on the right show the algorithm’s output. (a) A simple case.
(b) Including a constraint set C. (c) Adding uncertainty in the applied force direction.
(d) Adding uncertainty in the applied force direction and application point.
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Figure 128 (continued): (e) The unstable goal G produces a null backprojection.
(f) The stable goal G is adjacent to the constraint set C; the strong backprojection is
only the point G. (g) A goal comprised of two disjoint sets G1 and G2, yielding a large
connected backprojection. (h) The same example as in (g), but with a different force
direction; the strong backprojection is now disconnected.
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Q′
1

Q′
2

rη

Figure 129: Constructing the strong backprojection of a goal, with uncertainty. (a)
The input. The configuration-space obstacle of the two input objects is shown, along
with the applied-force uncertainty. G is the goal configuration, and C is a set of con-
straint configurations that should be avoided. (b) After constructing Q′, the abstracted
set of configurations that should be avoided. Q′

1 is a set of possible-equilibrium con-
figurations, while Q′

2 is the constraint set C. (c) After constructing the strong back-
projection for ηmin and ηmax. (d) After intersecting the ηmin and ηmax backprojections,
producing a strong backprojection for all directions in [ηmin, ηmax]. (e) After shrinking
to account for rη, the uncertainty in the applied-force point.
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BPe(Pm,Pf , Tμ,Fa,G, C)

Construct the configuration obstacle.
Construct the configuration-space obstacle O of the polygonal objects Pm and Pf ,
using the CO algoirthm. Assure that G and C are disjoint by removing configurations
from G that are also in C.

Construct the possible-equilibrium states.
Construct the set of configurations Q where static equilibrium is possible, using the
STATIC algorithm.

Construct Q′.
Construct the set of avoidance configurations Q′ = (Q − G) ∪ C. This is the set of
configurations that should not be included in any strong backprojection.

Construct strong backprojection, including direction uncertainty.
If ηmin = ηmax, then

V ← BPeideal
(O, ηmin,G,Q′)

else

Vmin ← BPeideal
(O, ηmin,G,Q′)

Vmax ← BPeideal
(O, ηmax,G,Q′)

V ← Vmin ∩ Vmax

Add uncertainty in the applied-force point.
Retract the half-space constraints defining V by a distance rη, producing a smaller set
of configurations Vstate. This retraction may cause some components of V to vanish;
special code must be included to retain goal configurations that are reliably stable but
have measure-zero backprojections.

Return Vstate.
Return the configuration set Vstate, which is a set of configurations that will reliably
achieve a final configuration in G, never encountering a configuration in C. Vstate in-
cludes the effects of uncertainty in friction, the direction of the applied force, and the
point of application of the applied force.

Figure 129 (continued): The BPe algorithm.
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Figure 130: Constructing the backprojection of a goal, without uncertainty. (a) The
input; Q′

1 and Q′
2 are undesirable configurations. (b) After the first kinematic expansion

step. (c) After shrinking to eliminate contained Q′ states. (d) After merging puddles 1
and 2 and repeating the expansion. (e) After merging puddles 1+2 and 3 and repeating
the expansion; this is the final result.
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BPeideal
(O, η,G,Q′)

This procedure constructs a strong backprojection of G, assuming that the applied force
is precisely known, and that the constraint configurations C and non-goal possible-
equilibrium configurations are represented by the abstracted set Q′.

Identify local minima.
Using the techniques described in the text, identify the set of points M on the config-
uration obstacle O that correspond to local minima on the surface, with respect to the
force-direction η.

Identify goal minima.
Construct the set G′ = M∩G of local-minima goal configurations. If G′ = ∅, return.

Construct initial puddles V.
For every connected set of points G′ ∈ G′, construct a puddle of zero volume, with an
elevation equal to the height of G′.

Expand the set of puddles as far as possible.
Repeat:

Merge adjacent puddles in V.
For every pair of puddles (V1, V2) ∈ V that share a common boundary point, merge
V1 and V2 to form V ′, updating V appropriately.

Expand each puddle in V.
For each puddle V ∈ V:

Expand V up to kinematic limits.
Expand the puddle V until water would “spill over” into another component
of the configuration space. This is accomplished by calling the procedure
kinematic-BPeideal

(O, η, V ).

Shrink V to eliminate contained Q′ states.
Form the set Q′′ = Q′ ∩ V . If Q′′ �= ∅, reduce the height of V to hQ′′ , the
minimum height of a point in Q′′. This may shrink the puddle back to its
previous height; these cases may be detected earlier by noticing that Q′ was
adjacent to the boundary of V before expansion.

until no adjacent puddles may be merged in V.

Return the union of the puddles in V.
Under the assumption that the applied force is precisely known, the puddles in V rep-
resent a volume of initial configurations that will reliably achieve a final configuration
in G, never encountering a configuration in Q′.

Figure 130 (continued): The BPeideal procedure.
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Figure 131: Expanding a puddle V to its kinematic limits. (a) The input: A config-
uration obstacle, a single direction η, and a puddle V . (b) Relevant spillover points.
(c) The elevation of each spillover point, measured relative to the direction η. Since
h1 < h2, M1 is the limiting spillover point. (d) After expanding V to h1.
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kinematic-BPeideal
(O, η, V )

This procedure expands the puddle V until its water level reaches a critical point on
the obstacle surface, such that adding more water would cause the puddle to spill over
into another component of the configuration space. These critical points correspond to
local maxima of the height function defined by η; the puddle may be expanded until
the first such local maximum is encountered.

Identify relevant spillover points.
Using the techniques described in the text, identify the set of points M that correspond
to spillover points that constrain the puddle V . These points correspond to saddle
points or local maxima that would cause expansions of V to spill into a new component
of configuration space.

Compute elevation of spillover points.
Compute the height value h for each spillover point (x, y) ∈ M, measured relative to
the direction η. This is accomplished by applying the formula:

h(x, y) = −
[
x
y

]
·
[

cos(η)
sin(η)

]

Identify the smallest elevation hmin.
Sort the h-values, and identify the minimum h-value hmin.

Expand V to hmin.
Update V to represent the result of filling the puddle to a new height hmin.

Return.

Figure 131 (continued): The kinematic-BPeideal procedure.
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The control structure of the BPe algorithm may be modified to take advantage of the incre-
mental construction capabilities of the CO and STATIC algorithms. In this modification, the BPe

algorithm treats the configuration-obstacle surface O and possible-equilibrium states Q as lazy-
evaluated data objects. This is accomplished by using the goal specification G to identify and
construct the initial obstacle features, and then using the adjacency relationships of the resulting
c-obstacle data structure to construct additional features as required by the kinematic-BPeideal

pro-
cedure. There is a difficult subtlety involved in this process, described below. Special bookkeeping
is required to assure that Q and Q′ are properly maintained; these details are straightforward.

The procedures shown in Figures 129 through 131 reduce the problem of constructing a strong
backprojection in the presence of uncertainty to the problem of identifying local minima and
spillover points on the surface of the configuration obstacle, relative to a direction η. These critical
points may correspond to a variety of topological situations on the obstacle surface, as shown in
Figure 132.

When the algorithm contructs a set M of local minima or spillover points, each point M ∈ M
must satisfy several criteria:

When constructing local minima:

� M must be a critical point on the obstacle surface, relative to the direction η.

� M must be a local minimum relative to η.

When constructing spillover points for a puddle V :

� M must be a critical point on the obstacle surface, relative to the direction η.

� M must be a saddle point or local maximum relative to η.

� M must be “relevant” to V ; that is, as V is increasingly filled, M must touch the
boundary of V at some point. This notion is illustrated in Figure 133.

These criteria suggest the following procedure for generating M: Identify all critical points on
the obstacle surface, and then classify them as local minima, maxima, or saddle points. If we are
seeking local minima, then delete the local maxima and saddle points from M, and return. If we
are seeking spillover points, then delete the local minima from M and any remaining points that
are not relevant to V , and return. This procedure raises the following questions:

• How do we identify all critical points on the obstacle surface?

• How do we classify critical points as local minima, maxima, or saddle points?

• How do we decide whether a critical point is relevant to a puddle V ?

Answers to these questions are sketched below.
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(θ, y) local minima:

(x, y, θ) local minima:

(θ, y) spillover points:

(x, y, θ) spillover points:

(a) (b) (c) (d) (e)

Figure 132: Critical points on the configuration obstacle. The upper rows show local
minima; extended sets must be bounded on all sides by features of increasing elevation
with respect to η. The lower rows show spillover points; the dashed lines and shaded
areas show puddles filled to the spillover point, while the arrows indicate the spill
direction that would result from adding more water. The spillover points (a), (c), and
(e) correspond to saddle points on the obstacle surface; (b) and (d) are local maxima.
Bear in mind that in the three-dimensional examples, all applied force directions are
defined in the (x, y) plane, and thus correspond to horizontal vectors in the (x, y, θ)
space. In this figure, the (x, y, θ) axes have been re-oriented to provide a more intuitive
viewpoint, with the applied force acting downward.
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VA

B

C

Figure 133: As water is added to the puddle V , it will spill past points B and C as
the water level rises. Point A will be subsumed as the water level passes B. Points B
and C are relevant spillover points; A is not.

Generating Critical Points

A point on the obstacle surface is critical whenever the set of inward-pointing normals on the
surface contains the direction η (see Figure 134). This observation gives us a simple procedure for
deciding whether a point M is a critical point: Construct the negated configuration-space friction
cone for M , assuming zero friction. If the vector [cos(η) sin(η) 0]T is contained in the resulting
force-sphere polygon, then M is critical.

This condition is exactly identical to the possible-equilibrium condition considered by the
STATIC algorithm, assuming zero friction and zero applied-force uncertainty. Therefore we may
generate all critical points on the obstacle surface by simply calling the STATIC algorithm, passing
in a friction table T0 containing all zeros, a force direction interval [η, η], and rη = 0.

Classifying Critical Points

Given a critical point on the obstacle surface, we must decide whether it corresponds to a local
minimum, saddle point, or local maximum. This is accomplished by forming the surface tangents at
the critical point, and determining whether their dot-products with the vector [cos(η) sin(η) 0]T

are all strictly negative, mixed, or strictly positive, respectively. This construction is illustrated
in Figure 135. Care must be taken to properly handle the numerous special cases that can arise;
some of these special cases are illustrated in Figure 136.
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ηη

(a) (b)

η η

Figure 134: Determining whether a point on the obstacle surface is critical with
respect to a direction η. (a) is critical; (b) is not.

η

(a) (b)

η

(c)

η

Figure 135: Classifying critical points. (a) A local minimum. (b) A saddle point. (c)
A local maximum.
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Figure 136: Example special cases. (a) The vectors v1 and v2 must be generated
on the adjacent facets to classify this saddle point. Further, since v3 and v4 are both
perpendicular to η, a non-local or second-derivative analysis must be performed. (b)
Since all tangent vectors are perpendicular to η, this local maximum must be analyzed
using the original contact geometry, a non-local analysis, or a second-derivative analysis.
Using the contact geometry is the simplest of these tests, and is already included in
the STATIC algorithm’s stability analysis. (c) Classifying this extended set of critical
points requires examination of the obstacle features adjacent to the extended set.

Deciding Whether a Critical Point is Relevant

When the kinematic-BPeideal
procedure constructs the maximum kinematic expansion of a pud-

dle V , it must discriminate between relevant and irrelevant critical points (Figure 133). Relevant
critical points may be recognized using the following decision procedure: Compute the elevation
of the critical point with respect to the puddle surface and the direction η; if the critical point is
not higher than the puddle surface, it is irrelevant. If the point is higher than the puddle surface,
expand the puddle to the height of the critical point, forming V ′. If the critical point touches the
boundary of V ′, it is relevant; otherwise, it is irrelevant. This procedure is illustrated in Figure 137.

By applying the above procedure to all local maxima and saddle points on the obstacle sur-
face, all spillover points relevant to the puddle V may be generated. However, this procedure is
undesirable because it requires construction of the entire obstacle surface, and it requires an expen-
sive puddle-expansion operation for every local maximum and saddle point. Can a more efficient
procedure be found?
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Figure 137: Deciding whether a spillover point is relevant to a puddle V . (a) The
spillover point A is irrelevant because it is lower than the level of V . (b) The spillover
point A is irrelevant because A does not touch the boundary of V ′, the result of ex-
panding V to A’s elevation. (c) A is relevant to V .
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V

M1

M2

Figure 138: In this figure, the configuration-obstacle features adjacent to the boundary
of the puddle V are traced until a local maximum is reached; the local maxima M1 and
M2 nearest the puddle boundary are the only relevant critical points. The control
structure of this search may be modified to stop the tracing procedure once the lowest
critical point is found, reducing the number of obstacle features that must be analyzed.

V

A

B

C

Figure 139: The tracing procedure illustrated in Figure 138 will identify A and B as
relevant spillover points; the point C is missed.

One approach would be to use the features adjacent to the boundary of V to initiate a search
for the nearest spillover point. This procedure is illustrated in Figure 138 for an example two-
dimensional configuration space. An analogous procedure may also be defined for obstacles in the
three-dimensional (x, y, θ) configuration space; this case is slightly more complicated because it is
necessary to trace a graph of adjacent features instead of a linear sequence of features.

This procedure has the advantage that it supports incremental construction of the configura-
tion obstacle. Since a partially-constructed c-obstacle data structure contains pointers connecting
complete obstacle facets to their adjacent incomplete facets, the tracing procedure may call the
complete-facet procedure to construct new obstacle features as they are needed.

Unfortunately, this procedure will fail to detect relevant spillover points in certain situations,
such as the example shown in Figure 139. These failures occur because non-local features of
the configuration obstacle pierce the puddle surface; this topological event is not detected by the
tracing procedure. It may be possible to extend the tracing procedure to detect these cases, using
decision procedures similar to the conflict-possible? tests employed by the CO algorithm. Further,
fleshing out the geometric details of the puddle-expansion procedure may suggest other approaches.
Defining a complete, efficient, and incremental algorithm for generating relevant spillover points
remains an open research problem.
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Critique

The BPe algorithm may be used to construct strong backprojections for physical systems that
have very complex dynamic properties. For example, the algorithm may be used to construct
a set of initial dropping positions that will reliably locate a planar part in an orienting fixture,
as shown in Figure 21 of Part I. The behavior of this physical system is dominated by inertial
terms and collision dynamics, yet reliable actions may be synthesized without perfoming a detailed
dynamic analysis. This is possible because the BPe algorithm exploits the geometry of the task
and the conservation of mechanical energy to identify invariants that apply to all possible system
trajectories.

Care must be taken to insure that the assumptions required by the BPe algorithm accurately
match the physical system. For example, if we add vibration to the orienting fixture, a resonant
excitation may occur that violates the half-space invariant (Figure 140). This problem may be
avoided by applying the vibration along a direction normal to the support plane, or by performing
a resonant-frequency analysis that demonstrates that anomalies such as the example shown in
Figure 140 cannot occur. A third alternative might be to eliminate the vibration altogether by
using an air table or magnetic levitation to eliminate support friction, or physically separating the
fixture from the vibrating support plane.

The weak mechanics model employed by the BPe algorithm enables it to construct strong
backprojections for difficult problems involving complex shapes undergoing highly unpredictable
trajectories. However, this same weak mechanics model prevents the algorithm from constructing
backprojections for some very simple problems, such as the dropping task shown in Figure 141.
The BPe algorithm cannot construct a strong backprojection for this task, because the set of goal
configurations does not correspond to a strict local minimum in the (x, y, θ) configuration space.

Expressed in the original space, this implies that the BPe algorithm cannot bound the lateral
motion of the polygon as it bounces on the horizontal surface; a series of bounces may cause the
polygon to fall off the end of the surface (Figure 142). This is a plausible prediction for a highly
elastic system, and the BPe algorithm has no reason to rule out this possibility. Therefore the lack
of a solution to this problem is not a shortcoming of the BPe algorithm, but rather a shortcoming
of the weak model of the task mechanics.

For some physical systems, we may know additional information about the system mechanics
that further constrains the set of possible motions. For these systems, we would like to include
this information in our backprojection construction procedure, thus producing a larger strong
backprojection. This is the motivation for the BP i algorithm, presented in the next section.
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Figure 140: A semi-elastic particle dropping onto a vibrating table. (a) When the
vibration is turned off, the bounce height decreases monotonically, and never exceeds
the initial dropping height. (b) When vibration is added, resonant excitation may
occur that causes the particle to exceed its initial dropping height. Here the vibration
frequency is chosen so that the particle experiences a series of collisions that increase
its energy.
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(a) (b)

g

Figure 141: A simple task where the BPe algorithm produces a null backprojection.
(a) The goal is to drop the triangle so that it comes to rest on the flat surface in the
orientation shown. (b) The task in the configuration space. The bold edge corresponds
to the goal; this edge is not a local minimum because its endpoints are not adjacent to
features with strictly increasing elevation. The dotted line shows a path in configuration
space that exits the goal without increasing elevation.

Figure 142: A trajectory demonstrating why the BPe algorithm cannot produce a
strong backprojection for the example shown in Figure 141.

201



    

Constructing Vstate Using Numerical Integration

The BP i algorithm constructs strong backprojections for physical systems where a model of the
system mechanics may be used to constrain the set of possible instantaneous motions. Examples of
such systems include objects being pushed along a flat surface, or objects controlled by a compliant-
motion control law such as generalized damper or generalized spring control.

We model the differential behavior of these systems by a function D, which accepts a description
of the current system state S and returns a set of states {S′} that contains all possible states that
may occur at the next time instant. D encapsulates a mechanical model of the system that includes
all of the physical parameters needed to predict the system behavior, as well as uncertainty in those
parameters.

To gain an intuitive understanding of the function D and its relationship to strong backpro-
jections, consider the simple example of a particle sliding along a frictional constraint, shown in
Figure 143. In this physical system, Coulomb friction opposes motion of the particle, and tends to
bring the particle to rest. The behavior of this system may be expressed by a field of vectors in
an (x, ẋ) state space (b). Each vector indicates the instantaneous change in state experienced by
the particle; we refer to these vectors as state-transition vectors. Integrating these vectors forward
from an initial state (xo, ẋo) will construct the set of states following the initial state (c). Similarly,
reverse integration will construct the set of states preceding a given state (d). For this physical
system, the function D(x, ẋ) returns the state-transition vector associated with the point (x, ẋ).

Now consider the same physical system, but with an uncertain coefficient of friction (Figure 144).
This uncertainty causes the system behavior to become non-deterministic, producing cones of pos-
sible state-transitions in the state space (b). For each state-space point (x, ẋ), the associated
state-transition cone indicates the set of possible states that may occur at the next time instant.
Forward-integration may again be applied from an initial state (xo, ẋo); the resulting region con-
tains all states that may possibly follow the initial state (c). A similar reverse-integration process
identifies the set of states that may possibly precede a given state (d). With uncertainty present,
the function D(x, ẋ) returns the state-transition cone associated with the point (x, ẋ), instead of a
single state-transition vector.

The state-transition cone function D may be used to construct strong backprojections, as shown
in Figure 145. In this figure, G represents a set of goal configurations, and the extrema of the state-
transition cones are reverse-integrated to identify a set of initial states that will reliably achieve a
final configuration in G. Constraints may also be included, as shown in Figure 145(b).
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ẋ

Figure 143: A simple physical system. (a) A particle in contact with a frictional
constraint. (b) The field of state-transition vectors describing the particle’s behavior,
expressed in the (x, ẋ) state space. (c) Forward integration of the state-transition field.
(d) Reverse integration.
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Figure 144: Adding uncertainty. (a) The physical system of Figure 143, but with
uncertainty in the coefficient of friction. (b) The field of state-transition cones that
describe the particle’s behavior. (c) Forward integration. (d) Reverse integration.
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ẋ

x

ẋ
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Figure 145: Using the state-transition field to construct strong backprojections. (a)
The goal is to place the particle at rest within a desired interval of x-values; this is
indicated by the bold segment G. Reverse-integration is performed from the endpoints
of G, delineating the shaded region. This region corresponds to the set of initial states
that will reliably achieve G, despite uncertainty in the physical system. (b) The same
task, but with the artificial constraint that the particle’s speed should never exceed
vmax whenever x is larger than xC .
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The example shown in Figure 145 suggests a procedure for constructing strong backprojections:
Given a goal G, reverse-integrate the extrema of the state-transition cones from the endpoints of
G, using the function D to generate the necessary state-transition cones. If a constraint-set C is
encountered, trace around the boundary of C in the appropriate direction until integration may
resume. Terminate this process when the resulting contours cross, enclosing a connected region of
initial states that will reliably achieve G.

This procedure is conceptually simple, but unfortunately will not properly construct backpro-
jections for general tasks. There are four reasons for this:

• Not all goals have endpoints. Some goals are regions that do not have endpoints appropriate
for starting the integration process. Figure 146 shows an example.

• Enclosed constraint regions may be overlooked. The proposed procedure has no mechanism
for detecting constraint states that are enclosed within the integrated contours. This may
lead to the construction of semantically incorrect backprojections (Figure 147).

• The procedure may not terminate. Some backprojections are unbounded; the bounding con-
tours of these backprojections will never cross, causing the numerical integration to proceed
indefinitely. Figure 148 shows an example.

• The procedure is prone to numerical errors. Small numerical errors in the state-transition
cone may be amplified by the integration process, leading to gross errors in the resulting
strong backprojection (Figure 149).

(a) (b) (c)

GA
G

Figure 146: An example of a goal that has no endpoints for initiating reverse inte-
gration. (a) A physical system where a point robot moves toward the point A, with
direction error. The goal is to place the robot inside the circle. (b) The situation in the
robot’s configuration space. The goal is the circular disc G. (c) The set of configurations
from which the robot will reliably reach G.
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Figure 147: The previous sliding-particle example, with a bounded constraint set C.
(a) The proposed reverse-integration procedure inadvertantly encloses C, producing an
erroneous backprojection. (b) The correct strong backprojection.

