
A Practical Approach to Replication
of Abstract Data Objects

Joshua J. Bloch
May 1990

CMU-CS-90-133

Submitted to Carnegie Mellon University in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Computer Science.

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania

Copyright 1990 Joshua J. Bloch

This work was supported by IBM, the Transarc Corporation, and by the Defense Advanced
Research Projects Agency, ARPA Order No. 4976 (Amendment 20), under contract F33615-87-
C-1499, monitored by the Air Force Avionics Laboratory, Wright Aeronautical Laboratories,
Wright-Patterson Air Force Base.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any of the
sponsoring agencies or of the United States Government.

To my mother and father.

Abstract

There is a great need for computer systems that remain available with high probability
at all times. Highly available systems can be implemented on networks of general
purpose computers by replicating data: storing the data redundantly at two or more of the
nodes comprising the system. Some replication protocol is necessary to control access to
the replicas. In essence, the replication protocol orchestrates the replicas to form a single
distributed data object. If a replicated data object is to be used in an application where
data consistency is required, the replicated object must display the same semantics as its
serially accessed, single-site counterpart. It is difficult to design replication protocols
that combine one-copy serializability with high performance.

This dissertation describes an architecture that provides efficient, easy-to-use replicated
implementations for a wide variety of useful data types, including directories, record
files with secondary indices on selected fields, and priority queues. The data objects
display single-copy serial semantics and provide high availability and concurrency. The
architecture is relatively easy to implement as it derives its recovery and concurrency
control properties from the support of an underlying distributed transaction system. A
fairly complete prototype implementation of the architecture was built on top of the
Camelot system. Experiments were performed to evaluate its performance.

The heart of the architecture is a family of efficient replication protocols that implement
a class of table-like data objects called replicated sparse memories or RSMs. The
replication protocols are based on Gifford’s weighted voting technique. An underlying
structural property of the RSM that allows efficient implementation of all its operations is
proven. Simulation results are presented that suggest RSMs are time and space efficient
in a wide variety of configurations. A Markov model of the RSM is constructed and
analyzed. The analysis indicates that RSMs are time and space efficient in all
configurations for all random operation mixes.

This dissertation introduces the concept of optimistic two-stage protocols, a new
technique for reducing communication costs in a broad class of distributed algorithms.
The architecture makes heavy use of optimistic two-stage protocols. In particular,
optimistic timestamps are used to speed up blind writes.

i

Acknowledgements

Many people assisted me in the process of writing this dissertation and performing the
research that led to it. My deepest thanks go to my advisor, Alfred Spector, who over the
years provided me with guidance, encouragement, perspective, and friendship.

I thank Eric Cooper, Dave Gifford and Doug Tygar for taking time out of their busy
schedules to serve on my thesis committee. Special thanks are due Eric Cooper, who
joined the committee on short notice, and gave my dissertation a very careful reading, in
spite of the many demands on his time. Every member of my committee provided me
with suggestions that substantially improved the quality of this work.

I owe special thanks to Jeffrey Eppinger. He drew many of the figures contained in this
dissertation, exercising a degree of care and esthetic judgment that went well beyond the
call of duty. On several occasions while Alfred was busy with Transarc, he served as a
surrogate advisor, giving me much-needed encouragement as well as technical advice.

This work owes much to technical discussions with Dan Bloch, Dean Daniels, Jim
Driscoll, Maurice Herlihy, John Lehoczky, Dean Rubine, and Dean Thompson, among
others.

Chapters 2 and 3 are derived from a paper authored jointly with Dean Daniels and
Alfred Spector [10]. Dean performed the simulations that led me to do the average-case
analysis in Chapter 3. I am deeply indebted to Dean and Alfred for their permission to
use this work in my thesis.

The members of the Camelot group worked many long hours to build the transaction
system that allowed me to make my replication architecture more than just another paper
design. The Camelot group consisted of Dean Daniels, Rich Draves, Dan Duchamp,
Jeffrey Eppinger, Andy Hastings, Elliot Jaffe, Toshihiko Kato, George Michaels, Lily
Mummert, Randy Pausch, Alfred Spector, Peter Stout and Dean Thompson. I would
especially like to thank Peter Stout for maintaining the Camelot system almost
singlehandedly during the time I studied the performance of my replication system.