(a) (b)

GGGG

(c) (d)

Figure 148: (a) A classic peg-in-hole task, due to [Lozano-Pérez et al. 1984]. (b)
The state-transition field of this physical system. (c) The proposed reverse-integration
procedure fails to terminate in this example, since the integrated contours never cross.
(d) The region of initial configurations that will reliably achieve G is unbounded; any
subset of this region is a valid strong backprojection.

x

ẋ

G

Figure 149: The finite precision of numerical integration may cause the proposed
reverse-integration procedure to include points outside the true backprojection (shown
dotted).
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It may be possible to modify the above procedure to overcome these problems, but instead we
will consider another procedure that avoids these difficulties. This procedure constructs a contour
surrounding the goal G, and iteratively expands the contour to include adjacent points whose
state-transition cones strictly enter the contour. This construction is illustrated in Figure 150.

The BP i algorithm is based on this contour-expansion procedure. The algorithm constructs
strong backprojections for physical systems involving two polygonal objects whose interaction can
be described by a state-transition cone function D(x, y, θ, feature); this allows strong backprojec-
tions to be constructed in the (x, y, θ) configuration space. The BP i algorithm constructs and
expands contours on the surface of the configuration obstacle, and uses a ray-construction proce-
dure to lift the resulting two-dimensional surface patches into three-dimensional configuration-space
volumes. The ray-construction procedure further restricts the class of physical systems that may
be addressed by the BP i algorithm: All free-space motions must be pure translations, in a direction
within a constant bounding interval.

The following sections describe the BP i algorithm and its data structures; the chapter concludes
with a discussion of ways to extend the BP i algorithm to address a broader class of tasks.
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CCCC

Figure 150: The contour-expansion procedure applied to the examples of Fig-
ures 146–149.
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Representing State-Transition Cones, Expandable Contours, and Strong Backprojec-
tions

The BP i algorithm uses three special data structures in its computation of strong backprojec-
tions. These data structures represent state-transition cones in the (x, y, θ) configuration space,
expandable contours on the surface of a configuration-space obstacle, and volumes of (x, y, θ) con-
figurations corresponding to the strong backprojection Vstate. This section will describe these data
structures and some of the basic operations for manipulating them.

State-Transition Cones

The function D(x, y, θ, feature) constructs the state-transition cone for the configuration (x, y, θ);
this cone delineates the configurations that may occur in the time instant following (x, y, θ). The
state-transition cone may also be viewed as a description of the set of possible differential motions
the moving-object may undergo relative to the fixed-object. This set may include a collection of
free-space motions, a collection of motions on the configuration-obstacle surface, no motion, or any
combination of these.

A data structure for representing state-transition cones is shown in Figure 151. This data
structure contains fields for each of the motion classes mentioned above; the set of possible motions
is the union of these classes. The data structure may be used to represent general state-transition
cones, under the restriction that free-space motions must be translations.

The state-transition cone data structure is constructed by the function D(x, y, θ, feature). This
function is specific to the physical system being analyzed, and considers a variety of physical
parameters describing the interacting objects and the applied action. Figure 152 briefly summarizes
the construction of state-transition cones for systems involving linear pushing actions.
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state-transition-cone
no-motion? A Boolean flag indicating whether static equilibrium is pos-

sible for the configuration (x, y, θ).

edge-motions If the point (x, y, θ) is on a configuration-obstacle edge or
vertex, then this is a set of 〈E plus? minus?〉 data records.
Each record is comprised of an obstacle edge E, and plus?
and minus? flags indicating the possible motion directions
along E.

facet-motions If the point (x, y, θ) is on the configuration-obstacle surface,
then this is a set of 〈F {[βmin1 , βmax1 ], [βmin2 , βmax2 ], . . .}〉
data records, each containing an obstacle facet F and a set
of angular intervals {[βmin1 , βmax1 ], [βmin2 , βmax2 ], . . .}, that
delineate a set of possible motions on the surface of F . These
beta-values are defined in the (p, ρθ) space that parameterizes
F ’s c-surface, where ρ is a scaling factor chosen to improve
numerical robustness.

free-motions This is a set of intervals {[ηmin1 , ηmax1 ], [ηmin2 , ηmax2 ] . . .},
representing the set of possible free-space translation direc-
tions, measured relative to the fixed-object’s x-axis.

Figure 151: A data record for representing the state-transition cone corresponding to
a configuration-space point (x, y, θ).
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Fx

Fy

τ
ρ

(a)

(b)

ψmin

ψmax

ψmin+π

ψmax+π

Figure 152: Constructing the state-transition-cone for linear pushing actions. This
figure shows the execution of the D(x, y, θ, feature) function for an example configura-
tion on an obstacle edge. This function creates a state-transition-cone data record, and
performs a physical analysis to fill the record’s no-motion?, edge-motions, facet-motions,
and free-motions data fields appropriately. (a) The example configuration. The pushing
direction interval [ψmin, ψmax] is built into the function, and the other required physical
parameters are built into the moving-object and fixed-object data structures, which
are accessible through the configuration-obstacle feature. (b) Determining whether
“no-motion?” is possible. Linear pushing satisfies the assumptions required by the
STATIC algorithm, so the D function applies the possible-equilibrium test described in
the Statics chapter. In this case equilibrium is not possible.
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(i)

(ii)

(iii)

yes no

h

h increasing
h decreasing

ψ

friction cone
rays corresponding
to two-contact
counter-clockwise
rotation

ψ

noyes yes

Figure 152 (continued): (c) Constructing the set of possible edge-motions. The
D function decides whether the configuration may remain on the edge, identifies the
motion direction along the edge, and then checks the consistency of this motion. (i)
To decide whether the configuration may remain on the edge, the function constructs
the state-transition-cones of the adjacent facets, and concludes that configurations on
the edge may persist if both adjacent state-transition-cones include a motion toward
the edge. (ii) To decide the motion direction, the function invokes the conjecture that
the center of friction never rises relative to the pushing direction. Put another way,
the signed distance h never increases. This conjecture uniquely determines the motion
direction along the edge, although uncertainty in ψ may cause ambiguities. (iii) In some
cases the function is able to determine that motion in a given direction is not possible,
based on the moment exerted by the contact friction cone rays. In the example shown,
counter-clockwise motion is consistent with the h conjecture, but is inconsistent with
the clockwise moment exerted by the corresponding friction-cone rays.
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(iii)
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N
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AA
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Figure 152 (continued): (d) Constructing the set of possible facet-motions. The D

function constructs the set of possible motions for each facet adjacent to the obsta-
cle edge, and forms the union of these sets. The analysis of a single facet is shown
here. (i) Given a pushing situation without uncertainty, the function constructs an
approximation to the COR locus developed by Peshkin. This is the set of possible in-
stantaneous rotation centers, given that the distribution of support points beneath the
moving-object is unknown but contained within the object boundary. The vertices of
this approximation are transformed into instantaneous motion directions in the facet’s
(p, ρθ) space, and the convex span of these directions is formed. (ii) Uncertainty is
included by applying this construction to all combinations of the uncertainty bounds,
including contact friction, pushing direction, and center-of-friction location. The result-
ing cones are then combined to form the set of motions possible on the facet c-surface,
given these sources of uncertainty. This process must be implemented carefully; the
combination of two cones is not simply their convex span. (iii) Kinematic constraints
are included by removing motion directions that exit the facet; these are identified using
the tangent direction of the obstacle edge, expressed in the facet’s (p, ρθ) space.
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(i)

(ii)

(iii)

ψmin+π

ψmax+π

∩

Figure 152 (continued): (e) Constructing the set of possible free-motions. (i) The
D function constructs the contact normals for the configuration. (ii) For each contact
normal, the function identifies the set of free-space translation directions consistent with
the contact normal. The resulting intervals are intersected to form the set of free-space
translation directions that are consistent with all kinematic constraints. (iii) The set
of possible pushing directions is negated and intersected with the set of kinematically
admissible free-space translations; the result of this intersection is the set of possible
free-motions. In this case, no free-motions are possible. This analysis of linear pushing
actions draws heavily on the work of other authors; see [Reuleaux 1876], [Mason 1986a],
[Peshkin and Sanderson 1988a], and [Goyal 1989] for further information.
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Expandable Contours

The primary integration technique employed by the BP i algorithm is the expansion of closed
contours on the configuration obstacle surface. These expandable contours are represented by a
circular doubly-linked list of contour-point data records, shown in Figure 153.

These contours are iteratively expanded by visiting each contour-point, determining whether
the point can be expanded, and re-setting the (x, y, θ) coordinates of the contour-point to a new
expanded position (x′, y′, θ′). This process is applied to every contour-point, and repeated until no
further expansion is possible, or some other termination condition is satisfied. The construction of
new expansion points will be described in a later section; here we will review the basic expansion
operations necessary to maintain the integrity of the contour data structure.

As the contour is constructed and expanded, the BP i algorithm maintains the following invariants:

� Every obstacle feature crossed by the contour is explicitly represented in the contour data
structure. This implies that a contour-point exists for every obstacle vertex that touches
the contour, and at least one contour point exists for every obstacle edge and facet that the
contour traverses.

� The contour never crosses itself.

� The distance between contour-points never exceeds some pre-set threshold lmax in x and y,
or λmax in θ. In a sequence of contour-points traversing a single obstacle edge or facet, no
two points are simultaneously closer than lmin and λmin.

These invariants are initially assured when the contour is constructed, and then maintained
during all subsequent expansion operations. Figure 154 shows an example contour satisfying these
invariants, and Figures 155 through 158 illustrate a few of the procedures employed to maintain
these invariants as the contour is expanded. The second invariant is automatically maintained as
an artifact of the strong-backprojection process; special procedures are not required to prevent the
contour from crossing itself during contour-expansion.
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contour-point
x
y
θ

The coordinates of this contour-point.

type One of facet, edge, vertex, or interface.

F
E
V

Obstacle features adjacent to this contour-point. If the type
is interface, then F and E are both defined.

previous
next

Adjacent contour-points in the contour. The orientation of
the contour is significant; if you walk on the obstacle surface
from the previous contour-point to the next contour-point,
points inside the contour are on your left.

Figure 153: A data record for representing a point on an expandable contour; some
control fields are omitted for clarity.

vertex contour-point
edge contour-point
facet contour-point
edge/facet interface contour-point

lmin

λmin

lmax

λmax

Figure 154: An example contour, containing all types of contour-points. The
edge/facet interface contour-points are drawn slightly offset for clarity; their actual
position is exactly on the associated obstacle edge. All contour-segments are within
the lmax and λmax bounds, and almost all contour-segments segments obey the lmin or
λmin bounds. Exceptions occur when contour-points are very close to another obstacle
feature, such as the obstacle vertex at the lower left. Zero-length contour-segments
always connect edge or vertex contour-points with their adjacent edge/facet interface
contour-points.
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(a) (b) (c) (d) (e)

Figure 155: Expanding a contour-point past an obstacle vertex. (a) An initial contour.
(b) A normal expansion step. (c) The next expansion point exceeds the edge-limits, so
the contour-point stops at the obstacle vertex. (d) Expanding the obstacle vertex is
a purely topological change in the contour; the collection of five edge and edge/facet
interface contour-points near the vertex are all collocated. (e) After passing the ver-
tex, expansion proceeds normally. In this figure, the facet and edge/facet interface
contour-points are left static for clarity.

(a) (b) (c) (d) (e) (f)

Figure 156: Expanding a contour past an obstacle edge. (a) An initial contour on
an obstacle facet. (b) A normal expansion step. (c) Further expansion of the middle
two contour points would pass the edge bounding the facet, so these points stop at the
edge. (d–f) Crossing the edge, allowing normal expansion to resume on the opposite
side.
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C C C C C

Figure 157: Managing edge/facet interface contour-points. In this example, the upper
facet contour-points have expanded more quickly than the contour-points on the lower
facet, but their expansion is halted by the constraint set C. The contour-points on the
lower facet continue to expand, overtaking the edge/facet contour-points on the upper
facet; these are deleted as they are overtaken.

lmax

λmax

(a) (b) (c)

Figure 158: Maintaining the maximum-length invariant. (a) An initial contour. (b)
After expanding all contour points; the previous location of the contour is shown dotted.
Two of the expanded contour-segments exceed the length bounds lmax and λmax; these
segments are split, as shown in (c). The minimum bounds lmin and λmin are also
maintained; this is not shown.
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Strong Backprojection Volumes

Once a contour has been expanded, the BP i algorithm uses a ray-construction procedure to
convert the enclosed two-dimensional surface patch into a three-dimensional strong backprojection
Vstate. This volume is represented by a collection of θ-slices that approximate the true volume. An
(x, y, θ) point is considered to be within the volume if it is contained within a slice with a matching
θ-value, or if it is contained within both of the nearest θ-slices. This representation is similar to
slice-based representation described in [Lozano-Pérez 1987]. Figure 159 shows a data structure for
representing approximate volumes in configuration space.

c-volume
θ-interval The set of θ-values spanned by this volume. This may be a

closed interval [θmin, θmax], or an “all-angles” flag indicating
that the volume spans all θ-values.

slice-list An ordered list of c-slices, spaced at regular θ-values.

c-slice
theta The θ-value for this slice.

polygons A set of polygons defining the intersection of the volume with
this θ-plane.

Figure 159: Data records for representing volumes in configuration space.
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The BP i Algorithm

The BP i algorithm accepts the following input:

• A polygonal moving-object Pm.

• A polygonal fixed-object Pf .

• A function D(x, y, θ, feature), which returns a state-transition cone bounding the possible
motions that may occur from the configuration (x, y, θ) on the indicated configuration obstacle
feature. D may assume that it is never given an illegal configuration, but it should be defined
for free-space points as well as points on the obstacle surface.

• A set of desired goal configurations G.

• A set of task constraints C, defining a set of configurations that should never occur.

• A predicate stop?(contour), which may be used to terminate contour expansion early if de-
sired.

Given this input, the algorithm constructs a set of configurations Vstate that will reliably achieve
a final configuration in G, never encountering a configuration in C. The BP i algorithm constructs
Vstate by constructing an initial contour surrounding the stable subset of G, and then expanding
this contour to include additional points outside C that strictly enter the contour. This contour-
expansion may be interrupted at any time to lift the enclosed two-dimensional region into a three-
dimensional volume; the resulting volume will be a strong backprojection of G. If subsequent
analysis reveals that a larger volume is required, contour expansion may be continued, producing a
larger strong backprojection. This expand/lift process may be repeated until either (i) a suitable
backprojection is found, (ii) contour expansion is no longer possible, or (iii) the calling program
decides to give up and try something else. This control structure is illustrated in Figure 160.

This simple algorithm reduces the problem of constructing strong backprojections to three sub-
problems: constructing an initial contour surrounding the stable subset of G, expanding a contour
to include configurations that will enter the contour, and converting the enclosed surface patch
into a three-dimensional volume. The following sections address each of these subproblems, and
conclude with a discussion of how the BP i algorithm may be implemented to support incremental
construction of obstacle surfaces.
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BPi(Pm,Pf , D(x, y, θ, feature),G, C, stop?(contour))
Construct the configuration-obstacle.
Construct the configuration-space obstacle O of the polygonal objects Pm and Pf , using the CO
algorithm. Assure that G and C are disjoint by removing configurations from G that are also in C.

Construct initial contours.
Call the procedure construct-initial-contours(O, D,G) to construct a set B of initial contours sur-
rounding the stable subset of G. If B = ∅, then return.

Construct the strong backprojection.
Vstate

B′

maximal?

⎫⎬
⎭← expand-lift(B, D,G, C, stop?)

Return the values Vstate, B′, maximal?
Return the expanded contours B′ as well as the backprojection volume Vstate so that additional
contour-expansion may be resumed later. The maximal? flag indicates whether additional expansion
will be productive; if maximal? is true, then all contours in B′ have been expanded as far as possible.
Otherwise, further expansion may be accomplished by additional calls to the expand-lift procedure.

expand-lift (B, D,G, C, stop?)

Expand the input contours.

B′

maximal?′

}
← expand(B, D,G, C, stop?)

Construct the strong backprojection volume.

Vstate

B′′

maximal?′′

⎫⎬
⎭← lift(B′, D,G, C, stop?,maximal?′)

Return the values Vstate, B′′, maximal?′′

Figure 160: The BP i algorithm.
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Creating an Initial Contour

Given a goal G, the algorithm constructs an initial contour surrounding the stable subset of
G. This is accomplished by discarding the configurations in G where lost-contact is possible, con-
structing contours surrounding the remaining portions of G, and shrinking these contours to remove
configurations whose possible motions may exit G. This procedure is illustrated in Figure 161.

This procedure identifies a set of contours describing stable goals. These contours are stable in
the sense that once the physical system reaches a configuration in the contour, it will remain in
the contour indefinitely. This does not imply that the system will come to rest at any particular
configuration; in fact, it may continuously undergo small motions that remain inside the contour. In
this sense the contours identify a configuration region that is reliably stable, even though individual
configurations within the region may not be reliably stable.

If the physical system satisfies the half-space invariant, the BPe algorithm may be used to
construct an energy-based strong backprojection, which is then used as a backprojection base
for the BP i algorithm. In this case the initial contour is formed around the border of the puddle
returned by the BPe algorithm, and the stability analysis of the construct-initial-contours procedure
is not required.
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(a)

G

(b)

(c)

(d)

Figure 161: Constructing initial contours. (a) A strange physical system, illustrated
in a schematic configuration space. The state-transition field of the physical system
is shown; configurations where “no motion” is possible are denoted by open circles
at the base of the state-transition cone. Dark triangles indicate configurations where
lost-contact is possible. The input goal G is very broad, allowing all configurations
within the shaded rectangle. (b) After discarding configurations where lost-contact is
possible, and forming initial contours surrounding the remaining configurations. (c) Af-
ter several shrinking steps to remove configurations that may exit the contour. (d) After
all shrinking steps are complete; these contours delineate stable goal regions.
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construct-initial-contours (O, D,G)
This procedure constructs a set of contours surrounding the stable subset of G. The procedure identifies
this subset using the function D, which describes the set of possible motions of the moving-object.
When the physical system satisfies the necessary assumptions, these contours may also be constructed
using the BPe algorithm; this method is omitted for clarity.

Remove lost-contact goal configurations.
Discard the configurations in G where lost-contact is possible, forming the set of configurations G′

where contact must be maintained. Accomplish this by calling the function D(xfree, yfree, θfree, nil),
to obtain the free-space translation directions [ηmin, ηmax], and then using these directions and the
c-obstacle data structure to directly construct the lost-contact configurations in G.

Construct initial contours.
Construct a contour surrounding each connected component in G′, producing a set of contours B.

Shrink contours to remove unstable configurations.
For each contour B ∈ B, shrink B to remove configurations that may possibly exit B. This is similar
to the contour-expansion process, but requires special code to properly handle cases where a contour
crosses itself, crosses another contour, or vanishes during shrinking.

Return the remaining contours.
Each contour remaining in B encloses a set of configurations G ⊆ G, where no configuration in G has a
state-transition-cone that exits G. This implies that once the physical system reaches a configuration
in G, it will never leave G. Therefore each contour in B encloses a set of stable goal configurations;
return B.

Figure 161 (continued): The construct-initial-contours procedure.
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Expanding a Contour

The initial contour constructed by the algorithm is expanded in a greedy fashion until one of
the above termination criteria is met. The contour is expanded to include all configurations that
will definitely enter the contour, as long as those configurations are not members of the constraint
set C. The expansion is performed by applying repeated expansion steps to the contour.

Each of these expansion steps is actually a two-phase process: In the first phase, the algorithm
visits every contour-point in the contour, contructs a new expanded position for the contour-point,
and moves it there. This phase includes the topological management operations illustrated in
Figures 155 through 157. In the second phase, the algorithm again visits every point in the contour,
and applies splitting and merging operations as needed to assure that each contour-segment is
within the appropriate length bounds. This control structure is shown in Figure 162.

This two-phase expansion process reduces the contour-expansion problem to the problem of
constructing a new expanded position for a given contour point P . This is accomplished by con-
structing the state-transition-cone at P , and constructing a point P ′ that would cause the bounding
rays of the state-transition-cone to fall just inside the adjacent contour-segments. This construction
is illustrated in Figure 163. This process is tempered by a maximum step distances dmax and δmax,
which prevent the algorithm from taking large expansion steps when the state-transition cone is
very narrow (Figure 164).

Constructing a valid expansion point involves additional considerations: The contour should
not be expanded to include P ′ if lost-contact or static-equilibrium are possible at P ′, if P ′ is in the
constraint set C, or if expanding the contour to P ′ causes the contour to cross obstacle features
without proper topological representation. The algorithm responds to these situations by reducing
the distance between P and P ′ in an attempt to identify an acceptable expansion point. These and
other condsiderations are addressed by the expand-contour-point procedure, shown in Figure 165.
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expand (B, D,G, C, stop?)
Expand each contour.
For each contour B ∈ B:

Repeat:

changed? ← false.
Expand the points in the contour.
Call the procedure expand-contour-point(contour-point, D,G, C, changed?) for each contour-
point in B. This procedure has the side-effect of setting changed? to true if the contour-point
is modified.
Assure that spacing is proper.
Visit each contour-point in B, and split or merge the adjacent segments to bring them within
the length bounds [lmin, lmax] and [λmin, λmax]. Allow zero-length edges for the appropriate
topological situations.

until stop?(B) = true or changed? = false.
The input predicate stop? may be an arbitrary decision procedure. This procedure may return
true if B reaches a certain size, or ignore B and return true based on the number of iterations
or elapsed time. The changed? flag indicates whether this iteration modified the contour; if not,
then further iterations are pointless.

endfor

Determine whether further expansion is possible.
Set maximal? to true if all contours in B have been expanded as far as possible. This may be
determined from the changed? flags developed in the previous loops.

Return the values B, maximal?

Figure 162: The expand procedure.
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(a) (b)

P
P ′

p

ρθ

P ′

P

Figure 163: Constructing an expansion position P ′ for a contour-point P . (a) If P is
on an obstacle facet, the bounding rays of the state-transition cone are combined with
the previous and next contour-points to construct P ′. This computation is performed
in the (p, ρθ) space to improve numerical robustness. (b) If P is on an obstacle edge,
then the state-transition cone is again used to construct P ′, but with the additional
constraint that P ′ must remain on the edge. Each state-transition cone ray is analyzed
in the (p, ρθ) space of the corresponding facet. The edge/facet interface contour-points
have been omitted for clarity.
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(a) (b)

P

P ′

p

ρθ

P ′

P

dmax

δmax

Figure 164: Limiting the expansion of a contour-point. (a) If the nominal expansion
point is too far from P when expanding a facet contour point, an intermediate point
is constructed along the line connecting P and the nominal expansion point. (b) A
similar limit is applied to the expansion of contour-points on obstacle edges. Here the
state-transition cone indicates that pure motion along the boundary will occur, so P ′

is constructed a distance δmax away from P in the appropriate direction. The linear
bound dmax is also checked, to prevent large expansion steps on steeply-sloped edges.
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expand-contour-point (contour-point, D,G, C, changed?)
Expand only valid backprojection points.
The recursive procedure that lifts contours into three-dimensional volumes sometimes creates contours
that contain invalid backprojection points. These contours should be left intact, because the measure-
zero sets they enclose are used to terminate the recursion. Invalid points may be detected by calling
the procedure valid-backprojection-point?(P, feature, D,G, C), where the P and feature parameters are
obtained from the contour-point. If this procedure returns false, then return.

Expand the contour-point.
Execute one of the following, based on the type field of the contour-point:

vertex: Topologically move the contour onto the obstacle features adjacent to the vertex.
This is a purely topological modification; all generated contour-points have the same
(x, y, θ) field as the input contour-point. Set changed? to true, and return.

interface: Depending on the adjacent contour-segments and the edge and facet state-transition
cones, it may be appropriate to convert this contour-point to a facet or edge contour-
point, or an interface contour-point on the opposite side of the edge. If so, perform
the appropriate topological modification, set changed? to true, and return.

edge, facet: Construct the expansion point.
Call the function D(xP , yP , θP , feature) to construct the state-transtion-cone for the
contour-point. Using the techniques described in the text, construct the point P ′

such that moving the contour-point to P ′ would cause the adjacent contour-segments
to nearly parallel the bounding rays of the state-transition cone. Special code must
be included to handle cases where the adjacent contour-segments are of zero length,
which may occur after certain topological modifications. If P ′ cannot be constructed
because of the geometry of the adjacent contour-segments, then return.

Adjust the expansion point.
If the distance between P and P ′ exceeds dmax in (x, y) or δmax in θ, then construct
a new P ′ along the line connecting P and P ′ that is within these limits.
If P ′ or the new adjacent segments cross a topological feature on the obstacle surface,
then contruct a new P ′ along the line connecting P and P ′ that causes the contour
to just touch the crossed feature.
Call the procedure valid-expansion-point?(P ′, contour-point, D,G, C); if this proce-
dure returns false, construct a new P ′ halfway between P and P ′, and call the
procedure again. If the procedure returns false a second time, then return.

Reposition the contour-point.
Set the (x, y, θ) coordinates of the contour-point to P ′, and perform the appropriate
topological modifications. Set changed? to true, and return.

Return.

Figure 165: The expand-contour-point procedure.
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valid-expansion-point? (P ′, contour-point, D,G, C)
Construct the state-transition cone for P ′ by calling the function D(xP ′ , yP ′ , θP ′ , feature), where the
feature parameter is obtained from the contour-point.

If the state-transition-cone contains possible free-motions, then return false.

Else compare the possible motion directions represented by the state-transition-cone with the adjacent
contour-segments that would result from moving the contour-point to P ′; the details of this test will
depend on the type of the contour-point. If there are motion directions that lie outside the new
adjacent contour-segments, then return false.

Else call the function valid-backprojection-point?(P ′, feature, D,G, C), and return the result.

valid-backprojection-point? (P, feature, D,G, C)

This routine returns true unless P ∈ (Q − G) ∪ C, where Q is the set of configurations where static
equilibrium is possible.

If P ∈ G, then return true.

Else construct the state-transition cone for P by calling the function D(xP , yP , θP , feature); if the
no-motion? field of the resulting state-transition-cone is true, then return false.

Else if P ∈ C, then return false.

Otherwise, return true.

Figure 165 (continued): Predicates called by the expand-contour-point procedure.
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(a) (b) (c) (d)

θmax

θmin

θi
P1 P2

P12

Figure 166: Converting a contour into a volume. (a) A contour on a schematic
configuration obstacle, after identifying the bounding θ-values. (b) For a typical slice
θi, the contour crossing points P1 and P2 are found, and these points are connected by
a sequence of line segments constructed on the obstacle surface. (c) Rays are erected
from P1 and P2, opposite the free-space motion directions ηmin and ηmax. These rays
are intersected to form a closed polygon, representing the volume’s intersection with a
horizontal plane at θi. (d) Applying this procedure to a series of θ-values produces a
slice-based representation of the backprojection volume.

Converting a Contour to a Volume

After each expansion step, the contour encloses a connected subset of the configuration-obstacle
surface. This surface may be lifted into the surrounding free space to form a volume of configura-
tions Vstate, which is a strong backprojection of G under the applied action. This lifting operation is
performed by a ray-construction procedure similar to Erdmann’s algorithm for constructing strong
backprojections [Erdmann 1986].

The procedure begins by scanning the contour to find its minimum and maximum θ-values;
these bounds are used to construct a set of evenly-spaced θ-values that define a set of constant-θ
planes intersecting the contour. Then for each of these θ-values, the algorithm constructs a slice of
the strong backprojection volume by finding the points where the contour crosses θ, generating a
sequence of line-segments on the obstacle surface connecting these points, and using the free-space
translation directions of the state-transition cone to erect rays that convert the line segments into
a closed polygon. This construction is illustrated in Figure 166.

The volume constructed by this procedure may re-intersect the configuration obstacle surface;
these intersections must be detected and trimmed appropriately to remove unreachable configura-
tions. Further, some of these intersections may identify features where additional backprojection
will substantially increase the total backprojection volume, as shown in Figure 167. The algorithm
detects these situations and recursively performs additional contour expansion to explore these
features. This recursive control structure is reflected in the lift procedure, shown in Figures 168
through 170.
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(a)

(b)

(c)

(d)

G

G

G

Figure 167: (a) A backprojection of a goal in a schematic configuration space. (b)
A backprojection of the same goal, but this time the lifted volume re-intersects the
configuration obstacle. (c) The bold edges correspond to the obstacle feature where
ray-construction may resume outside the configuration obstacle. A contour is con-
structed around this set of points, and expanded using the same procedure that ex-
panded the original contour surrounding G. After the new contour is fully expanded,
the ray-construction procedure is applied again. (d) The final backprojection volume.
Because additional contour-expansion was performed, this volume is much larger than
the volume shown in (a).
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(1) (2) (3)

(4) (5)

(4′) (5′)

Presume1

Presume2

B1

B2

θ1

θ2
B1 B2

θ1

θ2

θ1

θ2

θ3

θ4

Figure 168: An example execution of the lift procedure. (1) Slice θ-values are iden-
tified; a coarse θ-resolution will be used in this example for clarity. (2) The lift-slice
procedure is called, which determines that additional contour-expansion is required.
This is indicated by the Presume points returned in the set R. (3) The lift procedure
constructs “shadow-lines” containing the Presume points, and constructs a contour sur-
rounding the resulting edge-sequence. The contour is then expanded, after which the
lift procedure recursively calls itself. (4) The recursively-called lift procedure now re-
ceives two input contours, which span a broader range of θ-values. (5) The lift-slice
procedure is called again, this time constructing a valid slice on every call. (4′) An
alternative outcome. If the surface friction is very high, the contour constructed in (3)
does not grow during contour-expansion. The recursively-called lift procedure receives
two input contours, but in this case the θ-range remains unchanged. (5′) The lift-slice
procedure constructs valid slices, because of the measure-zero contour B2.
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lift (B, D,G, C, stop?,maximal?)
Identify slice θ-values.
Search the input contours in B for the minimum and maximum θ-values [θmin, θmax], and divide this
interval into a set Θ = {θ1, θ2, ..., θn} of evenly-spaced θ-values. Special code should be included to
properly handle cases where B spans all angles.

Initialize V and R.
Construct a c-volume data record and set its θ-interval field to [θmin, θmax]. Set R to the null set.

Construct each slice.
For each θ ∈ Θ:

Call the procedure lift-slice(θ,B, D, V,R), which uses a ray-construction procedure to construct
a volume slice at θ, or identify points requiring further contour-expansion. If further contour-
expansion is not required, the constructed slice is placed in the volume V ; otherwise, the points
requiring contour-expansion are placed in the set R.

endfor

Decide whether further contour-expansion is required.
If R = ∅, then

Contour expansion is not required.
V now contains a collection of valid slices. Return the values V , B, maximal?

else

Contour expansion is required.

Construct “shadow lines” on the obstacle.
Construct a sequence of obstacle edges for every portion of the obstacle that occluded the ray-
construction procedure. This is accomplished by calling the procedure construct-shadow-lines(R),
which returns a set E of edge-sequences corresponding to shadow lines.

Convert the shadow lines into expandable contours.
Construct a contour B around each edge-sequence in E , producing a set of contours Bnew. Do not
apply the stability test used to filter the initial contours surrounding G; all contours in Bnew must
be retained to prevent infinite recursion.

Expand the new contours.
B′

new

maximal?2

}
← expand(Bnew, D,G, C, stop?)

Merge the new and original contours.
Ball ← B ∪ B′

new

maximal?all ← maximal? ∧ maximal?2

Recurse.
V
B′

all

maximal?′all

⎫⎬
⎭← lift(Ball, D,G, C, stop?,maximal?all)

When this procedure recurs, all of the Presume points that required contour expansion will produce
segments in the lift-slice procedure, although some segments may be of zero length. Thus these
points will not require further contour-expansion and recursion will terminate, unless new Presume

points are identified. Such points can only arise a finite number of times, so recursion will eventually
terminate.

Return the values V , B′
all, maximal?′all

Figure 168 (continued): The lift procedure.
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Presume1
Presume2

Presume

Figure 169: Example executions of the lift-slice procedure. The middle row corre-
sponds to the example shown in Figure 168.
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lift-slice (θ,B, D, V,R)
Construct enclosed obstacle segments.
Search each contour in B for points where the contour crosses the input θ-value, and connect these
points with line segments that represent the portion of the obstacle surface enclosed in B. Include
zero-length segments in this construction. Attach adjacent segments to form segment-strings, and
associate each string with the contour that produced it. Place these strings in the set S.

Apply ray-construction.
For each segment string S ∈ S:

If S is already part of a polygon in P, then ignore S.

Otherwise, erect rays from the endpoints of S, forming a closed polygon. Check for points where
this polygon intersects the obstacle surface, including enclosed polygonal regions. If no intersections
are found, add the polygon to P.

If an intersection is found, attempt to resolve the intersection by identifying the points Presume

where ray-construction may proceed, and connect these points to each other or the polygon bound-
ary appropriately. Attempt to match the Presume points to the endpoints of other strings in S; if
this succeeds, then connect the strings and attempt ray-construction again. Otherwise, construct
a data record 〈Presumei Bi ηi〉 describing each unmatched Presume point, where Bi is the set of
contours contributing to S, and ηi is the direction giving rise to Presumei . Place these records in
R, and return.

endfor

Update the backprojection volume.
At this point, all Presume points must have matched strings in S, and P must contain a collection of
polygons describing a valid slice. Construct a c-slice with θ and the set of polygons P, and add it to
the slice-list for V .

Return.

Figure 169 (continued): The lift-slice procedure.
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(a)

(b)

(c)

expanded
contour

Presume points

E

ηi + π

Presumei

Presumei

Figure 170: Generating shadow lines on the obstacle surface. (a) The procedure begins
with a collection of Presume points, which correspond to shadow points discovered during
slice analysis. (b) The unbounded shadow line E is constructed, shown by the bold
curve. This sequence of obstacle edges may be generated directly from ηi and Presumei ,
using the c-obstacle data structure. The projection of E onto the surface containing
the contour is shown for clarity; this curve is not constructed by the procedure. (c) A
finite subset of E is identified by an iterative numerical search proceeding along E in
both directions from the point Presumei . At each iteration, the current point on E is
projected back onto the surface containing the contour; the bounds of E correspond to
the points where this projection leaves the contour.

238



      

construct-shadow-lines (R)
This procedure constructs a sequence of obstacle edges for every portion of the obstacle that occluded
the ray-construction procedure. These edges correspond to the set of Presume points that would be
constructed if the lift-slice procedure performed its computation over continuous θ-intervals instead
of discrete θ-values. These edges are constructed using the adjacency and metric information of the
c-obstacle data structure; the endpoints of the sequence are identified via numerical search. The
Presume points identified in the lift-slice procedure are used as seeds for the numerical search.

Repeat:

Select and remove a data record 〈Presumei Bi ηi〉 from R.

Construct the sequence of critical edges E that contain Presumei and form a shadow line with
respect to the direction ηi.

Starting at the point Presumei , iteratively trace the edges in E in both directions, projecting a
ray in the direction ηi onto the obstacle surface. Note the points where the projected ray passes
outside the contours in Bi; these points delimit the relevant portions of the shadow line. Update
E to reflect these endpoints, and place the resulting connected edge-sequence in the set E .

Remove all records from R whose Presume point is contained in the edge-sequence E; this prevents
redundant construction of shadow lines.

until R is empty.

Return the set of edge-sequences E.

Figure 170 (continued): The construct-shadow-lines procedure.
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The lift procedure shown in Figure 168 may omit configurations from the strong backprojection
in certain situations; Figure 171 shows an example. Given the contour shown in (a), the lift
procedure constructs a contour B2 surrounding the shadow line, and passes B2 to the expand
procedure. No expansion will result, because “lost-contact” is possible for all configurations on the
obstacle facet F . This causes the lift procedure to construct the volume shown in (b). However, a
larger backprojection is possible (c). This backprojection may be obtained by informing the expand
procedure that “lost-contact” motions are acceptable for configurations within the shaded region
shown in (d), which is constructed by projecting the original contour onto the obstacle surface.
The lift procedure may be extended to include these cases; the details of this extension are left for
future work.

A second observation regarding the lift procedure is that it may include points on the boundary
of Vstate that are not valid backprojection points. For example, this may occur when a ray is
erected from a Presume point where static equilibrium is possible, or when the back side of the
configuration obstacle contains states in C. These conditions invalidate the strong backprojection,
but only on the boundary of Vstate. These semantic problems can be eliminated by interpreting the
strong backprojection Vstate produced by the BP i algorithm as an open set that does not include
its boundary.

Supporting Incremental Obstacle Construction

The BP i algorithm may be implemented with a control structure that takes advantage of the
incremental construction capability of the CO algorithm. The description of the goal G may be used
to identify the obstacle features that should be initially constructed, and the adjacency information
of the resulting c-obstacle data structure may be used to identify additional required features as
contour-expansion proceeds. When the contour crosses an obstacle edge or vertex onto a facet that
has not been constructed, the contour-expansion procedure may call the complete-facet procedure
to construct the facet, and contour-expansion may resume normally.

As with the BPe algorithm, the procedure that lifts two-dimensional surface patches into three-
dimensional volumes must be able to detect situations where non-local obstacle features intersect
the constructed volume. When the configuration obstacle is constructed incrementally, the lift
procedure must be able to detect these situations for obstacle features that are not yet constructed.
It may be possible to accomplish this by adding decision predicates to the lift procedure analogous
to the conflict-possible? tests employed by the CO algorithm.
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(a)

(b)

(c)

(d)

B2
F

G

Figure 171: A case where the lift procedure omits configurations from the strong
backprojection. (a) A goal on a schematic configuration-space obstacle, and the contour
B2 surrounding the shadow line. This contour cannot be expanded, since lost-contact is
possible for all configurations on F . (b) The volume constructed by the lift procedure.
(c) The maximal strong backprojection. (d) The projection of the goal contour onto F ;
lost-contact is allowable within this region.
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maximal

BP i

BPe

G

Figure 172: Comparing backprojections. The weaker mechanics model employed by
the BPe algorithm causes it to produce a much smaller backprojection than the BP i

algorithm. If the goal is connected, the BP i algorithm constructs a backprojection that
is slightly smaller than the maximal backprojection, due to discrete approximation
errors.

Critique

The BP i algorithm attempts to identify the largest possible set of initial configurations that
will achieve the desired goal. Because the BP i algorithm utilizes a more detailed model of the
physical system behavior, it is capable of constructing backprojections that are much larger than
the backprojections produced by the BPe algorithm. Are these backprojections maximal?

If the stable subset of the goal is connected, then the backprojection Vstate produced by the
BP i algorithm is nearly-maximal. The difference between the true maximal backprojection and
Vstate is completely an artifact of the discrete approximation employed by the BP i algorithm. As
the granularity of this approximation becomes increasingly fine, Vstate will approach the strong
backprojection, assuming that the anomaly shown in Figure 171 does not arise. Figure 172 shows
the relationship between the maximal strong backprojection and the backprojections produced by
the BPe and BP i algorithms.

If the set of stable goal configurations is disconnected, the BP i algorithm may produce a back-
projection that is significantly smaller than the maximal backprojection, as shown in Figure 173.
In this example, a polygonal object is pushed by a fence, and dithering is added to prevent unstable
equilibrium configurations. In the configuration space, the goal corresponds to two disjoint sets
of stable configurations separated by an obstacle facet (b). Because of uncertainty in the pushing
direction, the state-transition cones on the ridge of the facet have an ambiguous rotation direction;
this limits the contour-expansion performed by the BP i algorithm, which produces a disconnected
backprojection (c). However, since static equilibrium is not possible along the facet ridge, the
true maximal backprojection is a connected set that includes configurations omitted by the BP i

algorithm (d).
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θ

(a) (b)

(c) (d)

Figure 173: A example where the BP i algorithm produces a backprojection signfi-
cantly smaller than the maximal strong backprojection.
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This discrepancy is due to a fundamental limitation of the BP i algorithm: Since the contour-
expansion procedure only includes configurations that will reliably enter a single connected goal
set, it is unable to recognize configurations that will not reliably enter any particular connected
goal, but must enter one of a collection of connected goals. This is a previously-known limitation
of the greedy approach to constructing strong backprojections [Erdmann 1986].

The remedy to this problem is to construct the weak backprojections of all non-goal final con-
figurations, form the union of these weak backprojections, and then complement the resulting set.
The BP i algorithm does not take this approach, because of its computational expense. However,
it may be possible to extend the BP i algorithm to efficiently merge disconnected backprojection
volumes, by using the volume boundaries to identify relevant weak backprojections.

Key Assumptions

One of the most significant advantages of the BP i algorithm is its generality: It may be applied
to any physical system involving two polygonal objects whose possible differential motions may be
bounded by a function D(x, y, θ, feature), and whose free-space motions are pure translations. Since
the D function only addresses the instantaneous behavior of the system, the BP i algorithm may
be applied to physical systems whose trajectories cannot be described by closed-form equations.

The BP i algorithm is predicated on the assumption that an appropriate D function can be
formulated. Can such a function always be found? Trivially the answer is yes, since a D function
that always returns “all motions are possible” provides a correct conservative description of all
physical systems. However, this function is obviously useless, since it will cause the BP i algorithm
to always return a null backprojection. A useful D function must satisfy a more nebulous criterion:
It must be specific enough to allow the BP i algorithm to produce backprojections large enough
to solve the problem at hand. This operational definition clearly depends on the details of each
problem instance, and launches us into the perpetual scientific endeavor of developing increasingly
precise physical models to solve increasingly difficult analysis problems.

Some physical systems are simpler to analyze than others. For example, generating the D
function for a compliant-motion task is often a matter of simply expressing the control law in
the appropriate parameter space, and performing a force/motion analysis; see [Erdmann 1984] or
[Buckley 1989] for examples. In contrast, linear pushing motions have been studied in at least three
Ph.D. theses [Mason 1982; Peshkin 1986; Goyal 1989], but construction of a suitable D function for
this work still required a conjecture to predict the motion of the pushed object in multiple-contact
situations.

Despite the difficulty of these analysis problems, there may be few alternatives available if we
want to build reliable manipulation systems. Uncertainty is inevitably present in real manipulation
tasks, and the geometry and mechanics of the task play a dominant role in determining the success
or failure of an attempted action. The difficulty we experience in constructing the necessary
predictive D functions is in some sense a reflection of the complexity of the task itself.

A second fundamental assumption of the BP i algorithm is that the physical system behavior
varies in a well-behaved manner over the obstacle surface. The BP i algorithm is designed to
properly handle gross changes in the system behavior that occur at topological features on the
obstacle surface, but pathological variations within a single feature may pass undetected. Figure 174
shows an example where the BP i algorithm fails due to high-frequency changes in the physical
system’s state-transition field.
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(a) (b)

dmax

P ′

P

P ′

Figure 174: A failure in the coutour-expansion procedure caused by high-frequency
changes in the physical system behavior. (a) A magnified view of an obstacle facet
and its state-transition field. When expanding the contour-point P , the algorithm
examines the state-transition cone at P , and constructs the point P ′. Since the
state-transition cone at P ′ is contained within the resulting adjacent contour-segments,
the contour-point is repositioned to P ′. (b) After expanding the contour-point. The
contour now encloses non-goal possible-equilibrium configurations, which invalidates
the strong backprojection. If dmax had been chosen to be half as large, this error would
have been detected.

Because the BP i algorithm analyzes physical systems whose behavior cannot be described ana-
lytically, it is forced to use discrete approximations of continuous sets, and construct these approx-
imations using a finite number of sample points. Consequently the BP i algorithm includes several
“magic numbers” that control its operation; these include the contour-segment length bounds
[lmin, lmax] and [λmin, λmax], the maximum expansion-step bounds dmax and δmax, and the volume
slice resolution Δθ. The accuracy of the BP i algorithm will increase as these numbers are made
smaller, neglecting finite-precision numerical issues. These parameters should be chosen judiciously,
but as of this writing only ad hoc techniques are available for selecting these values. It may be
possible to use the size of obstacle surface features as a rational basis for choosing these parameters,
but errors due to system mechanics (such in Figure 174) will still be possible. Eliminating these
errors must be accomplished on a per-system basis, and may be very difficult.
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Implementation Issues

I have not implemented the full BP i algorithm, and so complete robustness and performance
data are not available. A partial implementation was used to generate the examples presented in
this thesis; no effort was devoted toward improving the robustness or performance of this program.