Many members of the Mach group helped me during the implementation and
performance measurement phases of this work, including Joe Barrera, David Black,

iii

Jonathan Chew, Rich Sanzi, Mary Thompson, Mike Young, and especially Rich Draves,
whom I bothered far too often.

I thank Dave Eckhardt for proofreading large parts of this dissertation, and Fred
Schwarz for providing me with definitive answers to questions of style and usage.

I thank the CMU Department of Computer Science for providing a rich, stimulating and
friendly environment in which to do research. In particular, I thank Sharon Burks for
answering all my questions when no one else could, and fending off the university
bureaucrats.

My time at CMU was enriched by the friendship of many people, far too many to list
here. I could not have completed this thesis without their support and encouragement. I
give special thanks to Cindy Cosic, who put up with me on a daily basis while I wrote
this dissertation.

Finally, I thank my family for providing constant support and encouragement
throughout my time in graduate school.

When a list of acknowledgements is compiled, it is almost inevitable that some people
who deserve to be mentioned are forgotten. In the case of this work, the problem is
exacerbated by the extreme length of time over which the work was performed, and the
memory loss that typically accompanies old age. So, to all of you who should have been
mentioned here but are not: thanks, and sorry I forgot you.

iv

Table of Contents

1. Introduction . 1
1.1. System Model . 3
1.2. Related Work . 4
1.3. Overview . 7

2. Replicated Sparse Memories . 11
2.1. Introduction . 11
2.2. Weighted Voting . 12

2.2.1. Motivation for the Use of Weighted Voting 13
2.3. Development of the Algorithm . 14
2.4. Details of the Algorithm . 19

2.4.1. RSM Representative Operations 19
2.4.2. RSM Operations . 22

2.5. An Efficient Algorithm for the Real Predecessor Operation 27
2.5.1. Proofs . 29
2.5.2. The Algorithm . 34
2.5.3. Enhancements to the Real Predecessor Algorithm 36

2.6. Correctness Arguments . 38

3. The Performance of Replicated Sparse Memories 39
3.1. The System . 39
3.2. Simulation Results . 41
3.3. Analytic Model . 44

3.3.1. Introduction . 44
3.3.2. Construction of the Model . 44
3.3.3. Method of Analysis . 48
3.3.4. Formulation of Balance Equations 49
3.3.5. Solution of Balance Equations 50
3.3.6. Results . 52
3.3.7. Varying the Operation Mix 55
3.3.8. Discussion of the Analysis . 58

3.4. Discussion . 61

4. Optimizations and Extensions to Replicated Sparse Memories . . 65
4.1. Optimizations . 66

v

4.1.1. Optimistic Timestamps . 66
4.1.2. Optimistic Two-Stage Protocols 70
4.1.3. Low Latency Erases . 73
4.1.4. Frequently Modified Fields 75
4.1.5. Hash Table RSMs . 76
4.1.6. Array RSMs . 79

4.2. Extensions . 80
4.2.1. Range Operations . 80
4.2.2. Navigation Operations . 82

5. The Use of Replicated Sparse Memories 83
5.1. Parameters . 83
5.2. Efficiency Guidelines . 84
5.3. Data Types Built on RSMs . 86

5.3.1. Singly Indexed Record Sets 86
5.3.2. Multiply Indexed Record Sets 88
5.3.3. Queue-Like Data Types . 94

5.4. Replicated Counters . 97
5.4.1. An Efficient Implementation for Replicated Counters 98
5.4.2. The Performance of Replicated Counters 100
5.4.3. The Use of Replicated Counters in Conjunction with RSMs . . 102

6. An Architecture for Replication 105
6.1. Architecture . 105
6.2. Implementation . 109

6.2.1. System Structure . 110
6.2.1.1. Dynamic Data Specification Facility 111
6.2.1.2. RPC Batching Facility 112
6.2.1.3. Other Packages . 113