The practical efficiency of the BP i algorithm remains to be seen. The current partial imple-
mentation is somewhat slow, requiring 38 minutes to construct the example backprojection shown
in Figure 10 in Part I. However, several enhancements may dramatically speed up this program;
these include implementing expensive components of the pushing D function as table-lookup op-
erations, caching often-referenced constructions in the contour-point data record, and replacing
the loop that visits every contour-point with a buffer listing the contour-points that may require
expansion. These modifications reduce the number of calls to the expand-contour-point procedure,
as well as the cost of each call. Similar enhancments may be applied to improve the performance
of the lift-slice procedure.

Extensions of the BP i Algorithm

The BP i algorithm may only be applied to physical systems whose free-space motions are pure
translations, in a direction bounded by a constant interval [ηmin, ηmax]. This limitation is imposed
by the ray-construction procedure that lifts the two-dimensional contour into a three-dimensional
volume.

We may eliminate this restriction by replacing the two-dimensional contour with a three-
dimensional “membrane” that expands into free space as well as along the obstacle surface. By
modifying the state-transition-cone to represent possible free-space motions as polygons on the unit
sphere, the resulting contour expansion algorithm may be used to construct strong backprojections
for physical systems with arbitrary free-space motion characteristics.

Generalizing 2-d contours to 3-d membranes provides other advantages in addition to expanding
the class of allowable physical systems. For example, goals that include free-space points may be
specified. Further, the lift procedure is eliminated, simplifying the overall algorithm. The cost of
this additional generality and simplicity is increased combinatorial complexity, since the contour-
expansion process fills a three-dimensional volume rather than a two-dimensional area. Further
work is required to assess the practical implications of this extension.

Another key limitation of the BP i algorithm is its lack of duration information. For example,
the algorithm is capable of constructing a set of initial states from which a given pushing action
will achieve a desired final configuration, but the algorithm does not identify the pushing distance
required to achieve this configuration. This weakens the utility of the strong backprojection that
is constructed.

It may be possible to extend the BP i algorithm to compute duration information. This would
require extending the state-transition cone function D to return rate information, and modifying
the contour-expansion procedure to maintain a conservative estimate of the integral of this rate
information. Such an extended version of the BP i algorithm would be able to identify the minimum
action duration required to assure that a stable goal is achieved, given an initial configuration
within Vstate.
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For goals that are not stable, both minimum and maximum duration bounds must be included.
This is illustrated in Figure 175, which shows the construction of a strong backprojection for an
unstable pushing goal. Given an initial configuration, this backprojection describes the minimum
and maximum pushing distances that will reliably achieve the goal. The backprojection is con-
structed by including pushing distance as an additional dimension in the configuration space, and
constructing the backprojection in this extended space. Extending the BP i algorithm to implement
this approach will clearly require substantial effort.

* * *

Analyzing the dynamic behavior of physical systems in the presence of uncertainty is a difficult
problem that requires consideration of the geometry, mechanics, and uncertainty that characterize
the physical system. The BPe and BP i algorithms may be used to solve a restricted class of these
problems, but these results represent only a small step toward the general dynamic analysis of
the interaction of two planar objects. Enhancing these algorithms to include arbitrary free-space
motions, a sense of time, speed information, and detailed collision models are but a few of the
possible areas for future work. Many open problems remain.
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Figure 175: Constructing a backprojection with a sense of time. (a) An unstable goal
configuration. We would like to synthesize a pushing motion such that when the motion
terminates, the triangle will contact the highlighted edge segment between the orien-
tations shown. The region G expresses this goal in the (p, θ) space that parameterizes
this ve contact condition. (b) A state-transition cone that contains rate information.
If an incremental push of length Δd is executed from an initial configuration (p, θ), the
final (p, θ) configuration will lie somewhere in the shaded region. The (p, θ) space may
be augmented by adding the pushing distance d as a third dimension; this gives the
state-transition cone a three-dimensional interpretation.
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Figure 175 (continued): (c) Constructing the strong backprojection of the goal in
the (p, θ, d) space. Here a state-transition cone is erected at each boundary point of
G, and the strict interior of the resulting set is formed. This region is shown shaded,
and corresponds to the set of initial configurations that will reliably achieve G after
pushing action of length Δd. This process is repeated, generating the set of initial
configurations that will achieve G for pushing distances of 2Δd, 3Δd, and so on. (d) The
final strong backprojection that is constructed. This set is shown with linear boundaries
for clarity; the true backprojection will be nonlinear. The point (p, θ) shows an example
initial configuration; dmin and dmax correspond to the minimum and maximum pushing
distances which will cause this configuration to achieve the goal.
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Formulating Motion Commands
The dynamic analysis performed by the BPe and BP i algorithms produces a set of configurations
Vstate that correspond to initial states from which a given action will reliably achieve a desired goal.
To synthesize a reliable manipulation action from this information, we must identify a commanded
initial position which will reliably produce an initial state in Vstate.

This is accomplished by the COMMAND algorithm, which transforms the set of successful initial
states Vstate into a set of successful commanded initial positions Vcommand. Vcommand is constructed
so that all commanded positions in Vcommand will reliably produce a true (x, y, θ) configuration in
Vstate, despite the presence of sensing and control errors. This algorithm is illustrated in Figure 176.

The constructions employed by the algorithm are straightforward; the most difficult of these
is the volume-shrinking operation, which is easy to perform on volumes represented with slices.
Shrinking a slice-based volume by an amount εxy and εθ is accomplished by shrinking each slice
by εxy, and then intersecting each slice with all other slices within a θ-distance of ±εθ. This
construction is illustrated in Figure 179; the output of the BPe algorithm must be converted to a
slice-based representation before this construction may be applied.

COMMAND (Vstate,Um,Uf , x, y, θ,moving?)

If moving?=true then

Vcommand ← COMMANDmoving(Vstate,Um,Uf , x, y, θ)

else

Vcommand ← COMMANDfixed(Vstate,Um,Uf , x, y, θ)

endif

Return Vcommand.

Figure 176: The COMMAND algorithm.
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COMMANDmoving(Vstate,Um,Uf , xf , yf , θf )

Vstate defines a set of true positions of the moving-object origin, measured relative to the true
position of the fixed-object origin, and (xf , yf , θf ) is the nominal position of the fixed-object
origin, measured relative to the robot’s coordinate frame. We seek to transform Vstate into a
volume Vcommand, defining a set of points measured in the robot’s coordinate frame, such that
if the robot commands a motion of the moving-object to a position in Vcommand, the resulting
true position of the moving-object origin measured relative to the fixed-object origin is in Vstate.

Compensate for Uf .
Form the volume V1 by applying the transform

x1 ← −(xstate − xCf
) cos(θstate) − (ystate − yCf

) sin(θstate)
y1 ← (xstate − xCf

) sin(θstate) − (ystate − yCf
) cos(θstate)

θ1 ← −θstate

to every (xstate, ystate, θstate) slice-vertex in Vstate, where (xCf
, yCf

) is the fixed-object center of
uncertainty PCf

. V1 is the set of true locations of PCf
, measured with respect to the moving-

object origin, that insure that the (x, y, θ) configuration is in Vstate.

Shrink V1 by the fixed-object position uncertainty (εxyf
, εθf ) to form V2, the set of nominal PCf

locations that insure that the true PCf
location is in V1.

Form the volume V3 by applying the transform

x3 ← xf + xCf
− x2 cos(θ2) − y2 sin(θ2)

y3 ← yf + yCf
+ x2 sin(θ2) − y2 cos(θ2)

θ3 ← θf − θ2

to every (x2, y2, θ2) slice-vertex in V2. V3 is the set of true locations of the moving-object origin,
measured in the robot’s coordinate frame, that insure that the nominal PCf

location is in V2.

Compensate for Um.
Form the volume V4 by applying the transform

x4 ← x3 + xCm cos(θ3) − yCm sin(θ3)
y4 ← y3 + xCm sin(θ3) + yCm cos(θ3)
θ4 ← θ3

to every (x3, y3, θ3) slice-vertex in V3, where (xCm , yCm) is the moving-object center of uncer-
tainty PCm

. V4 is the set of true locations of PCm
that insure that the true location of the

moving-object origin is in V3.

Shrink V4 by the moving-object position uncertainty (εxym , εθm) to form Vcommand, the set of
nominal PCm locations that insure that the true PCm location is in V4.

Return Vcommand.
If the robot commands the moving-object control point PCm to move to a position in Vcommand,
the true (x, y, θ) configuration that results will be contained in Vstate. In the above construction,
Vstate is measured relative to the fixed-object origin, V1 and V2 are measured relative to the
moving-object origin, and V3, V4, and Vcommand are measured relative to the robot’s coordinate
frame.

Figure 177: The COMMANDmoving procedure.
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COMMANDfixed(Vstate,Um,Uf , xm, ym, θm)

Vstate defines a set of true positions of the moving-object origin, measured relative to the true
position of the fixed-object origin, and (xm, ym, θm) is the nominal position of the moving-object
origin, measured relative to the robot’s coordinate frame. We seek to transform Vstate into a
volume Vcommand, defining a set of points measured in the robot’s coordinate frame, such that
if the robot commands a motion of the fixed-object to a position in Vcommand, the resulting true
position of the moving-object origin measured relative to the fixed-object origin is in Vstate.

Compensate for Um.
Form the volume V1 by applying the transform

x1 ← xstate + xCm
cos(θstate) − yCm

sin(θstate)
y1 ← ystate + xCm

sin(θstate) + yCm
cos(θstate)

θ1 ← θstate

to every (xstate, ystate, θstate) slice-vertex in Vstate, where (xCm , yCm) is the moving-object center
of uncertainty PCm . V1 is the set of true locations of PCm that insure that the moving-object
origin is in Vstate.

Shrink V1 by the moving-object position uncertainty (εxym
, εθm) to form V2, the set of nominal

PCm locations that insure that the true PCm location is in V1.

Form the volume V3 by applying the transform

x3 ← x2 − xCm cos(θ2) + yCm sin(θ2)
y3 ← y2 − xCm

sin(θ2) − yCm
cos(θ2)

θ3 ← θ2

to every (x2, y2, θ2) slice-vertex in V2. V3 is the set of nominal locations of the moving-object
origin that insure that the nominal PCm location is in V2.

Compensate for Uf .
Form the volume V4 by applying the transform

x4 ← xm − (x3 − xCf
) cos(θ3) − (y3 − yCf

) sin(θ3)
y4 ← ym + (x3 − xCf

) sin(θ3) − (y3 − yCf
) cos(θ3)

θ4 ← θm − θ3

to every (x3, y3, θ3) slice-vertex in V3, where (xCf
, yCf

) is the fixed-object center of uncertainty
PCf

. V4 is the set of true locations of PCf
that insure that the nominal location of the moving-

object origin is in V3.

Shrink V4 by the fixed-object position uncertainty (εxyf
, εθf ) to form Vcommand, the set of

nominal PCf
locations that insure that the true PCf

location is in V4.

Return Vcommand.
If the robot commands the fixed-object control point PCf

to move to a position in Vcommand, the
true (x, y, θ) configuration that results will be contained in Vstate. In the above construction,
Vstate, V1, V2, and V3 are measured relative to the fixed-object origin, and V4 and Vcommand are
measured relative to the robot’s coordinate frame.

Figure 178: The COMMANDfixed procedure.
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(a)

(b)

(c)

−εθ

+εθ

εxyεxy

(d)

Figure 179: Shrinking a volume to account for uncertainty. (a) An initial volume.
(b) After shrinking each slice by εxy. (c) Shrinking a given slice to account for the
θ-uncertainty εθ; the slice is intersected with all adjacent slices within a distance εθ.
(d) After shrinking all slices to account for εθ; this is the final shrunk volume.
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Appendix 1: Constructing Configuration Obstacles for
Planar Grippers with Two Fingers

Figure 26 in Part I shows the configuration-obstacle for a two-fingered gripper. This obstacle may
be constructed from the output of the CO algorithm, using a simple linear combination procedure.

Figure 180 shows this construction for the case where only translations are allowed. The con-
struction relies on the observations that s = y2 − y1, and that when both fingers are in contact
with the moving-polygon, y1 and y2 are not independent. This implies that the set of configura-
tions corresponding to two-finger contacts may be constructed by a linear combination of the usual
configuration obstacles for finger #1 and #2, as shown in Figure 180(e). The negated configu-
ration obstacle for finger #1 is added to the configuration obstacle for finger #2. This addition
is performed along the y-dimension, so the resulting curve is embedded in the (x, y2 − y1) space,
which is also the (x, s) space. Notice that this construction produces four curves; these correspond
to all combinations of the upper and lower curves of the original obstacles. Of course, this linear
combination is only defined over the x-values where both obstacles are defined.
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(a)

(b)

x1

y1

x2

y2

−y1

s = y2 − y1

y2

x

y1

x = x1 = x2

x

Figure 180: Constructing the set of two-finger contact configurations, without rota-
tion. (a) Definition of coordinate systems. (b) The configuration-obstacle for finger #1,
expressed in the (x, y1) configuration space.
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(c)

(d)

(e)

x

x

y2

x

−y1

a

b

c

d

s

1

2

3 1 = a + c

2 = b + c

3 = a + d

4 = b + d
4

Figure 180 (continued): (c) The obstacle for finger #1, reflected about x. (d) The
obstacle for finger #2, expressed in the (x, y2) configuration space. (e) The two-finger
configuration obstacle, expressed in the (x, s) configuration space. Each edge of this
obstacle is a linear combination of an edge from (c) and (d).
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x

y1

x

(a)

x

-y1

x

(b)

x

y2

x

(c)

x

s

x

(d)

Figure 181: Constructing the set of two-finger contact configurations, including ro-
tation. (a) The finger #1 obstacle, expressed in the (x, y1, θ) configuration space. (b)
The finger #1 obstacle, negated about y1. (c) The finger #2 obstacle, expressed in the
(x, y2, θ) configuration space. (d) The two-finger configuration obstacle, expressed in
the (x, s, θ) configuration space. Only two of the four surfaces are shown.

258



     

*

x

s

Figure 182: The effect of gripper travel limits. Reachable two-finger configurations
must lie between the s = smin and s = smax planes in the (x, s, θ) space.

This construction can also be applied when rotations are allowed, as shown in Figure 181.
Here the linear combination procedure is applied between obstacle surfaces, producing a surface
embedded in an (x, s, θ) configuration space. The facets of this surface correspond to intersections
of facets from the original configuration obstacles, after projection along the collinear y1 and y2

axes. Figure 182 shows the effect of adding travel limits to the gripper; only configurations within
an interval of s values are reachable.

It may also be possible to apply this linear combination procedure to revolute and pantograph
grippers by first transforming the finger configuration-space obstacles into the appropriate coordi-
nate spaces (Figure 183). For example, to form the set of two-finger contact configurations for a
revolute gripper, we could construct the (x, yi, θ) configuration-obstacles for each finger, transform
them into the appropriate (x, σi, θ) spaces, reflect obstacle #1 about its σ1 axis, and form the linear
combination as before.

y2

−y
1

s = y2− y1θ

σ1−

σ2

σ = σ
2
− σ

1
x x

x1

y1

x2

y2

x1

y1

x2

y2

θ

Figure 183: Coordinate systems for revolute and pantograph gripper configurations.
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This suggests the following procedure for constructing the set of two-finger contact configurations
for planar grippers comprised of a pair of fingers connected by a one-degree-of-freedom linkage:

1. Construct the configuration-space obstacle of each finger using the CO algorithm.

2. Transform each obstacle into the appropriate (x, var , θ) parameter space, where var is a variable
aligned with the motion of the linkage connecting the fingers.

3. Reflect obstacle #1 about its var axis.

4. Split the obstacle surfaces into subsurfaces of points whose constant-θ normals have either
positive, negative, or zero dot-products with the local var axis direction.

5. Assemble all pairs of subsurfaces (S1, S2) that have either positive or negative dot-products,
and apply the following:

a. Project S1 and S2 along the projection direction onto the (x, θ) plane, producing
S′

1 and S′
2.

b. Intersect the facets of S′
1 and S′

2, forming a collection of composite facets.

c. For each composite facet F ′, set the var metric fields of F ′ to reflect the sum of
the var metric fields of the S1 and S2 facets that intersected to form F ′.

6. Using the connectivity of the original obstacles and the metric coincidences between the trans-
formed surfaces, connect the zero-dot-product subsurfaces to the subsurfaces constructed in the
previous step to form a topologically correct two-finger obstacle surface.

7. If gripper travel limits are present, cut the two-finger surface at the varmin and varmax planes.

This high-level procedure description neglects many important details, which are areas for future
research. The figures shown in this thesis were not generated by this algorithm; instead, they were
generated by a similar algorithm that rendered the two-contact configuration obstacle surface using
a very slow point-by-point linear combination process.

The significance of this construction is that it supports subsequent grasp analysis. Neglecting
situations where one-finger grasp configurations are of interest, the surface shown in Figure 182
corresponds to all possible grasp configurations between a planar robot gripper and a manipulated
object. By applying a friction analysis similar to the STATIC algorithm, one could identify all
possible stable grasp configurations. Grasp planning could be then performed by algorithms similar
to the BPe and BP i algorithms.

For example, the label marked * in Figure 182 indicates a stable grasp lying in a concavity of the
obstacle surface; a modified version of the BPe algorithm could identify a “puddle” of surrounding
configurations that would be guaranteed to achieve this grasp configuration, as long as the gripper
control servo is designed to assure that s decreases monotonically. Extending the BP i algorithm
to this domain is more challenging, since representations for free, single-contact, and two-contact
configurations must be used in concert to produce proper physical predictions.
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Appendix 2: Finding the Roots of Trigonometric Polynomials

This appendix presents a general technique for solving equations of the form:

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ + k9c3
θ + · · ·

where sθ and cθ are abbreviations for sin(θ) and cos(θ), respectively. This technique may be used to identify
the θ-roots of arbitrary polynomials of sθ and cθ. We solve these polynomials by the following steps:

1. Eliminate sθ from the polynomial, producing a new polynomial of just cθ. This elimination doubles
the degree of the original polynomial.

2. Find the roots of the new polynomial, using a recursive-derivative/binary-search numerical procedure.
The resulting cθ values are roots of the new polynomial.

3. Convert the cθ values to θ values, using the inverse cosine function. In general, this produces two θ
values for every cθ root; half of these θ values are spurious.

4. Substitute the θ values into the original polynomial to identify and discard spurious values.

5. Return the remaining θ roots.

This procedure always finds all of the θ-roots of the input polynomial, and never returns θ values that are
not roots. These steps are further explained below.

Eliminating sθ

We remove sθ terms from the polynomial by applying the identity s2θ = 1− c2
θ until all sθ terms have degree

1 or 0. This gives:

0 = k′0 + k′1sθ + k′2cθ + k′3cθsθ + k′4c
2
θ + k′5c

2
θsθ + k′6c

3
θ + · · ·

Collecting sθ terms gives:

sθ =
k′0 + k′2cθ + k′4c

2
θ + k′6c

3
θ + · · ·

−k′1 − k′3cθ − k′5c2
θ − · · ·

We then square both sides of this equation, and apply the identity s2θ = 1− c2
θ again. This produces an

equation of just cθ, which can be re-arranged to a polynomial of the form:

0 = k′′0 + k′′1 cθ + k′′2 c2
θ + k′′3 c3

θ + k′′4 c4
θ + k′′5 c5

θ + k′′6 c6
θ + · · ·

The next section describes a numerical procedure for finding the roots of equations in this class. In the
algorithms reported in this thesis, all of this algebra was performed off-line; the algorithms compute the
polynomial coefficients k′′0 , k

′′
1 , . . . directly, given the desired edge-intersection or critical-force specification.
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Figure 184: Finding the roots of a fourth-degree polynomial y = f(x), where all roots
of interest lie in the interval [xmin, xmax]. The upper plot shows the polynomial f(x),
and the plots below it show the derivatives f ′(x), f ′′(x), and f ′′′(x). Each successive
derivative has one less root than its predecessor. (a) The third derivative f ′′′(x) has at
most one root; this may be found using binary search with xmin and xmax as starting
points. (b) This root is then used to split [xmin, xmax] into two parts; the second
derivative f ′′(x) may have at most one root in each part. Binary search is again applied
to find the roots of f ′′(x). (c) This process is repeated until the roots of the original
polynomial are found. (d) One of several special cases that can arise.

Finding cθ Roots Numerically

The transformed cθ polynomial has the following two useful characteristics: First, all of its roots must be in
the interval [−1, 1], since it is a polynomial of cos(θ). Second, it has n or fewer roots, where n is the highest
exponent appearing in the polynomial.

We can numerically find all of the roots of a polynomial within a given interval by recursively finding
the roots of the polynomial derivatives, and using these roots and the bounding interval to constrain subse-
quent binary search operations. Figure 184 shows an example of this procedure applied to a fourth-degree
polynomial.

This procedure may be used to find the roots of polynomials of arbitrary degree, as long as we are only
interested in roots that appear within some bounded interval. In our case, all cθ roots must appear between
-1 and 1; one could imagine other scenarios where arbitrary roots are possible, but only the roots within a
given window are of interest.

262



     

Discarding Spurious Roots

The generated θ values reflect the ambiguity of the inverse cosine function: every cθ root gives rise to two θ
values. Half of these θ values are spurious; we can remove these by substituting each θ value into the original
polynomial, evaluating the result, and retaining only the θ values that produce zero results.

This process is complicated by the presence of numerical errors. Because several numerical transforma-
tions have been applied, the θ values generated thus far may differ from the true θ roots. Consequently, a
local search procedure is applied to numerically improve the accuracy of each root. If no true θ′ root can be
found near a given θ value, then the θ value is discarded; otherwise, the improved θ′ value is returned.

Tolerance Scaling

If given an interval where (i) the function values at each endpoint have opposite sign, and (ii) there is at
most one root in the interval, numerical binary search will reliably find the root of any continuous function.
Further, this root may be refined to an arbitrary precision, without the use of fuzzy arithmetic.

However, some roots are not contained in such an interval; the special case appearing in Figure 184(d) is
an example. Our procedure will identify this root, but it must be recognized by observing that the endpoint
of a binary search interval produces a zero function value. To maintain consistency with the fuzzy arithmetic
employed by other geometric procedures, this condition must be recognized using fuzzy arithmetic.

This requires scaling of the tolerance ε to reflect the transformation applied to the original polynomial
to produce the cθ polynomial. Since the coefficients of the cθ polynomial are typically much larger than
the coefficients of the original polynomial, using the original tolerance to detect roots of the cθ polynomial
essentially amounts to applying a more restrictive tolerance, which could lead to later inconsistencies.

To prevent this problem, we will scale the tolerance ε to reflect the transformation. The appropriate
scaling function varies with the form of the polynomial, and is determined by carrying ε through the poly-
nomial transformation. A simple example is shown below; similar derivations are used for other forms. We
begin with the fuzzy version of the root equation:

ε > |k0 + k1sθ + k2cθ|

The worst-case bounds of this equation are:

±ε = k0 + k1sθ + k2cθ

We eliminate sθ by applying the polynomial transformation, giving:

−k1sθ = (k0 ± ε) + k2cθ

s2θ =
[
(k0 ± ε) + k2cθ

−k1

]2

± ε[2(k0 + k2cθ) + ε]︸ ︷︷ ︸
ε′′

= (k2
0 − k2

1 )︸ ︷︷ ︸
k′′
0

+ 2k0k2︸ ︷︷ ︸
k′′
1

cθ + (k2
1 + k2

2 )︸ ︷︷ ︸
k′′
2

c2
θ

Since cθ is bounded by 1 and -1, ε is scaled by the maximum of [2(k0 + k2) + ε] and [2(k0 − k2) + ε].
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Appendix 3: Configuration Obstacle Feature Equations

This appendix presents the equations describing configuration-obstacle features. Derivations are omitted for
brevity; see Figure 63 for an example derivation. Throughout this appendix, sα and cα are abbreviations
for sin(α) and cos(α).

3.1. Facets

There are two types of obstacle facets, arising from ve and ev contacts. For each type, we require the
functions fx(p, θ), fy(p, θ), and fp(x, y, θ) to describe the unbounded facet c-surface.

VE Facets

θ θ θ

(xf, yf)

βf

(x′
m , y

′
m)

rm

νm

(x, y)

ecwv

êf

(xf, yf)

βm

(x′
m , y

′
m)

rm

νm

(x, y)

ecwv

ê′m

fx(p, θ) ←− xf + pcβf
− rmc(θ+νm)

fy(p, θ) ←− yf + psβf
− rms(θ+νm)

fp(x, y, θ) ←−

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x′
m ← x + rmc(θ+νm)

y′m ← y + rms(θ+νm)

ecwv ←
[

x′
m − xf

y′m − yf

]

return ecwv · êf

EV Facets

fx(p, θ) ←− xf − pc(θ+βm) − rmc(θ+νm)

fy(p, θ) ←− yf − ps(θ+βm) − rms(θ+νm)

fp(x, y, θ) ←−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
m ← x + rmc(θ+νm)

y′m ← y + rms(θ+νm)

ecwv ←
[

xf − x′
m

yf − y′m

]

ê′m ←
[

c(θ+βm)

s(θ+βm)

]

return ecwv · ê′m
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3.2. Edges

There are six types of obstacle edges: ee, vv, ve-ve, ev-ev, ve-ev, and multiple-class-0. Since multiple-class-0
edges are compositions of other edge types, special equations are not required for constructing these edges.
For the remaining edge types, we require functions that describe the metric properties of the unbounded
curve containing the edge. These curves fall into two broad categories: class-0 and non-class-0 curves. Most
edge types can give rise to both types of curves, depending on the geometry of the contact features (see
Figure 62).

Class-0 curves are straight lines that lie in a constant-θ plane; we describe these curves with a θ-value
and three linear functions: fx(p), fy(p), and fp(x, y). The basic construction of these functions is identical
for the various edge types: In each case, the contact geometry is used to identify the θ-value of the edge,
and then this θ-value and the contact geometry are used to generate the appropriate linear functions. This
appendix omits these functions because they are straightforward but verbose.

Non-class-0 curves are functions of θ, and fall into three classes. The following tables present the equations
of these curves; the more complex cases include a few derivation steps in addition to the final equation.

VV Edges

θ

(xf, yf)

rm

νm

(x, y)

x = xf − rmc(θ+νm)

fx(θ) ← k0x + k1xsθ + k2xcθ

where

k0x = xf

k1x
= ym

k2x
= −xm

fy(θ) ← k0y + k1ysθ + k2ycθ

where

k0y = yf

k1y = −xm

k2y = −ym
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VE-VE Edges

θ

rm1

νm1

δ

z

Δx

βf1

βf2

lm1m2

βm1m2

βf2−βf1

(xf1f2 , yf1f2)

x = xf1f2 + Δx− rm1c(θ+νm1)

x = xf1f2 + cβf1
z − rm1c(θ+νm1)

x = xf1f2 + cβf1

[
lm1m2cδ −

lm1m2sδ
tan(βf2 − βf1)

]
− rm1c(θ+νm1)

x = xf1f2 + lm1m2cβf1

[
c(θ+βm1m2−βf1−π) −

s(θ+βm1m2−βf1−π)

tan(βf2 − βf1)

]
− rm1c(θ+νm1)

fx(θ) ← k0x
+ k1x

sθ + k2x
cθ

where

k0x
= xf1f2

k1x
= lm1m2cβf1

(
−s(βm1m2−βf1−π) −

c(βm1m2−βf1−π)

tan(βf2 − βf1)

)
+ ym1

k2x
= lm1m2cβf1

(
c(βm1m2−βf1−π) −

s(βm1m2−βf1−π)

tan(βf2 − βf1)

)
− xm1

fy(θ) ← k0y
+ k1y

sθ + k2y
cθ

where

k0y
= yf1f2

k1y
= lm1m2sβf1

(
−s(βm1m2−βf1−π) −

c(βm1m2−βf1−π)

tan(βf2 − βf1)

)
− xm1

k2y = lm1m2sβf1

(
c(βm1m2−βf1−π) −

s(βm1m2−βf1−π)

tan(βf2 − βf1)

)
− ym1
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EV-EV Edges

θ

θ

θ

δ

z

Δx

βm1

βm2

rm1m2

lf1f2βf1f2

βm2−βm1

(xf1 , yf1)

νm1m2

x = xf1 + Δx− rm1m2c(θ+νm1m2)

x = xf1 + c(θ+βm1)z − rm1m2c(θ+νm1m2)

x = xf1 + c(θ+βm1)

[
lf1f2cδ −

lf1f2sδ
tan(βm2 − βm1)

]
− rm1m2c(θ+νm1m2)

x = xf1 + c(θ+βm1)

[
lf1f2c(βf1f2−θ−βm1) −

lf1f2s(βf1f2−θ−βm1)

tan(βm2 − βm1)

]
− rm1m2c(θ+νm1m2)

fx(θ) ← k0x
+ k1x

sθ + k2x
cθ + k3x

cθsθ + k4x
s2θ

where

k0x
= xf1 + lf1f2cβm1

[
c(βm1−βf1f2) +

s(βm1−βf1f2)

tan (βm2 − βm1)

]
k1x = ym1m2

k2x
= −xm1m2

k3x
= lf1f2

[
−s(2βm1−βf1f2) +

c(2βm1−βf1f2)

tan (βm2 − βm1)

]

k4x = −lf1f2

[
c(2βm1−βf1f2) +

s(2βm1−βf1f2)

tan (βm2 − βm1)

]

fy(θ) ← k0y
+ k1y

sθ + k2y
cθ + k3y

cθsθ + k4y
s2θ

where

k0y
= yf1 + lf1f2sβm1

[
c(βm1−βf1f2) +

s(βm1−βf1f2)

tan (βm2 − βm1)

]
k1y

= −xm1m2

k2y = −ym1m2

k3y = lf1f2

[
c(2βm1−βf1f2) +

s(2βm1−βf1f2)

tan (βm2 − βm1)

]

k4y = lf1f2

[
−s(2βm1−βf1f2) +

c(2βm1−βf1f2)

tan (βm2 − βm1)

]
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VE-EV Edges

θ
νm1

rm1

θ

δ

z z1

z2

Δx

βf1

βm2

df1f2

(xnf1f2
, ynf1f2

)

δ

−d
m
2m

1

x = xnf1f2
+ Δx− rm1c(θ+νm1)

x = xnf1f2
− cβf1

[z − z1 − z2] − rm1c(θ+νm1)

x = xnf1f2
− cβf1

[
z + z

dm2m1cδ
df1f2

+ dm2m1sδ

]
− rm1c(θ+νm1)

x = xnf1f2
− cβf1

[
df1f2

tan(δ)

(
1 +

dm2m1cδ
df1f2

)
+ dm2m1sδ

]
− rm1c(θ+νm1)

x = xnf1f2
− cβf1

[
df1f2

tan(βf1 − βm2 − θ)

(
1 +

dm2m1c(βf1−βm2−θ)

df1f2

)
+ dm2m1s(βf1−βm2−θ)

]
− rm1c(θ+νm1)

fx(θ) ← k0x
+ k1x

sθ + k2x
cθ +

k3x
+ k4x

sθ + k5x
cθ

k6x
sθ + k7x

cθ
where

k0x = xnf1f2

k1x = ym1

k2x
= −xm1

k3x
= dm2m1cβf1

k4x
= −df1f2cβf1

s(βm2−βf1)

k5x = df1f2cβf1
c(βm2−βf1)

k6x = c(βm2−βf1)

k7x = s(βm2−βf1)

fy(θ) ← k0y + k1ysθ + k2ycθ +
k3y

+ k4y
sθ + k5y

cθ
k6y

sθ + k7y
cθ

where

k0y = ynf1f2

k1y = −xm1

k2y
= −ym1

k3y
= dm2m1sβf1

k4y = −df1f2sβf1
s(βm2−βf1)

k5y
= df1f2sβf1

c(βm2−βf1)

k6y = c(βm2−βf1)

k7y = s(βm2−βf1)
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Appendix 4: Static Analysis Equations

4.1. Facets

To identify the subset of a configuration obstacle facet where equilibrium is possible, the STATIC algorithm
identifies the subset of the facet c-surface where equilibrium is possible, and then intersects this set with
the obstacle facet to identify the reachable possible-equilibrium configurations. This section describes the
methods used to construct the possible-equilibrium subset of a facet c-surface for both ve and ev facets.
In this section, α=arctan(μmax) is the half-angle of the largest possible friction cone for the facet contact.

VE Facets

The subset of a ve c-surface where static equilibrium is possible may be empty, the entire c-surface, or a
pair of horizontal bands that span the full length of the c-surface. The construction of this subset is simple,
and is illustrated by the pseudo-code procedure given below.

applied force direction:αφr

φl

βf

rm

νm

Fr

Fl

ηmin

ηmax

rη

ψmin

ψmax

construct-facet-possible-equilibrium-subsetve(F,Fa)

φr ← βf + π
2 − α

φl ← βf + π
2 + α

[σmin, σmax] ← [φr, φl] ∩ [ηmin, ηmax]

If [σmin, σmax] = ∅, then

Static equilibrium is never possible.
else

If rm ≤ rη, then

The contact vertex lies within the applied force point uncertainty ball;
static equilibrium is always possible.

else
ψo ← νm − π

δψ ← arcsin
(

rη
rm

)
ψmin ← ψo − δψ

ψmax ← ψo + δψ

Static equilibrium is possible for θ ∈ [σmin − ψmax, σmax − ψmin] and
θ ∈ [σmin − ψmax + π, σmax − ψmin + π].

endif
endif
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EV Facets

The subset of an ev c-surface where static equilibrium is possible is always a single closed, bounded, non-
null region. The shape of this region varies from a single point to an area bounded by up to 10 boundary
segments. The region shape depends on the friction coefficient α, the contact geometry, and the applied
force uncertainty parameters rη and εη = ηmax − ηmin. When α = rη = εη = 0, the possible-equilibrium
subset is an isolated point; in all other cases the possible-equilibrium subset is a finite continuous set.

Because the shape of the possible-equilibrium region depends on several interacting parameters, the
procedure that constructs the region is a fairly opaque and tedious case analysis. Instead of presenting this
procedure here, the following pages illustrate a series of example possible-equilibrium regions, demonstrating
the contributions of each parameter. The first page illustrates three possible-equilibrium regions for cases
with varying contact geometry, without uncertainty. The pages that follow illustrate the contributions of the
uncertainty parameters rη and εη. For clarity, these examples show the possible-equilibrium region plotted
in the (p, θ) space that parameterizes the facet c-surface, instead of showing the region drawn on the curved
helicoidal c-surface in the (x, y, θ) space.

All of the boundary segments that border the possible-equilibrium region of an ev c-surface are either
line segments that correspond to a constant p or θ value, or non-linear functions of θ that correspond to a
coincidence between the boundary of the applied force uncertainty ball and an applied-force ray projected
through the contact point. The equation that describes the non-linear boundary segments is derived below.

tan(δ) =
dm − d2

p2

p2 =
dm − d2

tan(δ)

δ = θ+βm−η

θ

βm

rη

η
δ

δ

dm

d2p

p
1

p
2

pnm

p = pnm + p1 − p2

p = pnm + rηsδ −
dm − d2

tan(δ)

p = pnm + rηsδ −
dm − rηcδ

tan(δ)

p = pnm + rηs(θ+βm−η) −
dm − rηc(θ+βm−η)

tan(θ+βm−η)
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α > 0, rη = 0, εη = 0

p

θ

p

θ

p

θ

θmin

θmax

θmin

θmax

θmin

θmax

d < 0

d = 0

d > 0

p = f(θ)

p = f(θ)

p = f(θ)

f(θ) = pnm − dm

tan(θ+βm−η)

θmin = η + π
2 − βm − α

θmax = η + π
2 − βm + α
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α > 0, rη > 0, εη = 0

p

θ

p

θ

p

θ

d < −rη

|d| < rη

d > rη

p = f(θ,−rη)

θmin

θmax

θmin

θmax

θmin

θmax
p = f(θ,+rη)

p = f(θ,+rη)p = f(θ,−rη)

p = f(θ,+rη)
p = f(θ,−rη)

f(θ, r) = pnm + rs(θ+βm−η) −
dm − rc(θ+βm−η)

tan(θ+βm−η)

θmin = η + π
2 − βm − α

θmax = η + π
2 − βm + α
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α > 0, rη > 0, εη > 0

p

θ

p

θ

p

θ

d < −rη

|d| < rη

d > rη

p = f(θ,+rη, ηmin)

p = f(θ,+rη, ηmax)
p = f(θ,−rη, ηmin)
p = f(θ,−rη, ηmax)

θ1

θ2

θ3

θ4

θ1

θ2

θ3

θ4

θ1

θ2

θ3

θ4

p = f(θ,+rη, ηmax)

p = f(θ,−rη, ηmin)

p = f(θ,+rη, ηmin)

p = f(θ,−rη, ηmax)

f(θ, r, η) = pnm + rs(θ+βm−η) −
dm − rc(θ+βm−η)

tan(θ+βm−η)

θ1 = ηmin + π
2 − βm − α

θ2 = ηmax + π
2 − βm − α

θ3 = ηmin + π
2 − βm + α

θ4 = ηmax + π
2 − βm + α
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4.2. Edges

To identify the subset of a configuration obstacle edge where equilibrium is possible, the STATIC algorithm
identifies critical values of the edge parameter p or θ that correspond to topologically critical conditions on
the force sphere. These critical values are then analyzed to construct intervals along the obstacle edge where
static equilibrium is either always possible, or never possible. This section presents the equations used to
identify these critical values.

These equations identify all edge parameter values where a critical condition occurs between a force-
sphere vertex and the great circle containing a force-sphere edge; subsequent processing then considers
the edge endpoints to decide whether the condition is actually critical. When implementing the STATIC
algorithm, I tested each equation using an interactive computer program that displayed each constructed
great circle critical condition; this program allowed me to verify the correctness of the equations on a variety
of test cases.

Because there are several types of obstacle edges and also several types of critical conditions, a large
number of equations are required to construct each possible critical condition. These cases are illustrated in
the table below, and the corresponding equations are given on the following pages. Class-0 cases are omitted
for brevity; their derivation is straightforward but verbose due to the bookkeeping required to maintain a
consistent coordinate system. Note that for multiple-class-0 edges, the class-0 analysis must consider all
combinations of friction cone rays to avoid missing critical p values.

Critical condition VV VE-VE EV-EV VE-EV

Page 276
Page 276

(VV Case 1) Page 280
Page 282
(table)

Page 277 Page 279 Page 281
Page 282
(table)

Impossible Page 279 Dual of
VE-VE

Page 282
(table)
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Preliminaries

We begin by defining the terms used in the static analysis equations, and develop the basic expressions
for the force-sphere points corresponding to ve and ev friction cone rays. In the derivations that follow,
α = arctan(μmax), which is the half-angle of the largest possible friction cone for a given contact. The angles
φ and γ describe the directions of negated ve and ev friction-cone rays, respectively. φ is measured relative
to the fixed-object’s coordinate frame, while γ is measured relative to the moving object’s coordinate frame.
The expressions for ve and ev friction cone rays are shown below; these are derived by substituting the
appropriate terms into equation (1), given on page 153.

VE-ray

−Fve(θ) =

⎡
⎣ cφ

sφ
− r

ρ s(θ+ν−φ)

⎤
⎦

d

θ
ν

r

φ

θ + ν

−Fve

Fve

d = rs(θ+ν−φ)

EV-ray

−Fev(θ) =

⎡
⎣ c(θ+γ)

s(θ+γ)
1
ρ

[
(xf−x(θ)) s(θ+γ) − (yf−y(θ)) c(θ+γ)

]
⎤
⎦

d

θ

θ

−Fev

f̂

�c
Fev

γ(xf , yf )

(x(θ), y(θ))

d = |f̂ × �c| = (yf−y(θ)) c(θ+γ) − (xf−x(θ)) s(θ+γ)
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VV Case 1: Fixed normal direction

−Ff
Fa1 Fa2

0 = −Ff(θ) · [Fa1 × Fa2 ]

0 =

⎡
⎣ cφ

sφ
− r

ρ s(θ+ν−φ)

⎤
⎦ ·

⎛
⎝
⎡
⎣xa1

ya1

za1

⎤
⎦×

⎡
⎣xa2

ya2

za2

⎤
⎦
⎞
⎠

︸ ︷︷ ︸⎡
⎣ xA

yA

zA

⎤
⎦

0 = k0 + k1sθ + k2cθ

where

k0 = xAcφ + yAsφ

k1 = − r
ρzAc(ν−φ)

k2 = − r
ρzAs(ν−φ)

VV Case 2: Varying normal direction

−Ff
Fa1 Fa2

0 = −Ff(θ) · [Fa1 × Fa2 ]

0 =

⎡
⎣ c(θ+γ)

s(θ+γ)

− r
ρ s(ν−γ)

⎤
⎦ ·

⎛
⎝
⎡
⎣xa1

ya1

za1

⎤
⎦×

⎡
⎣xa2

ya2

za2

⎤
⎦
⎞
⎠

︸ ︷︷ ︸⎡
⎣ xA

yA

zA

⎤
⎦

0 = k0 + k1sθ + k2cθ

where

k0 = − r
ρzAs(ν−γ)

k1 = −xAsγ + yAcγ

k2 = xAcγ + yAsγ
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VV Case 3: Both rays have fixed normal direction

−F

−F

Fa

l

r

0 = Fa · [−Fr(θ) ×−Fl(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφr

sφr

− r
ρ s(θ+ν−φr)

⎤
⎦×

⎡
⎣ c(φr+2α)

s(φr+2α)

− r
ρ s(θ+ν−(φr+2α))

⎤
⎦
⎞
⎠

0 = k0 + k1sθ + k2cθ

where

k0 = za

k1 = r
ρ (xacν + yasν)

k2 = r
ρ (xasν − yacν)

VV Case 4: One ray has fixed normal direction, and the other has varying normal direction

−F

−F

Fa

l

r

0 = Fa · [−Fr(θ) ×−Fl(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφ

sφ
− r

ρ s(θ+ν−φ)

⎤
⎦×

⎡
⎣ c(θ+γ)

s(θ+γ)

− r
ρ s(ν−γ)

⎤
⎦
⎞
⎠

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ

where

k0 = r
ρ (−xasφs(ν−γ) + yacφs(ν−γ))

k1 = za(cγcφ + sγsφ)

k2 = za(sγcφ − cγsφ)

k3 = r
ρ

[
xa(cγs(ν−φ) + sγc(ν−φ)) + ya(sγs(ν−φ) − cγc(ν−φ)

]
k4 = r

ρ (xacγc(ν−φ) + yasγc(ν−φ))

k5 = r
ρ (xasγs(ν−φ) − yacγs(ν−φ))
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VV Case 5: Both rays have varying normal direction

−F

−F

Fa

l

r

0 = Fa · [−Fr(θ) ×−Fl(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦·
⎛
⎝
⎡
⎣ c(θ+γr)

s(θ+γr)
1
ρ

[
(xf−x(θ)) s(θ+γr) − (yf−y(θ)) c(θ+γr)

]
⎤
⎦×
⎡
⎣ c(θ+γr+2α)

s(θ+γr+2α)
1
ρ

[
(xf−x(θ)) s(θ+γr+2α) − (yf−y(θ)) c(θ+γr+2α)

]
⎤
⎦
⎞
⎠

where γr + 2α = γl. Simplifying the cross-product gives:

0 =

⎡
⎣xa

ya
za

⎤
⎦ ·

⎛
⎝s2α

⎡
⎣ 1

ρ (yf−y(θ))
− 1

ρ (xf−x(θ))
1

⎤
⎦
⎞
⎠

Substituting x(θ) = k0x + k1xsθ + k2xcθ and y(θ) = k0y + k1ysθ + k2ycθ gives:

0 = k0 + k1sθ + k2cθ

where

k0 = 1
ρ

[
ya(k0x

− xf ) − xa(k0y
− yf )

]
+ za

k1 = 1
ρ (yak1x − xak1y )

k2 = 1
ρ (yak2x − xak2y )
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VE-VE

−F1

−F2

Fa

0 = Fa · [−F1(θ) ×−F2(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφ1

sφ1

− r1
ρ s(θ+ν1−φ1)

⎤
⎦×

⎡
⎣ cφ2

sφ2

− r2
ρ s(θ+ν2−φ2)

⎤
⎦
⎞
⎠

0 = k0 + k1sθ + k2cθ

where

k0 = za (cφ1sφ2 − cφ2sφ1)

k1 = xa
r1
ρ sφ2c(ν1−φ1) − xa

r2
ρ sφ1c(ν2−φ2) + ya

r2
ρ cφ1c(ν2−φ2) − ya

r1
ρ cφ2c(ν1−φ1)

k2 = xa
r1
ρ sφ2s(ν1−φ1) − xa

r2
ρ sφ1s(ν2−φ2) + ya

r2
ρ cφ1s(ν2−φ2) − ya

r1
ρ cφ2s(ν1−φ1)

If −F1 and −F2 correspond to a single contact point, then this equation may be simplified to the equation
given on the top of page 277, since r1 = r2, ν1 = ν2, and φ2 = φ1 + 2α.