6.2.2. Version Numbers . 113
6.2.3. Primitive Data Types . 114

6.2.3.1. Replicated Sparse Memories 114
6.2.3.2. Hash Table RSMs . 115
6.2.3.3. Array RSMs . 116
6.2.3.4. MRSMs . 116

6.2.4. Program Size . 117
6.2.5. Testing and Debugging . 119

6.3. Conclusions . 121

7. The Performance of Our Architecture 125
7.1. Experimental Setup . 125
7.2. Basic Timings . 127

7.2.1. Methodology . 127
7.2.2. Primitives and Their Costs . 128

vi

7.2.3. Primitive Usage . 129
7.2.4. Experimental Details . 131
7.2.5. Local Performance . 132
7.2.6. Distributed Performance . 136
7.2.7. Histogram Data . 140
7.2.8. Performing a Primitive Analysis 141
7.2.9. A Note on the Primitive Analysis Methodology 142

7.3. Concurrent Performance . 144
7.4. Optimistic Timestamp Performance 145
7.5. Failure Recovery Performance . 146
7.6. Conclusions . 147

8. Conclusions . 149
8.1. Contributions . 149
8.2. Directions for Future Work . 150
8.3. Summary . 151

Appendix A. Detailed Formulation of Balance Equations 153

vii

List of Figures

2-1: 3-2-2 RSM With Addresses ‘‘a’’ and ‘‘c’’ Occupied 15
2-2: RSM After Writing to Address ‘‘b’’ 15
2-3: RSM After Erasing Address ‘‘b’’ 15
2-4: 3-2-2 RSM With Addresses ‘‘a’’ and ‘‘c’’ Occupied 17
2-5: RSM After Writing to ‘‘b’’ . 17
2-6: RSM After Erasing ‘‘b’’ . 18
2-7: RSM Representative Operations 20
2-8: IRead Operation . 23
2-9: Write Operation . 24
2-10: RSM from Figure 2-5 After Erasing ‘‘a’’ 24
2-11: RSM from Figure 2-10 After Erasing ‘‘b’’ 25
2-12: Erase Operation . 27
2-13: RSM For the Illustration of Region of Currency and Related

Terminology . 29
2-14: Effect of Write Operation on Regions of Currency Within Write

Quorum . 32
2-15: Effect of Erase Operation on Regions of Currency Within Write

Quorum . 33
2-16: Real Predecessor Operation . 35
3-1: Average Size Ratios for Various RSM Configurations 42
3-2: Average Delete List Lengths for Various Configurations 42
3-3: Class Change Associated with an RSM Operation 47
3-4: Expected Composition Ratios in a 20 - (21−W) - W RSM 53
3-5: Expected Delete List Lengths in a 20 - (21−W) - W RSM 53
3-6: Expected Composition Ratios in a (2i−1) - i - i RSM 54
3-7: Expected Delete List Lengths in a (2i−1) - i - i RSM 54
3-8: Expected Composition Ratios for Varying P in a 3-2-2 RSM . . . 57u
3-9: Expected Delete List Length for Varying P in a 3-2-2 RSM 57u
6-1: Replication System Architecture 106
7-1: Network for Distributed Experiments 126
7-2: Predicted and Measured Times for Local RSM Operations 133
7-3: Predicted and Measured Times for Local Hash Table RSM Operations

133
7-4: Predicted and Measured Times for Local Array RSM Operations . 134
7-5: Predicted and Measured Times for Local MRSM Operations 134
7-6: Predicted and Measured Times for Operations on Local Replicated

Objects . 135

ix

7-7: Predicted and Measured Times for Distributed RSM Operations . . 137
7-8: Predicted and Measured Times for Distributed Hash Table RSM

Operations . 137
7-9: Predicted and Measured Times for Distributed Array RSM Operations

138
7-10: Predicted and Measured Times for Distributed MRSM Operations 138
7-11: Transaction Times Under Concurrent Usage 145

x

List of Tables

3-1: Communications Costs of RSM Operations 40
3-2: Detailed Simulation Results for 3-2-2 RSMs 43
5-1: Communication Costs for the Record File with Secondary Indices . 90
6-1: Sizes of Replicated Data System Components 118
7-1: Incremental Latencies of Primitive Operations 129
7-2: Estimated Primitive Operation Counts for Operations on Replicated

Objects . 131
7-3: Predicted and Measured Times for Distributed Replicated Objects . 139

xi

Chapter 1

Introduction

There is a great need for computer systems that remain available with high probability
at all times. Such systems are needed, for example, to support banking, ticket sales, and
factory automation. When a computer system used for such an application fails, the
company that relies on the system can suffer great monetary losses due to lost sales and
productivity. The longer the system remains unavailable, the greater the losses. The
failure of such a system can also result in great irritation to customers and employees.