VE-VE

−F1

−F2

F1

−F3

0 = F1(θ) · [−F2(θ) ×−F3(θ)]

We only need to consider cases where −F2 and −F3 are from the same contact, and
F1 is from a different contact (other combinations are equivalent):

0 = F1(θ) · [−F2r(θ) ×−F2l(θ)]

0 =

⎡
⎣ −cφ1

−sφ1
r1
ρ s(θ+ν1−φ1)

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφ2r

sφ2r

− r2
ρ s(θ+ν2−φ2r)

⎤
⎦×

⎡
⎣ c(φ2r+2α)

s(φ2r+2α)

− r2
ρ s(θ+ν2−(φ2r+2α))

⎤
⎦
⎞
⎠

0 = k0 + k1sθ + k2cθ

where

k0 = 0

k1 = −r1c(ν1−φ1) − r2c(ν2−φ1)

k2 = −r1s(ν1−φ1) − r2s(ν2−φ1)
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EV-EV

−Ff
Fa1 Fa2

0 = −Ff(θ) · [Fa1 × Fa2 ]

0 =

⎡
⎣ c(θ+γ)

s(θ+γ)
1
ρ

[
(xf−x(θ)) s(θ+γ) − (yf−y(θ)) c(θ+γ)

]
⎤
⎦ ·

⎛
⎝
⎡
⎣xa1

ya1

za1

⎤
⎦×

⎡
⎣xa2

ya2

za2

⎤
⎦
⎞
⎠

︸ ︷︷ ︸⎡
⎣ xA

yA

zA

⎤
⎦

where

x(θ) = k0x
+ k1x

sθ + k2x
cθ + k3x

cθsθ + k4x
s2θ

y(θ) = k0y
+ k1y

sθ + k2y
cθ + k3y

cθsθ + k4y
s2θ

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ
where

k0 = 0

k1 = − zA
ρ

[
(k0x − xf )cγ + (k0y − yf )sγ

]
+ yAcγ − xAsγ

k2 = − zA
ρ

[
(k0x

− xf )sγ + (k0y
− yf )cγ

]
+ yAsγ + xAcγ

k3 = − zA
ρ

[
k1x

sγ − k1y
cγ + k2x

cγ + k2y
sγ
]

k4 = − zA
ρ

[
k1x

cγ + k1y
sγ
]

k5 = − zA
ρ

[
k2x

sγ − k2y
cγ
]

k6 = − zA
ρ

[
k4xsγ − k4ycγ + k3xcγ + k3ysγ

]
k7 = − zA

ρ

[
k3x

sγ − k3y
cγ
]

k8 = − zA
ρ

[
k4xcγ + k4ysγ

]

Since k2x = −xm1m2, k1x = ym1m2, k2y = −ym1m2, and k1y = −xm1m2, the term k3 is always zero. This
equation may be simplified for vertical edges of the applied force polygon, since zA = 0.
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EV-EV

−F1

−F2

Fa

0 = Fa · [−F1(θ) ×−F2(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦·
⎛
⎝
⎡
⎣ c(θ+γ1)

s(θ+γ1)
1
ρ

[
(xf1−x(θ)) s(θ+γ1) − (yf1−y(θ)) c(θ+γ1)

]
⎤
⎦×
⎡
⎣ c(θ+γ2)

s(θ+γ2)
1
ρ

[
(xf2−x(θ)) s(θ+γ2) − (yf2−y(θ)) c(θ+γ2)

]
⎤
⎦
⎞
⎠

where

x(θ) = k0x + k1xsθ + k2xcθ + k3xcθsθ + k4xs2θ
y(θ) = k0y

+ k1y
sθ + k2y

cθ + k3y
cθsθ + k4y

s2θ

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ

where

k0 = −xa

ρ k0ys(γ2−γ1) + ya

ρ k0xs(γ2−γ1) + zas(γ2−γ1)

k1 = −xa

ρ k1y
s(γ2−γ1) + ya

ρ k1x
s(γ2−γ1)

k2 = −xa

ρ k2y
s(γ2−γ1) + ya

ρ k2x
s(γ2−γ1)

k3 = xa

ρ

[
(xf2 − xf1)s(γ2+γ1) − (yf2 − yf1)c(γ2+γ1) − k3y

s(γ2−γ1)

]
+ya

ρ

[
(yf1 − yf2)s(γ2+γ1) − (xf2 − xf1)c(γ2+γ1) + k3xs(γ2−γ1)

]
k4 = xa

ρ

[
(xf2 − xf1)cγ1cγ2 + yf2cγ1sγ2 − yf1sγ1cγ2 − k4y

s(γ2−γ1)

]
+ya

ρ

[
(yf2 − yf1)sγ1sγ2 + xf2sγ1cγ2 − xf1cγ1sγ2 + k4xs(γ2−γ1)

]
k5 = xa

ρ [(xf2 − xf1)sγ1sγ2 − yf2sγ1cγ2 + yf1cγ1sγ2 ]
+ya

ρ [(yf2 − yf1)cγ1cγ2 − xf2cγ1sγ2 + xf1sγ1cγ2 ]

If −F1 and −F2 correspond to a single contact point, then this equation may be simplified, since xf1 = xf2 ,
yf1 = yf2 , and γ2 = γ1 + 2α.
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VE-EV Edges

There are several cases which must be considered, some of which are solved by previously-derived equations.
These cases are summarized below:

Critical condition Coincident force-sphere features Page

1. Force-polygon edge and ve-ray 276 (top)

2. Force-polygon edge and ev-ray 283

3. Edge formed by two ve-rays and force-polygon vertex 277 (top)

4. Edge formed by two ev-rays and force-polygon vertex 284

5. Edge formed by one ve-ray and one ev-ray and force-polygon vertex 285

6. Edge formed by two ve-rays and a non-negated ev-ray 286

7. Edge formed by two ev-rays and a non-negated ve-ray 286

We will re-arrange the class-3 obstacle edge equations to a more convenient form:

x(θ)−xf =
K0x

+ K1x
sθ + K2x

cθ + K3x
cθsθ + K4x

s2θ + K5x
c2
θ

k6xy
sθ + k7xy

cθ

where

K0x = k3x

K1x
= k4x

+ k6xy
(k0x

−xf )

K2x = k5x + k7xy (k0x−xf )

K3x = k6xyk2x + k7xyk1x

K4x = k6xyk1x

K5x
= k7xy

k2x

and similarly for y(θ)−yf , defining terms K0y . . .K5y . The k6xy and k7xy terms exploit the fact that the
denominator terms are identical for the x and y class-3 obstacle edge equations.
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VE-EV Case 2: An ev-ray

−Ff
Fa1 Fa2

0 = −Ff(θ) · [Fa1 × Fa2 ]

0 =

⎡
⎣ c(θ+γ)

s(θ+γ)
1
ρ

[
(xf−x(θ)) s(θ+γ) − (yf−y(θ)) c(θ+γ)

]
⎤
⎦ ·

⎛
⎝
⎡
⎣xa1

ya1

za1

⎤
⎦×

⎡
⎣xa2

ya2

za2

⎤
⎦
⎞
⎠

︸ ︷︷ ︸⎡
⎣ xA

yA

zA

⎤
⎦

where x(θ)−xf and y(θ)−yf are applied from page 282.

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ + k9c3
θ

where

k0 = 0

k1 = − zA
ρ

(
K0xcγ + K0ysγ

)
k2 = − zA

ρ

(
K0x

sγ −K0y
cγ
)

k3 = − zA
ρ

(
K1xsγ −K1ycγ + K2xcγ + K2ysγ

)
+ yAk7xycγ − xAk7xysγ + yAk6xysγ + xAk6xycγ

k4 = − zA
ρ

(
K1x

cγ + K1y
sγ
)

+ yAk6xy
cγ − xAk6xy

sγ

k5 = − zA
ρ

(
K2xsγ −K2ycγ

)
+ yAk7xysγ + xAk7xycγ

k6 = − zA
ρ

(
k7xy

k1x
cγ + k7xy

k1y
sγ
)

k7 = − zA
ρ

(
k6xyk2xsγ − k6xyk2ycγ

)
k8 = − zA

ρ

(
K4x

cγ + K4y
sγ
)

k9 = − zA
ρ

(
K5xsγ −K5ycγ

)
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VE-EV Case 4: Two ev-rays

−F

−F

Fa

l

r

0 = Fa · [−Fr(θ) ×−Fl(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦·
⎛
⎝
⎡
⎣ c(θ+γr)

s(θ+γr)
1
ρ

[
(xf−x(θ)) s(θ+γr) − (yf−y(θ)) c(θ+γr)

]
⎤
⎦×
⎡
⎣ c(θ+γr+2α)

s(θ+γr+2α)
1
ρ

[
(xf−x(θ)) s(θ+γr+2α) − (yf−y(θ)) c(θ+γr+2α)

]
⎤
⎦
⎞
⎠

where γr + 2α = γl, and x(θ)−xf and y(θ)−yf are applied from page 282.

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ

where

k0 = 1
ρ (yaK0x − xaK0y )

k1 = 1
ρ (yaK1x

− xaK1y
) + zak6xy

k2 = 1
ρ (yaK2x

− xaK2y
) + zak7xy

k3 = 1
ρ (yaK3x − xaK3y )

k4 = 1
ρ (yaK4x

− xaK4y
)

k5 = 1
ρ (yaK5x

− xaK5y
)
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VE-EV Case 5: One ve-ray and one ev-ray

Fa

−Fev

−Fve

0 = Fa · [−Fve(θ) ×−Fev(θ)]

0 =

⎡
⎣xa

ya
za

⎤
⎦ ·

⎛
⎝
⎡
⎣ cφ

sφ
− r

ρ s(θ+ν−φ)

⎤
⎦×

⎡
⎣ c(θ+γ)

s(θ+γ)
1
ρ

[
(xf−x(θ)) s(θ+γ) − (yf−y(θ)) c(θ+γ)

]
⎤
⎦
⎞
⎠

where φ = φve, γ = γev, and x(θ)−xf and y(θ)−yf are applied from page 282.

0 = k0 + k1sθ + k2cθ + k3cθsθ + k4s2θ + k5c2
θ + k6cθs2θ + k7c2

θsθ + k8s3θ + k9c3
θ

where

k0 = 0

k1 = 1
ρ (xasφ−yacφ)(−K0ysγ −K0xcγ)

k2 = 1
ρ (xasφ−yacφ)(K0ycγ −K0xsγ)

k3 = 1
ρ (xasφ−yacφ)(K1y

cγ −K1x
sγ −K2y

sγ −K2x
cγ))

+za[(k7xy
cγ + k6xy

sγ)cφ + (k7xy
sγ − k6xy

cγ)sφ]

k4 = 1
ρ (xasφ−yacφ)(−K1y

sγ −K1x
cγ)

+za(k6xycγcφ + k6xysγsφ)

k5 = 1
ρ (xasφ−yacφ)(K2ycγ −K2xsγ)

+za(k7xysγcφ − k7xycγsφ)

k6 = 1
ρ (xasφ−yacφ)(−k7xyk1ysγ − k7xyk1xcγ)

+xa

ρ [k6xy
cγs(ν−φ) + (k7xy

cγ + k6xy
sγ)c(ν−φ)]

−ya

ρ [−k6xysγs(ν−φ) + (−k7xysγ + k6xycγ)c(ν−φ)]

k7 = 1
ρ (xasφ−yacφ)(k6xyk2ycγ − k6xyk2xsγ)

+xa

ρ [(k7xycγ + k6xysγ)s(ν−φ) + k7xysγc(ν−φ)]

−ya

ρ [(−k7xysγ + k6xycγ)s(ν−φ) + k7xycγc(ν−φ)]

k8 = 1
ρ (xasφ−yacφ)(−K4ysγ −K4xcγ)

+xa

ρ k6xycγc(ν−φ)

+ya

ρ k6xysγc(ν−φ)

k9 = 1
ρ (xasφ−yacφ)(K5ycγ −K5xsγ)

+xa

ρ k7xysγs(ν−φ)

−ya

ρ k7xy
cγs(ν−φ)
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To identify force-closure critical θ-values on ve-ev obstacle edges, critical-value equations may be derived
which have θ-roots corresponding to hemispherical critical conditions on the force sphere. These equations
were developed using the dot-product analysis applied previously, but the resulting analytic equations ex-
hibited poor numerical robustness properties during testing. This section presents a simpler technique for
identifying these critical values that is both more robust and more efficient. The technique exploits the fact
that the transition between a force-closure and non-force-closure condition can only occur for a ve-ev contact
when the ray of one friction cone passes through the base of the opposite friction cone. This condition is
equivalent to the hemispherical force-sphere condition used in the ve-ve derivation shown at the bottom of
page 279. The derivations shown below illustrate this construction for the left rays of the ve and ev contact
friction cones; the constructions for the right rays are analogous.

VE-EV Case 6: What angle will cause Fvel to pass through (xf2, yf2)?

l cos(α1) = df1f2

l =
df1f2

cos(α1)

l cos(δ) = −dm2m1

δ = arccos
(−dm2m1

l

)
α1

βf1

βm2

θ

δ

df1f2

−dm2m1
l

(xf2 , yf2)

α1

By inspection:

βf1 − π
2 + α1 − δ = θ + βm2 − π

2

Substituting and rearranging gives:

θ = βf1 − βm2 + α1 − arccos
(

−dm2m1
df1f2

cos(α1)
)

VE-EV Case 7: What angle will cause Fevl
to pass through (x′

m1, y
′
m1)?

l cos(α2) = −dm2m1

l =
−dm2m1

cos(α2)

l cos(δ′) = df1f2

δ′ = arccos
(
df1f2

l

)α2

δ′

(x′
m1 , y

′
m1)

l −dm2m1

df1f2

δ′

θ
βm2βf1

α2

α2

By inspection:

δ′ = θ + βm2 − π
2 + α2 − (βf1 − π

2 )

Substituting and rearranging gives:

θ = βf1 − βm2 − α2 + arccos
(

df1f2
−dm2m1

cos(α2)
)
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Appendix 5: The CO Algorithm

This appendix elaborates on the brief discussion of the CO algorithm presented earlier. In particular, the
following sections define the notion of globally-convex contact features, discuss the nuances of incrementally
constructing configuration obstacles, and present a pseudo-code summary of the CO algorithm.

5.1. Global Convexity

For some facets, non-local conflicts are impossible because both contact features are globally convex. A
polygon edge is globally convex if all other points of the polygon are strictly inside the half-space formed by
the line containing the edge. A polygon vertex is globally convex if both edges adjacent to the vertex are
globally convex (Figure 185).

If the contact edge and vertex for a facet are both globally convex, then non-local conflicts are impossible
for the facet. To see why, consider the example ve contact condition shown in Figure 186. The contact
edge and vertex are both globally convex; the associated half-space constraints are shown shaded. If the
moving-polygon is swept through the range of locally-consistent orientations, the two shaded regions never
intersect. Since all points of the moving-polygon and fixed-polygon are contained within these regions, this
implies that no features of the two polygons can ever touch, except for the features local to the ve contact.
Thus, non-local conflicts cannot occur for this ve contact. A similar argument applies to ev contacts.

(a) (b) (c)

Figure 185: (a) A globally-convex edge. (b) A globally-convex vertex. (c) Examples
that are not globally convex; the cases on the right emphasize the requirement that
non-local points must be strictly contained within the appropriate half-spaces.

Figure 186: A contact between two globally-convex features.
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5.2. Incremental Surface Construction

The CO algorithm is capable of constructing individual facets of the configuration obtacle on demand, and in
any order. Thus a planner can request a specific obstacle feature, and the algorithm can produce the facets
in the neighborhood of the requested feature, or determine that the feature does not exist on the obstacle
surface. For example, if a planner is given the goal of achieving an interval of configurations satisfying the
contact condition v2e6-v5e1, the planner can request the corresponding obstacle edge, and the CO algorithm
will construct the v2e6 and v5e1 adjacent facets. When the algorithm returns, the requested edge and its
surrounding facets will be represented in the returned c-obstacle data structure; the absence of the edge will
imply that it does not appear on the obstacle surface. If the planning algorithm later requires additional
facets adjacent to the v2e6 and v5e1 facets, the CO algorithm can construct these as required.

The core of the CO algorithm is the complete-facet procedure, which constructs a facet on the obstacle
surface. This procedure performs all of the steps of the previous simplified-CO algorithm: The local edges
of the facet are created, the facet is intersected with other facets to form conflict edges, superimposed
edges on the facet are merged to form mc0-edges, extraneous edges are removed, and unreachable connected
components of the facet are discarded. Executing this procedure for each possible obstacle facet ultimately
produces a data structure identical to the data structure produced by the simplified-CO algorithm.

However, the complete-facet procedure is not simply the result of applying the construction steps of
the simplified-CO algorithm on an individual facet. In addition to these basic construction steps, the
complete-facet procedure incorporates side-effects that assure that information obtained during early facet
constructions is properly utilized by later constructions. These side-effects are best understood by considering
the invariants maintained by the simplified-CO algorithm:

• All possible facets, edges, and vertices are created.

• All topological neighbors are properly identified.

• No reachable edges are ever removed.

• All unreachable edges are eventually removed.

The side-effects employed by the complete-facet procedure are designed to maintain these invariants when
the obstacle surface is constructed incrementally. The first two invariants address the construction of possible
features, and the last two invariants address the deletion of unreachable features.

The last two invariants are easy to satisfy. The deletion steps used in the simplified-CO algorithm are
already structured to process facets individually, so the complete-facet procedure uses these steps without
significant modification. Assuming that all features on a given facet have been created before these deletion
steps are executed, then these steps remove all unreachable features from the facet, and retain all reachable
features. As long as no features are added to the facet later, the facet will be properly represented indefinitely.

The first two invariants are more subtle. They require that the algorithm construct all possible features,
and correctly identify their topological adjacency relationships. Further, the discussion of the previous
paragraph places temporal constraints on these invariants: All of the features that can possibly appear on a
facet must be constructed before the deletion steps are encountered, and no features on the facet should be
constructed after the deletion steps are executed. Since the order of facet construction may be arbitrarily
chosen by the calling program, these invariants must be enforced by information placed in the data structure
that allows communication between subsequent executions of the complete-facet procedure.

The side-effects of the complete-facet procedure produce and maintain this information. These side-effects
insure that all features that can arise on a facet have been constructed by the time the deletion steps are
executed, and further insure that no features are added to the facet once these deletion steps are complete.
The side-effects primarily affect the construction of obstacle edges, of which there are three basic categories:
local, conflict, and multiple-class-0. We will review the issues associated with each of these categories, and
the corresponding side-effects employed.
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5.2.1. Local Edges

The edges constructed for a given vv or ee contact may border up to four facets. Thus, when the local
analysis is performed for a given facet F , local edges are added to the edges field of several facets other than
F . This analysis should not be repeated, for several reasons. In addition to obvious efficiency considerations,
topological errors can result. For example, suppose that while constructing the facet F1, the vv edges for
the minimum p-value constraint are constructed, and they border four facets: {F1, F2, F3, F4}. The local
analysis will construct these edges and place them in the edges field of each facet. Further, suppose that F1

is only adjacent to F2 and F3; F1 and F4 share no common border. Now suppose that non-local interactions
make the vv edges unreachable on F1, so they are deleted from F1, F2, and F3. Now if F2 is constructed
next, its edges field will not contain the vv edges previously constructed, so it will also perform a local
analysis to construct these edges. This local analysis will add edges to all four facets again, causing two
topological errors: (1) Edges are being added to F1 after its deletion steps have been executed, and (2) F4

now contains two copies of the vv edge. This is clearly an undesirable situation. The CO algorithm avoids
these problems by including a local-contacts-constructed field in each c-facet, indicating the relevant local
analysis steps that have been previously completed.

5.2.2. Conflict Edges

The non-local analysis procedures require the intersection of all pairs of facets to identify conflict edges.
To avoid problems analogous to the local-analysis problems described described above, no pair of facets
should be intersected more than once. The CO algorithm insures this by maintaining a set containing all
of the incomplete facets. This incomplete-facet-set is initialized to contain every possible facet, and facets
are removed from the set as they are completed. When the complete-facet procedure executes its non-local
conflict analysis for a facet F , it removes F from the incomplete-facet-set, and then intersects F with every
facet remaining in the incomplete-facet-set. Since previous facet construction steps included F in their
intersection steps, this assures that F has been intersected with every other obstacle facet. This implies
that all conflict edges that can arise on F have been constructed. Further, since F no longer appears in
the incomplete facet-set, later facet constructions will not include F in their facet-intersection step, and
additional conflict edges will be never be added to F .

5.2.3. Multiple-Class-0 Edges

The non-generic multiple-class-0 edges produce the most subtle interactions between executions of the
complete-facet procedure. To see why, consider the example shown in Figure 187. Suppose that the first
facet constructed is facet v1e9. The non-local conflict analysis will produce class-0 conflict edges for the
contacts v1e9-v4e5 and v1e9-v7e1. These class-0 conflict edges will be merged to form the multiple-class-0
edge with the contacts v1e9-v4e5-v7e1, with left and right adjacent facets v1e9 and v7e1. Thus, the resulting
multiple-class-0 edge will not appear in the edges field of the facet v4e5. Now suppose that the facet v4e5

is completed next. Since the v1e9 facet has already been completed, it will not be intersected with the v4e5

facet, but the incomplete facet v7e1 will be intersected. This will produce a class-0 conflict edge with the
contacts v4e5-v7e1. Since there are no other class-0 conflict-edges present in the v4e5 facet, this edge is not
merged, and remains present with its left and right facet neighbors v4e5 and v7e1. This topological error can
lead to a variety of subsequent problems, depending on the geometry of the contact features.

e9

v1 v4 v7

e5 e1

Figure 187: A multiple-class-0 contact condition.
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ordinary conflict edges

mc0 edge

Figure 188: Facets intersecting to form a multiple-class-0 edge.

Problems such as this can be remedied by including appropriate side-effects; these side-effects are moti-
vated by an understanding of the structure of multiple-class-0 edges. Figure 188 shows an example mc0-edge,
and the locally-consistent facets that intersect to form it. Several observations become apparent:

1. The endpoints of the merged edge are defined by the innermost limits imposed by the locally-consistent
facets. Regardless of the order that the facets are considered, the resulting merged endpoints will be
the same.

2. All facets participate in the merging process the first time the merged edge is constructed. Regardless
of which facet is constructed first, all of the other facets will be intersected with the facet, producing
conflict edges. The result of merging all of these segments will give rise to the illustrated merged edge,
and will include all of the intersecting facets.

3. This merged edge will never be changed during later mc0-edge analysis steps. This is because all of the
non-generically intersecting facets that contain this edge were included in the first merging operation.
Therefore while later facet-construction operations may give rise to other conflict edges that will be
superimposed with the mc0-edge (as in the example described above), the merged result of including
the new conflict edges will not change the extent or facet-neighbors of the mc0-edge. This implies
that once we construct an mc0-edge and its adjacent facets, we will never need to modify its neighbor
fields, or split it during an mc0-analysis step.

These observations allow us to formulate the following strategy for assuring the correctness of mc0-edges
constructed by the complete-facet procedure: When an mc0-edge is constructed for the first time, we will
set its endpoints and neighbor fields, and also a flag indicating that this analysis does not need to be
repeated. We will also arrange the merging process to assure that when an mc0-edge is superimposed with a
conflict edge, the mc0-edge is preserved. Finally, we will include the mc0-edge in the edges field of all facets
contributing to it, so that later mc0-edge analysis steps will be properly executed. Some care is required to
assure the integrity of this side-effect as other facet-construction operations are performed; we will elaborate
on this issue below. These side-effects will support the following invariants:

1. All mc0-edge constructions are proper.

2. All reachable mc0-edges persist indefinitely.

3. All unreachable mc0-edges are deleted forever.

We will review each of these invariants below.
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1. All mc0-edge constructions are proper. We assure that all mc0-edge constructions are proper by including
mc0-edges in the edges field of their contributing facets. This allows conflict edges that arise later to be
merged with the mc0-edge; the superimposed portion of these new conflict edges will be subsumed by
the previously-constructed mc0-edge, which has correct facet-neighbors. Thus the presence of the original
mc0-edge assures correct handling of subsequent superimposed conflict edges.

There are some subtleties associated with this strategy. For example, the original mc0-edge may be split
by an intersecting non-class-0 edge; if this occurs, the mc0-edge will now be represented by two c-edge data
records — the original mc0-edge data record (now shortened), and a clone of the original mc0-edge data
record (comprising the remaining edge segment). To assure proper handling of future conflict edges, this
new c-edge must be added to the partially-constructed facets that contributed to the mc0-edge. This is
facilitated by including an mc0-partial-facets field in the c-edge data record, and modifying the split-edge
procedure to add the cloned c-edge data record it produces to all facets in the mc0-partial-facets field.

An additional subtlety arises when mc0-edges are deleted because they are unreachable. To assure proper
handling of future conflict edges, a deleted mc0-edge must be preserved even though it is unreachable. It
is not sufficient to simply remove the deleted edge from the edges field of its adjacent vertices and facets,
because the vertexmin and vertexmax pointers defining the endpoints of the deleted edge will still point to
these c-vertex data records. If the coordinates of either vertex are changed for some reason, then the metric
properties of the deleted mc0-edge will be corrupted, leading to erroneous mc0-analysis steps later.

To prevent this, we will discard unreachable mc0-edges by topologically isolating them. This is accom-
plished by removing an unreachable mc0-edge from the edges field of its vertices and adjacent complete
facets, and setting its vertexmin and vertexmax fields to new c-vertex data records with the same coordinates
as the original edge endpoints. This isolation procedure will assure that the mc0-edge has intact metric
properties when subsequent complete-facet procedures use it to detect superimposed conflict edges.

2. All reachable mc0-edges persist indefinitely. Once an mc0-edge is constructed and determined to be
reachable, it will be retained in the edges field of its neighboring facets. As the computation progresses,
the mc0-edge must not be removed from these facets. This requires careful implementation of the merge
procedure to assure that when an mc0-edge and a conflict edge are merged, the mc0-edge is preserved. From
the previous discussion, we know that a fully-constructed mc0-edge will never be split by superimposed
conflict edges constructed later; this allows us to write a merging procedure that always preserves mc0-
edges. This procedure is described in the pseudo-code that follows.

3. All unreachable mc0-edges are deleted forever. If an mc0-edge is deleted from a neighboring facet because
it is unreachable, it must never be re-inserted into the facet’s edges field. Because the facet-neighbors of an
mc0-edge are only analyzed and set once when the mc0-edge is first constructed, this error will never occur,
even though the mc0-edge may be merged with conflict edges after it has been deleted. This places another
special requirement on the merge procedure: if an isolated mc0-edge is merged with a conflict edge that
is longer than the mc0-edge, the isolated mc0-edge should not be topologically connected to the remaining
conflict-edge segment. The reason for this is that if the leftover conflict-edge segment is reachable, then the
mc0-edge may remain attached to the obstacle data structure, even though it is unreachable. An isolated?
field is included in the c-edge data structure to support this requirement.

5.2.4. Additional Remarks

The previous discussion has explained how the CO algorithm uses side-effects to assure correctness as the
configuration-obstacle surface is constructed incrementally. There is an additional subtlety imposed by this
control structure, which is that special handling is required to construct the contact sets of certain obstacle
features. Specifically, the contact-set of obstacle vertices must be obtained through lazy-evaluation, and
constructing the complete contact-set of multiple-class-0 edges requires a search for implicit ee contacts.
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e9

v1 v4 v7

e5 e1

v8

Figure 189: A contact condition that may require identification of implicit ee contacts.

Lazy-evaluation of vertex contact sets. The contact-set of an obstacle vertex may be computed by forming
the union of the contact sets of all the edges that intersect at the vertex. This computation is simple to
perform once all of the intersecting edges are identified, but will produce erroneous results if some intersecting
edges are absent. Therefore this computation must be delayed until all intersecting edges are constructed;
this will be the case once all facets adjacent to the vertex have been completed.

Since a partially-constructed obstacle generally contains edges that border a facet that is not yet complete,
the endpoints of these edges correspond to vertices that have at least one incomplete facet. Therefore a
partially-constructed obstacle data structure contains some vertices whose contact sets cannot be computed
using the simple algorithm described above.

The CO algorithm solves this problem by using lazy-evaluation to compute c-vertex contact sets. As
c-vertex data records are created and manipulated during obstacle construction, their contact-set fields are
left blank. When a calling program requests the contact-set of a c-vertex V , the algorithm checks the left
and right facets of each edge in the edges field of V , and calls the complete-facet procedure for any facets that
are not yet complete. This process is repeated until the left and right facets of all edges in V are complete;
this assures that all edges intersecting V have been constructed. V ’s contact set is then constructed by
forming the union of the edge contact sets; this result is cached in V ’s contact-set field for future reference.

Searching for implicit ee contacts in mc0-edges. The construct-mc0-edges procedure correctly constructs the
endpoints and facet-neighbors of mc0-edges, but may omit ee contacts from an mc0-edge contact-set. See
Figure 189. If the v1e9 facet is constructed first, the conflict edges v1e9-v4e5, v1e9-v7e1, and v1e9-v8e1 will be
placed in the edges field of the v1e9 facet, and the mc0-analysis will merge these edges to form an mc0-edge
with the contact-set v1e9-v4e5-v7e1-v8e1. The contact e7e1 is implicit in this contact-set, since v7 and v8 are
the endpoints of e7, and both vertices are in contact with e1. However, the e7e1 contact is not explicitly
represented, because the v7e1 and v8e1 facets were not completed before the mc0-edge was constructed.

Some physical analysis programs may require ee contacts to be represented explicitly, so the CO algorithm
identifies these contacts by detecting topological situations where an ee contact is implicit. Lazy-evaluation
is used to defer this construction until it is requested by the calling program.

5.3. Pseudo-Code Summary of the CO Algorithm

The following pages present a pseudo-code summary of the CO algorithm, and its associated data structures.
This algorithm is an extended version of the simplified-CO algorithm presented in the Kinematics chapter
of Part II, and includes the optimizations described previously. The primary purpose of this pseudo-code is
to clarify the optimizations that distinguish the CO algorithm from the simplified-CO algorithm.
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CO (Pm,Pf )

Initialize the obstacle.
Construct the c-obstacle data record O, setting the moving-polygon and fixed-polygon fields
to Pm and Pf . Set the facet-array field to an empty array of the appropriate size, and set the
incomplete-facet-set-constructed? field to false.

Build the facets.
Use the features of Pm and Pf to formulate the set C of all possible ve and ev contact-sets.
For every contact-set C ∈ C:

Lookup the c-facet.
Fetch the contents of the facet-array slot corresponding to C. The slot may be empty, or
may contain a set {F}, where F is a c-facet that is not yet complete. If the slot is empty,
create a new c-facet F by calling the procedure new-facet(C,O).

Complete the c-facet.
Call the routine complete-facet(F ); when this routine returns, the facet-arrray slot for F
will contain a set of completed c-facets F representing all of the reachable configurations
for the contact condition C. Further, this procedure has the side-effect of initializing the
incomplete-facet-set the first time it is called for a contact condition that is not globally-
convex. Under all circumstances, F will not appear in the incomplete-facet-set when this
routine exits.

endfor

new-facet (C,O)

Create a c-facet F .

Update O’s facet-array to contain the set {F} in the slot corresponding to C.

Set the obstacle field to O.

Set the contact-set to C, and fill in the ve-or-ev, moving-feature, and fixed-feature fields.

If the contact vertex is not strictly convex, then

Set the stage field to impossible, and return F .
else

Set the stage field to partial.

Set the θmin and θmax fields, using the local facet geometry.

If the contact features are globally convex, then

Set the conflict-possible? field to false.

else

Set the conflict-possible? field to true.
Add F to O’s incomplete-facet-set, and set F ’s incomplete-facet-set-entry field to
the resulting set entry data object.

endif

Return F .

endif
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complete-facet (F )

Determine whether F is locally possible.
If F ’s stage field is impossible, then

F is locally impossible; return {F}.
The routine new-facet determined that F is impossible because its contact vertex is non-
convex. Return {F}.

else

Perform local analysis.
Call the procedure local-facet(F ), which constructs all of the vv and ee edges that can arise
on F , and topologically connects these edges at their common endpoints. This procedure
also constructs the metric functions describing F ’s c-surface.
This procedure uses the local-contacts-constructed field to avoid repeating analysis that
has previously been completed, and updates this field in other facets to similarly avoid
future recomputation. The procedure may access facets have not yet been initialized; the
new-facet procedure is used to create these facets as necessary.

Determine whether non-local analysis is necessary.
If F ’s conflict-possible? field is false, then

Non-local analysis is not required; return {F}.
Conflicts are not possible for this facet because the contact vertex and edge are both
globally convex. Non-local analysis is not required, so set F ’s stage field to complete
and return {F}.

else

Perform non-local analysis.
Call the procedure non-local-facet(F ), which evaluates non-local interactions to con-
struct a set of c-facets Freachable, where each c-facet in Freachable represents a con-
nected patch of F containing reachable configurations.
When this procedure is entered, previous computations may have generated some of
the conflict and mc0-edges that can arise on F , and some of these edges may already
be deleted. The procedure uses the incomplete-facet-set to identify the remaining
facets that must be paired with F to generate conflict edges, and removes F from
this set. This procedure initializes the incomplete-facet-set if necessary. Other special
steps are included to correctly handle mc0-edges.

Determine whether F contains any reachable configurations.
If Freachable = ∅, then

F is unreachable; return {F}.
Set the stage field of F to impossible, and return {F}.

else
F is reachable; return Freachable.
Place Freachable in the facet-array slot for F , set the stage of each F ′ ∈ Freachable

to complete, and return Freachable.
endif

endif

endif
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local-facet (F )

Construct metric information.
Construct the functions fx(p, θ), fy(p, θ), and fp(x, y, θ) that describe the infinite c-surface
containing F , and place these in F ’s metric information fields.

Enumerate local contacts.
Identify the vv and ee contact conditions Clocal that may border F . These are identified from
the polygon features adjacent to the contact features; for example, if F ’s contact-set is v2e6,
then F may be bordered by v2v6, v2v7, e1e6, and e2e6 local edges.

Construct edges for local contacts not yet analyzed.
F ’s local-contacts-constructed field contains the set of contact conditions Calready ⊆ Clocal that
have already been analyzed. These contact conditions should not be analyzed again.
For all contact conditions C ∈ Clocal − Calready:

Notify other facets that C has been analyzed.
Identify the set of facets F that may be bordered by an edge with the contact-set C. To
prevent future repetition of this analysis, F should contain all facets that would generate
C as a possibly-bordering local contact condition. Add C to the local-contacts-constructed
field of each F ′ ∈ F . If a c-facet data record does not exist for a given F ′, create one using
the new-facet procedure.

Construct local edges for C.
Construct the string of local edges EC for the contact condition C, setting the contact-set
and metric information fields appropriately. Topologically connect these edges at their
common endpoints. Then, for each edge EC ∈ EC :

Set the edge neighbors.
Set the facetleft and facetright fields of EC to the left and right neighboring facets Fleft

and Fright, and add EC to the edges field of Fleft and Fright.

endfor

endfor

Topologically connect vv and ee edges.
Connect the vv and ee edges in F at their common endpoints, which can only occur at the four
corners of F ’s locally-consistent region. Since the edges of a given vv or ee contact-set were
connected earlier, this step assures that all local edges in F are topologically connected.

Return.
At this point, all of the vv and ee contacts in Clocal have been analyzed, and the resulting edges
that border F have been placed in F ’s edges field. Some edges may no longer appear in this
field, because they were both created and deleted during a previous facet construction step.
This is not a problem, since only unreachable edges will be absent.
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non-local-facet (F )

Assure that the incomplete-facet-set has been constructed.
Lookup O from the obstacle field of F , and check O’s incomplete-facet-set-constructed? field.
If this field is set to true, proceed to the next step. Otherwise, this is the first time that this
routine has been called, and the facet-array and incomplete-facet-set have not been completely
filled in. To construct the missing entries, use the features of Pm and Pf to identify the set C
of facet contacts. Then for each contact-set C ∈ C, lookup the corresponding facet-array slot,
and call new-facet(C,O) if the slot is empty. This will simultaneously fill the facet-array and
incomplete-facet-set as needed. Finally, set O’s incomplete-facet-set-constructed? field to true.

Construct conflict edges.
Use F ’s incomplete-facet-set-entry to remove F from the incomplete-facet-set. Then for every
facet Fi remaining in the incomplete-facet-set, call the procedure construct-conflict-edges(F, Fi).
This constructs the conflict edges that result from intersecting F with each remaining incom-
plete facet; conflict edges due to complete facets have already been constructed, and deleted
if unreachable. Thus when this step is complete, all conflict edges involving F have been
constructed, but some unreachable edges may not be present in F ’s edges field.

Construct mc0-edges.
Call the procedure construct-mc0-edges(F ), which merges superimposed class-0 edges in F to
form multiple-class-0 edges. This procedure produces side-effects to insure that subsequent
constructions of multiple-class-0 edges will be performed properly.

Connect edge intersection points.
Assure that all intersecting edges on F are topologically connected; split edges as necessary to
produce this connectivity. When splitting, update mc0-partial-facets as required.

Remove extraneous edges.
Use the local topology of F ’s vertices to identify and remove extraneous edges bordering F . For
each extraneous edge E, remove the edge by calling the procedure isolate-edge(E,F ). When
this step is complete, the remaining edges form a collection of closed loops bounding F .

Remove completely buried components.
After extraneous edges are removed, F may still contain connected sets of unreachable config-
urations. Remove unreachable components of F as follows:

Assemble edges into loops.
Assemble F ’s remaining edges into closed loops. Some of these loops will be outermost
bounding loops, and others will be nested loops forming holes and islands.

Split F into connected components.
If the loops constructed in the previous step define two or more disconnected components,
split F into a set of c-facets F , where each F ′ ∈ F defines a single component of F that
is connected without boundary. Otherwise, set F = {F}.
Discard buried components.
Filter F to produce Freachable, the set of reachable components of F . Determine the reach-
ability of each F ′ ∈ F by choosing a point strictly inside F ′ and checking the reachability
of the corresponding configuration. If F ′ is reachable, add it to Freachable; if F ′ is not reach-
able, discard each edge E in its edges field by calling the procedure isolate-edge(E,F ′).

Return.
The set Freachable contains a collection of c-facets representing the reachable components of F ;
if F is completely unreachable, then Freachable = ∅. Return Freachable.
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construct-conflict-edges (F1, F2)

Check for obvious non-intersections.
Apply simple tests to detect situations where the facets cannot intersect. These occur when the facet
θ-intervals are disjoint, or when the geometry of the contact features precludes the corresponding
multiple-contact in any configuration. For example, if F1 and F2 are both ve facets, they can only
intersect when lm1m2 ∈ [lf1f2min , lf1f2max ], where lm1m2 is the distance between the contact vertices, and
lf1f2min and lf1f2max are the minimum and maximum distances between points on the contact edges.
The function conflict-possible?(F1, F2) detects these conditions.
If [θmin1 , θmax1 ] ∩ [θmin2 , θmax2 ] = ∅ or conflict-possible?(F1, F2) = false, then return.

Intersect the c-surfaces.
Construct the set of unbounded curves C corresponding to the intersection of the F1 and F2

c-surfaces, using the kinematic equations given in Appendix . If C = ∅, then return.

Analyze the resulting curves.
For each unbounded curve C ∈ C:

Intersect the curve with F1.
Use the local geometry of the F1 contact features to identify a set of intervals I1 that delimit
the curve’s intersection with F1. I1 is a discrete collection of intervals I1i = [pmin1i , pmax1i ] or
I1i = [θmin1i , θmax1i ], depending on whether the curve is class-0 or non-class-0. For every p or
θ chosen from an I1i

interval, the corresponding point on the curve lies on or within the local
constraints of F1. If I1 = ∅, then return.

Intersect the curve with F2.
Similarly, use the local geometry of the F2 contact features to identify a set of intervals I2 that
delimit the curve’s intersection with F2. If I2 = ∅, then return.

Intersect the previous two results.
Intersect the intervals in I1 and I2 to construct I, the set of intervals delimiting curve segments
that simultaneously satisfy the local constraints of both F1 and F2. If I = ∅, then return.

Construct c-edges.
For every interval I ∈ I:

Create a c-edge data record E.
Set the contact set.
Set E’s contact-set to the union of the F1 and F2 contact-sets.

Set the metric information.
Set E’s metric information fields to the functions describing the unbounded curve C.

Set the endpoints.
Use the minimum value in I and the curve functions to compute the point (xmin, ymin, θmin)
on C; construct a c-vertex at this point, and set E’s vertexmin field to this c-vertex.
Similarly, use the maximum value of I to construct a c-vertex at (xmax, ymax, θmax), and
set E’s vertexmax field. Add E to the edges field of both c-vertex records.

Set the facet neighbors.
Set E’s facetleft and facetright fields to F1 and F2, using hand-coded decision procedures
that consider the contact geometry to identify the left/right ordering. Add E to the edges
field of F1 and F2.

endfor

endfor
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construct-mc0-edges (F )

Form classes of collinear edges.
Assemble all of the class-0 edges in F , and partition them into classes {E1, E2, . . . , En} such that all
edges within a given class Ei have the same θ-value. Since all edges lie on the facet surface, edges
within each class are collinear.

Construct mc0-edges within each class.
For each class Ei:

Topologically merge superimposed edges.
Call the procedure merge-collinear-class-0-edges(Ei). When this routine returns, Ei contains
only non-superimposed edges. Further, the edges in Ei may be grouped into three categories:
Previously-existing mc0-edges that have not been modified, newly-created mc0-edges that have
not undergone facet-neighbor analysis, and class-0 conflict edges that were not superimposed.

Fixup newly-created mc0-edges.
For every Enew ∈ Ei whose mc0? field is set to new:

Add Enew to all contributing facets.
The previous step assured that the mc0-partial-facets field of Enew contains the set F of all
of the facets that non-generically intersect to form Enew. Since Enew is newly-constructed,
none of the facets in F have been completed, so all belong in Enew’s mc0-partial-facets
field. To insure that later facet constructions access Enew for proper mc0-analysis, add
Enew to the edges field of every facet in F .

Set Enew’s facet-neighbors.
Using the geometry of the non-generic contact condition, identify the facets in F that lie
on the obstacle surface, rather than buried in the interior. There are three possibilities:

Zero surface facets. Enew is a non-manifold spur edge, so call isolate-edge(Enew, F ).

Two surface facets. Enew is a manifold edge, and the left and right adjacent facets
Fleft and Fright may be identified. Set Enew’s facetleft field to Fleft, and set Enew’s
facetright field to Fright.

Four surface facets. Enew is a non-manifold 4-neighbor edge, so isolate the edge
by calling the procedure isolate-edge(Enew, F ).

Set the mc0? field of Enew to old.
endfor

endfor

Discontinue F ’s status as a partially-constructed facet.
At this point, all mc0-edges in the edges field of F have an mc0? field set to old. Further, F appears
in the mc0-partial facets field of every mc0-edge it contains. After this procedure returns, the calling
procedure will complete F by deleting unreachable features, et cetera. Thus F is no longer needed
in the mc0-partial-facets field of any mc0-edge, and similarly, F no longer requires the presence of
mc0-edges that do not list F as a left or right neighbor. We now clear these previous side-effects.
For every edge Emc0 in the edges field of F whose mc0? field is set to old:

Remove F from the mc0-partial-facets field of Emc0.