While hardware and software failures can be reduced through careful design and testing,
they cannot be eliminated using present-day technology; in order to achieve high
availability, computer systems must be able to withstand failures in the underlying
hardware and software. This is accomplished by building systems with redundant
hardware and storing redundant copies of data. If a failure occurs in some unit, a backup
unit is available to take its place.

The traditional approach to highly available system design, exemplified by Tandem’s
NonStop system [4], is to build special purpose hardware in which each component is
duplicated and components are interconnected in such a way that failures can be masked.
Data is typically stored on two mirrored disks that are located in close proximity to one
another. Data is written to both copies, and read from only one. While this approach is
fast, it has certain deficiencies: special purpose hardware is expensive and availability is
limited by the fact a single physical catastrophe can destroy the whole system.

Another approach to highly available system design is to store copies of data at several
sites in a loosely coupled distributed computer system. This approach is known as
replication. Some replication protocol is used to direct updates to the sites and retrieve
data from the sites to answer queries. In essence, the replication protocol orchestrates the
replicas to form a single distributed data object. With replication, highly available
systems can be constructed from low-cost, off-the-shelf computer hardware. Such
systems are less susceptible to physical catastrophes, as the hardware can be
geographically dispersed.

1

2 Chapter 1

Replication has other advantages that may apply depending on the particulars of the
replication protocol. Some protocols can decrease the workload on individual data
servers by spreading work out among multiple sites. Some protocols can reduce the
latency of certain operations by allowing clients to use readily accessible replicas of the
data. Some protocols permit sites at which replicas are stored to be removed from the
system for hardware maintenance or software upgrades without causing any disruption in
service.

As is the case for traditional, single-site systems, the task of writing and debugging
complex applications with replicated data is greatly simplified if a facility is provided for
the programmer to create and manipulate complex data objects.

Many critical applications for online databases (e.g. banking, sales) require that data
objects display serial consistency [20]: although objects may be accessed concurrently
by multiple clients, clients must never be allowed to see the effects of concurrent activity.
Clients may group several operations on one or more data objects to form a single
transaction [18, 20]. Serial consistency guarantees that any concurrent execution of
transactions performed by the system will be equivalent to some serial execution. If the
database starts out in a consistent state and each transaction would preserve consistency if
executed in isolation, serial consistency guarantees that the no transaction will ever
observe the database in an inconsistent state. This permits programmers to ensure that
critical database consistency constraints are not violated. Typical consistency constraints
are: ‘‘The total amount of money in all accounts is fixed,’’ ‘‘The number of Grateful
Dead tickets initially available minus the number that have been sold is greater than or
equal to zero,’’ and ‘‘Every pointer in array A points to a valid record.’’ The
consequences of observing a database in an inconsistent state can be disastrous.

If a replicated data object is to be used in an application where data consistency is
required, it must preserve serial consistency: the replicated object must display the same
semantics as its serially accessed, single-site counterpart. This is the basic correctness
criterion for replicated objects. It is known as one-copy serializability. A replication
protocol that exhibits this property is said to be transparent. It is difficult to provide
one-copy serializability in combination with high performance. (By high performance,
we mean high concurrency and low communication, computation and space costs.)

This dissertation sets forth the thesis that replication of abstract data objects can be
made sufficiently high in performance and easy to use that it represents a practical option
to builders of highly available systems. The dissertation presents an architecture that
enables the application programmer to quickly produce correct, efficient replicated
implementations of a broad class of useful data types. The architecture requires the
support of an underlying transaction system. The heart of the architecture is a family of
efficient replication protocols that implement a class of data objects called replicated

Introduction 3

sparse memories. The architecture was implemented on the Camelot distributed
transaction system [19].