If F is not in the facetleft or facetright field of Emc0, remove Emc0 from the edges field of F .

endfor

Return.
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merge-collinear-class-0-edges (Ei)
Identify previously-existing mc0-edges.
Partition Ei into Emc0 and Econflict, where Emc0 contains edges whose mc0? field is set to old, and
Econflict contains edges whose mc0? field is set to false. The edges in Emc0 are mc0-edges created
during previous facet constructions, and should not be changed.

Merge conflict edges that overlap existing mc0-edges.
For every Emc0 ∈ Emc0:

Copy Econflict to produce E ′
conflict.

For every Econflict ∈ E ′
conflict:

If Emc0 and Econflict share a finite overlap, then
Call the procedure merge-superimposed-class-0-edgesmc0(Emc0, Econflict, Econflict).
This procedure merges Emc0 and Econflict, preserving the c-edge Emc0. Since Emc0

is a previously-existing mc0-edge, it is not modified by this procedure. However,
Econflict may be deleted, moved, or split during the merge operation; Econflict and the
features adjacent to Econflict are updated to reflect these modifications. Emc0 and the
remaining portions of Econflict are topologically linked by this procedure, unless the
isolated? field of Emc0 is true.

endif

endfor

endfor

Merge remaining superimposed edges to produce new mc0-edges.
At this point, Econflict contains a set of collinear conflict edges that do not overlap any previously-
existing mc0-edge. The algorithm now merges these edges wherever they overlap.
While there is a pair of edges (E1, E2) in Econflict that share a finite overlap:

Call the procedure merge-superimposed-class-0-edgesnormal(E1, E2, Econflict). This procedure
merges E1 and E2, creating a new mc0-edge Enew, with its mc0? field set to new. The
facet-neighbors of Enew are left blank, and Enew’s mc0-partial-facets field is set to contain all
of the facets that have intersected Enew thus far. The procedure adds Enew to Econflict, which
now contains both conflict edges and newly-created mc0-edges. E1 and E2 may have been
deleted, moved, or split during the merge operation, and the procedure updates Econflict and
the adjacent features to reflect these changes. Enew is topologically linked to any remaining
portions of E1 and E2.

endwhile

Update Ei.
Econflict now contains an ensemble of modified conflict edges and newly-created mc0-edges, none of
which are superimposed. Return these edges by setting Ei to Emc0 ∪ Econflict. When this procedure
returns, Ei will contain all of the old mc0-edges, newly-created mc0-edges, and conflict edges that
result from merging the superimposed edges in Ei.

Return.
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merge-superimposed-class-0-edgesmc0(Emc0, Econflict, Econflict)

Merge Emc0 and Econflict, preserving Emc0.
Emc0 is a previously-established mc0-edge, and so we know that it will not be split while merging
with Econflict. Therefore Emc0 must be contained in Econflict, and we can treat Emc0 as the merged
edge. Non-overlapping segments of Econflict may remain; there are three possiblities:

Zero remaining segments.
Econflict is subsumed by Emc0, so remove Econflict from Econflict and discard-edge(Econflict).

One remaining segment.
Set the endpoints of Econflict to represent the segment of Econflict that doesn’t overlap Emc0.

Two remaining segments.
Econflict strictly contains Emc0, and two segments of Econflict remain on either side of Emc0.
Copy Econflict to create E′

conflict, with the same fields as Econflict. Set the endpoints of Econflict

and E′
conflict to represent the two segments of Econflict that don’t overlap Emc0. Add E′

conflict

to Econflict, and to the left and right facets neighboring Econflict.

endif

If Emc0 is not isolated, topologically connect it to the remaining segments.
If the isolated? field of Emc0 is set to false, then

If Econflict was not discarded, topologically connect Emc0 and Econflict.

If E′
conflict exists, topologically connect Emc0 and E′

conflict.

endif

Return.
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merge-superimposed-class-0-edgesnormal(E1, E2, Econflict)

E1 and E2 may be either conflict-edges or newly-formed mc0-edges. The superimposed portion of
these edges will produce a newly-formed mc0-edge Enew, which will be added to Econflict. The facet-
neighbors of Enew will be left blank, and the mc0-partial-facets field will contain all of the facets
associated with E1 and E2. Non-overlapping portions of E1 and E2 may remain.

Form Enew.
Create a new c-edge Enew and set its fields as follows:

Set Enew’s endpoints and metric information fields to represent the overlapping segment of
E1 and E2.

Set Enew’s mc0? field to new.

Set Enew’s contact-set to the union of the contact-sets for E1 and E2.

Set Enew’s mc0-partial-facets field to the union of the facets contained in the facetleft, facetright,
and mc0-partial-facets fields of E1 and E2.

Add Enew to Econflict.

Fixup E1.
Part of E1 overlaps Enew; non-overlapping segments of E1 may remain. There are three possibilities:

Zero remaining segments.
E1 is subsumed by Enew, so remove E1 from Econflict and discard-edge(E1).

One remaining segments.
Set E1’s endpoints to represent the segment of E1 that doesn’t overlap Enew.

Two remaining segments.
Copy E1 to create E′

1. Set the endpoints of E1 and E′
1 to represent the segments of E1 that

don’t overlap Enew. Add E′
1 to Econflict, and to the left and right facets neighboring E1.

Fixup E2.
Part of E2 overlaps Enew; non-overlapping segments of E2 may remain. There are three possibilities:

Zero remaining segments.
E2 is subsumed by Enew, so remove E2 from Econflict and discard-edge(E2).

One remaining segments.
Set E2’s endpoints to represent the segment of E2 that doesn’t overlap Enew.

Two remaining segments.
Copy E2 to create E′

2. Set the endpoints of E2 and E′
2 to represent the segments of E2 that

don’t overlap Enew. Add E′
2 to Econflict, and to the left and right facets neighboring E2.

Topologically connect Enew, E1, E′
1, E2, and E′

2.
Connect Enew to the existing members of {E1, E

′
1, E2, E

′
2} to form a topological string of edges.

Return.
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isolate-edge (E,F )

Set E’s isolated? field to true.

If E’s mc0? field is set to false, then

E is not a multiple-class-0 edge.
Since E is an ordinary local or conflict edge, no special side effects are required.

discard-edge (E)

Return.

else

E is a multiple-class-0 edge.
Since E is a multiple-class-0 edge, it must be retained in all of its contributing partial facets to
assure that future mc0-analysis steps are performed properly. This implies that E should not be
removed from facets other than F , and the endpoint vertices of E should be made independent
to avoid accidental changes to E’s metric properties.

Remove E from the edges field of F .

Let Vmin and Vmax be the vertices stored in E’s vertexmin and vertexmax fields:

Remove E from the edges field of Vmin and Vmax.
Copy Vmin and Vmax to create V ′

min and V ′
max, with the same fields as Vmin and Vmax.

Set the edges field of V ′
min and V ′

max to {E}.
Set E’s vertexmin field to V ′

min, and set E’s vertexmax field to V ′
max.

Return.

endif

discard-edge (E)

Remove E from the edges field of the facets stored in E’s facetleft and facetright fields.

Remove E from the edges field of the vertices stored in E’s vertexmin and vertexmax fields.

Return.
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c-obstacle

Polygons
moving-polygon
fixed-polygon

The input polygons. Each polygon is represented by a data
structure that includes slots for the feature parameters used
in the CO algorithm. These parameters are calculated early
and cached to avoid redundant computation.

Facet Array
facet-array A three-dimensional array, indexed by a moving-polygon in-

dex i, a fixed-polygon index j, and a flag ve-or-ev ∈ {0, 1}.
Each (i, j, ve-or-ev) array slot corresponds to a unique ve or
ev contact condition. Each slot contains a set of facets that
correspond to the slot’s contact condition.

Control Information
incomplete-facet-set The set of facets that are only partially constructed, and

whose contact features are not globally convex. This set is
implemented as a doubly-linked circular list, so that facets
can be removed in constant time as they are completed.

incomplete-facet-set-constructed? Boolean flag indicating whether the incomplete-facet-set has
been filled in yet.
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c-facet

Contact Information
contact-set The set of feature-pairs in contact for this facet.

ve-or-ev
moving-feature
fixed-feature

Decomposed contact information. The moving-feature and
fixed-feature fields point to features of the input polygons,
and ve-or-ev ∈ {0, 1} is a flag that indicates the contact
type. This redundant information is included to avoid re-
peated parsing of the contact-set.

Metric Information
fx(p, θ)
fy(p, θ)

These functions return the (x, y) coordinates of points on the
facet c-surface, given the parameters p and θ.

fp(x, y, θ) This function returns the p-value of a point on the facet c-
surface, given an (x, y, θ) configuration-space point. If the
input point is not on the c-surface, then the function returns
the p-value of the closest point on the c-surface in the speci-
fied θ-plane.

θmin

θmax

Bounding θ-values for the facet, used in quick θ-interval com-
parisons between facets.

Topological Information
edges The set of obstacle edges bounding this facet. When the

facet is only partially constructed, this is the set of candidate
obstacle edges that have been posted to the facet.

Control Information
stage A flag indicating the state of this facet in the computational

process. One of impossible, partial, or complete.

conflict-possible? Boolean flag indicating whether to consider non-local con-
flicts when completing this facet. This flag is set to true
unless the contact edge and vertex are both globally convex.

incomplete-facet-set-entry This points to the data object containing this facet in the
incomplete-facet-set. When this facet is completed, it is re-
moved from the set to avoid future conflict tests.

local-contacts-constructed The set of local constraints for this facet that have been an-
alyzed thus far in the computation, expressed as an ee or vv
contact-pair. A local constraint entry will appear in this field
even if no local edges due to the constraint were posted to
this facet, or if a local edge was posted and then removed
during the completion of the edge’s opposite facet.

obstacle The configuration-obstacle containing this facet.
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c-edge

Contact Information
contact-set The set of feature-pairs in contact for this edge.

Metric Information
class One of 0, 1, 2, or 3.

θclass-0 If this is a class-0 edge, then this is the θ-value of the plane
containing the edge.

coefficientsx
coefficientsy

If this is a non-class-0 edge, then these are the coefficients of
the edge function canonical form. Each of these fields is a list
(a b c d e f g h i j).

fx(p-or-θ)
fy(p-or-θ)

These functions return the (x, y) coordinates of points on the
unbounded curve containing the edge. These are functions of
p if this is a class-0 edge; otherwise, they are functions of θ.

f ′
x(θ)
f ′
y(θ)

If this is a non-class-0 edge, then these functions return the
dx
dθ and dy

dθ derivatives of the unbounded curve containing the
edge, given an input θ-value.

fp(x, y) If this is a class-0 edge, then this function returns the p-value
of a point on the line containing the edge, given an (x, y)
point. If the input point is not on the line, then the function
returns the p-value of the closest point on the line.

pmin

pmax

If this is a class-0 edge, then these are the bounding p-values
for the edge. For non-class-0 edges, the bounding θ-values
are fetched from vertexmin and vertexmax.

Topological Information
vertexmin

vertexmax

The edge endpoints. vertexmin is at the end of the edge
that has the minimum edge parameter value (p or θ), while
vertexmax is at the end with the maximum parameter value.
Zero-length edges are never constructed.

facetleft
facetright

The facets adjacent to this edge. The left and right direc-
tions are defined as follows: If you stand on the surface
of the configuration-obstacle at vertexmin and look toward
vertexmax, then facetleft is on your left.

Control Information
mc0? One of new, old, or false. new indicates that this is a newly-

constructed multiple-class-0 edge. old indicates that this is
a previously-constructed multiple-class-0 edge, and false in-
dicates that this is not a multiple-class-0 edge.

mc0-partial-facets If this edge is a multiple-class-0 edge, then this is the set of
facets that (i) contribute to the mc0-edge, and (ii) have not
been completed. These facets should be updated if the edge
is split by an intersection with a non-class-0 edge.

isolated? Boolean flag indicating whether this edge has been isolated.

obstacle The configuration-obstacle containing this edge.
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c-vertex

Contact Information
contact-set The set of feature-pairs in contact for this vertex. This field is

lazy-evaluated, and cannot be constructed until all adjacent
edges have been identified.

Metric Information
x
y
θ

The (x, y, θ) coordinates of this vertex.

Topological Information
edges The set of edges adjacent to this vertex. Some edges may

be missing from this set when the obstacle is only partially
constructed. If all facets neighboring these edges have been
completed, then no edges are missing.

Control Information
obstacle The configuration-obstacle containing this vertex.
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Appendix 6: Test Data

In this appendix, linear quantities are given in millimeters, and angular quantities are given in radians.

Tolerance Magnitudes and Units

Except for minor tuning parameters used to improve the comparison of numerically-sensitive configuration
obstacle edge endpoints, the programs developed in this thesis uniformly apply two tolerances:

εxy = 0.05 mm
εθ = 0.0001 radians

where εxy is used for comparisons of linear quantities, and εθ is used for comparison of angular quantities.
The numerical procedures described in Appendix 2 refine their roots to tolerances of 0.0000002 radians for
the CO program, and 0.00001 radians for the STATIC program.

Polygons Used in the Physical Experiments

[(31.6, 0.0) (0.0, 63.2) (23.7, 126.3) (−47.4, 126.3) (−47.4,−47.4) (49.7,−47.4) (49.7, 0.0)]

[(−17.5,−14.7) (4.6,−14.0) (−7.2,−11.6) (28.3, 33.4)]

[(−132.7, 126.8) (−112.7,−183.2) (−22.7,−283.2) (67.3,−183.2) (87.3, 126.8)
(567.3, 126.8) (367.3, 156.8) (−232.7, 156.8) (−432.7, 126.8)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Fabricated in 1/4′′ delrin
(a plastic similar to nylon).

[(−25.8,−15.5) (−0.2,−15.5) (26.0, 31.1)]
}

Fabricated in 1/4′′ plexiglas.

[(−96.4,−103.4) (−120.2,−139.3) (−105.0,−143.7)]
[(413.2, 266.9) (444.6, 227.9) (474.6, 229.0)]

}
Fabricated in 5/8′′ nylon, and affixed
to a posterboard surface.

The first polygon is the pushing finger used in the example in Part I, and the first two experiments. The handles
A and B are located at (−9.4, 104.3) and (−9.7, 29.9), respectively. Experiments #1, #3, and #4 assumed that the
coefficient of friction was in the interval [0.23, 0.48], while experiment #2 assumed the interval [0.29, 0.48]. These
values were obtained by laboratory measurement of the kinetic and static friction coefficients over a series of trials.

The extremal support friction distributions used in experiment #1 were obtained by either attaching legs near the
outer vertices of the second polygon, or gluing a small paper patch under the center of mass of the second polygon.
These modifications concentrate the support pressure distribution either far from or close to the center of mass.

Polygon Appearing in Figure 84

This polygon causes the CO program to fail:

[(−287.29,−59.95) (158.72,−23.54) (−320.21,−214.91) (−121.55,−430.06)
(−72.48,−203.53) (437.14, 17.26) (−39.38, 71.15) (−483.23, 151.90)]
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Test Polygons Appearing in Figure 14

1 : [(0, 0) (100, 0) (50, 69)]
2 : [(−100,−66.66666666) (0,−66.66666666) (100, 133.33333333)]
3 : [(−150, 0) (150, 0) (0, 69)]
4 : [(111.53603,−272.41943) (244.26998, 272.41951) (−244.26994, 90.05493)]
5 : [(−300,−200) (0,−200) (300, 400)]
6 : [(−400, 0) (−400,−100) (400, 0)]
7 : [(−400, 0) (400, 0) (−400, 100)]
8 : [(−219.61327,−138.25968) (219.61327,−138.25968) (219.61327, 138.25968) (−219.61327, 138.25968)]
9 : [(230,−240) (290,−150) (−230, 240) (−290, 150)]

10 : [(280,−200) (480, 200) (−480, 200) (−350,−200)]
11 : [(60,−15) (30,−230) (180,−10) (−180, 230)]
12 : [(−390, 210) (170,−90) (−500,−210) (500,−130)]
13 : [(−156,−55) (−35,−115) (35,−115) (156,−55) (0, 115)]
14 : [(230,−200) (300, 200) (180,−90) (−130, 200) (−300, 200) (−170,−200)]
15 : [(230,−200) (300,−15) (180,−90) (−130, 200) (−300, 200) (−170,−200)]
16 : [(230,−200) (300, 200) (180,−90) (150, 200) (−600, 200) (−470,−200)]
17 : [(230,−200) (300, 200) (180,−90) (150, 200) (−800, 200) (−670,−200)]
18 : [(100, 0) (250, 200) (−250, 200) (−100, 0) (−250,−200) (250,−200)]
19 : [(280,−200) (480, 200) (380, 200) (0,−90) (−300, 200) (−480, 200) (−350,−200)]
20 : [(280,−200) (480, 200) (140, 200) (70,−130) (−30, 200) (−480, 200) (−300,−200)]
21 : [(200, 300) (450, 300) (500, 0) (550, 350) (−650, 350) (−650, 0) (−100, 0)]
22 : [(−100, 0) (−650, 0) (−650,−350) (550,−350) (500, 0) (450,−300) (200,−300)]
23 : [(280,−200) (480, 200) (380, 200) (40,−120) (−40,−120) (−350, 200) (−480, 200) (−350,−200)]
24 : [(280,−200) (480, 200) (280, 200) (250,−140) (15,−140) (−15, 200) (−480, 200) (−340,−200)]
25 : [(280,−200) (480, 200) (380, 200) (80,−120) (−40,−120) (−350, 200) (−480, 200) (−350,−200)]
26 : [(280,−200) (480, 200) (150, 200) (130,−140) (0,−140) (−40, 200) (−480, 200) (−340,−200)]
27 : [(280,−200) (480, 200) (380, 200) (8,−120) (−8,−120) (−350, 200) (−480, 200) (−350,−200)]
28 : [(280,−200) (480, 200) (260, 200) (230,−140) (20,−140) (−10, 200) (−480, 200) (−340,−200)]
29 : [(280,−200) (480, 200) (265, 200) (265,−140) (0,−140) (0, 200) (−480, 200) (−340,−200)]
30 : [(300,−182.3) (500,−182.3) (500, 317.7) (−500, 317.7) (−500,−182.3) (−300,−182.3) (−300,−382.3) (300,−382.3)]
31 : [(−187, 0) (−25, 0) (0,−150) (250,−150) (225, 0) (200,−125) (25,−125) (0, 25) (−187, 25)]
32 : [(500,−50) (500, 450) (−50, 450) (0, 69) (50, 400) (350, 400) (100, 0) (−500, 0) (−500,−50)]
33 : [(500,−50) (500, 450) (−50, 450) (0, 69) (50, 400) (450, 400) (450, 0) (−500, 0) (−500,−50)]
34 : [(0, 0) (50, 50) (150, 50) (150,−50) (100,−100) (100,−200) (200,−200) (200, 100) (−100, 100) (−100, 0)]
35 : [(250,−275) (250, 175) (−10, 175) (0,−50) (10, 150) (225, 150) (225,−250) (−225,−250) (−225,−50)

(−475,−50) (−475,−275)]
36 : [(−309.07,−131.99) (−165.63,−406.46) (−189.38,−281.64) (406.51, 107.43)]
37 : [(−151.22, 343.48) (197.79, 398.91) (−240.58, 489.28) (−301.94,−341.46) (−140.25,−315.07) (53.92, 329.54)]
38 : [(110.85,−77.42) (117.97, 362.37) (−236.04, 172.44) (104.38,−177.82)]

[(−379.03,−454.36) (−318.37,−399.63) (−232.91,−253.30)]
39 : [(442.42,−251.31) (417.84, 451.35) (−128.69, 335.42) (134.96, 176.32) (−260.89,−14.23) (−462.42,−286.21)

(430.07,−464.09) (−92.49,−267.67)]
40 : [(−287.29,−59.95) (158.72,−23.54) (−320.21,−214.91) (−121.55,−430.06) (−72.48,−203.53) (437.14, 17.26)

(−39.38, 71.15) (−483.23, 73.49)]

Preimage Points

The 25 sample (xi, yi, θi) points shown in Figure 16 are:

(−175.0, 627.2, 5.662) (−176.8, 626.3, 5.689) (−174.4, 625.9, 5.689) (−174.3, 626.0, 5.689) (−174.6, 624.7, 5.715)
(−174.2, 625.2, 5.715) (−174.7, 625.5, 5.715) (−174.1, 624.2, 5.741) (−174.7, 624.6, 5.741) (−179.7, 624.3, 5.741)
(−174.6, 623.7, 5.767) (−180.9, 623.2, 5.767) (−174.7, 622.5, 5.767) (−182.0, 622.0, 5.793) (−174.6, 621.4, 5.793)
(−173.8, 622.5, 5.793) (−175.7, 620.3, 5.820) (−174.2, 621.8, 5.820) (−174.4, 622.0, 5.820) (−183.9, 619.5, 5.846)
(−177.2, 619.3, 5.846) (−175.8, 620.8, 5.846) (−182.9, 618.6, 5.872) (−177.4, 619.6, 5.872) (−179.7, 618.2, 5.898)

These 25 points combined with 2 support pressure distributions, 3 object positions (sampled at 120◦ intervals on the
boundary of the position error ball), 2 object orientations, 2 robot orientations, and 2 robot pushing directions to
give 25 · 2 · 3 · 2 · 2 · 2 = 1200 pushing trials with extremal uncertainty conditions.
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and-place operations on polyhedra. In Proceedings, IEEE International Conference on Robotics and
Automation, pages 683–688, May 1990.

[Joskowicz and Addanki 1988] L. Joskowicz and S. Addanki. From kinematics to shape: An approach to
innovative design. In Proceedings, AAAI: The Seventh National Conference on Artificial Intelligence,
pages 347–352, August 1988.

[Joskowicz and Sacks 1990] L. Joskowicz and E. Sacks. Unifying kinematics and dynamics for the automatic
analysis of machines. Technical Report RC 15573, IBM, March 1990.

[Kerr and Roth 1986] J. Kerr and B. Roth. Analysis of multifingered hands. International Journal of
Robotics Research, 4(4):3–17, Winter 1986.

[Khatib 1986] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. International
Journal of Robotics Research, 5(1):90–98, Winter 1986.

[Latombe 1989] J. Latombe. Motion planning with uncertainty: On the preimage backchaining approach.
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