1.1. System Model

Our architecture runs on a distributed computer system consisting of multiple nodes
connected by a communication network. The network may be a local area network, a
wide area network, or any combination of the two.

The architecture requires the support of a general purpose distributed transaction
system [27] like Camelot [19] or Argus [39]. Transactions are units of computation with
three basic properties:

• Failure Atomicity - Transactions either run to completion or they have no
effect at all. A transaction that runs to completion is said to commit and a
transaction that has no effect at all is said to abort.

• Serializability - Although transactions may run concurrently, they appear to
run serially: each transaction observes all of the effects of every transaction
that occurs before it in the equivalent serial ordering, and none of the effects
of the transactions that occur after it.

• Permanence - Once a transaction commits, its effects are permanent: it can
no longer abort.

Together, these three properties create the illusion that transactions are executed serially
and to completion. Distributed transactions access data at two or more nodes. Our
replication protocols use distributed transactions to maintain consistency constraints in
the replicas that collectively represent a data object. The applications that use the objects
exported by our protocols use transactions to maintain consistency constraints on
collections of these objects.

We assume a client-server model, wherein client processes communicate with server
processes via remote procedure calls (RPCs) [45]. Transactions become distributed by
performing RPCs to servers on remote nodes. We assume that transactional RPCs are
used. Unlike normal RPCs, which have at-most-once semantics, transactional RPCs have
exactly-once semantics: either an RPC executes to completion or the transaction that
made the RPC is aborted. Communication links may fail, and messages may be lost or
reordered, but these failures will be masked by the RPC protocol. A link failure can
cause some nodes to become inaccessible from others. This situation is referred to as a
network partition. Our protocols tolerate partitions, although some operations on some
data objects may be unavailable from some nodes while a partition exists.

Nodes in a distributed system may fail, but we assume that they fail by halting: they
must not continue to operate while performing incorrect computations. Such processors
are said to be fail-fast [26]. The transaction system detects node failures and aborts all
transactions that were active at a processor when it failed.

4 Chapter 1

While nested transactions [44] are not required by our architecture, they simplify the
implementation of our protocols. The replicated data objects exported by the architecture
are fully compatible with nested transactions. The architecture can be built on stable
storage that is implemented with value logging [29] and two phase locking [27]. More
sophisticated locking and recovery techniques could be used to improve the concurrency
of some data types, but these techniques are not required, and we did not use them in our
implementation.

Communication costs tend to dominate local computation costs in distributed systems.
In particular, transactional RPCs are among the most expensive basic operations exported
by distributed transaction systems. Therefore, the main focus of our quest for efficiency
is the reduction of the number of RPCs required by our protocols. It is substantially
faster to perform multiple RPCs in parallel than to perform them in sequence, so the
performance measure of greatest concern to us is the number of groups of parallel RPCs
that are performed in the execution of an operation. This performance measure is often
referred to in the literature as the number of message delays incurred by an operation.
We refer to a group of parallel RPCs as a round of message exchanges or simply a round
of messages. We assume that the length of a message is bounded by some system
dependent constant.

While we insist that the worst-case costs of our protocols be reasonable, we are more
concerned with average-case costs. A detailed discussion of the performance measures
of interest to us may be found in Section 5.2.

1.2. Related Work

Early work on replication focused on simple data objects, usually called files, that
support only whole-file read and write operations. While complex data types can be built
on top of files, the resulting implementations generally display poor performance,
especially in the area of concurrency.

One basic approach to replication is unanimous update: write operations are performed
on all replicas, and reads are directed to any replica. The cost of the read operation is
potentially very low, as no off-site communication is required if there is a replica at the
same site as the client. But write availability is poor: a single site failure prevents write
operations from proceeding. Write availability can be increased by using the
communication system to buffer updates to unavailable replicas. The SDD-1 distributed
database system uses this approach [51]. The available copies method takes a similar
approach [5]. These approaches cannot tolerate network partitions.

A second basic approach, due to Alsberg and Day, is based on keeping a primary copy
of each file and a number of secondary copies [3]. The primary copy receives all

Introduction 5

operations and relays updates to the secondaries. If the primary fails, one of the
secondaries takes its place as the new primary. As described by Alsberg and Day, this
approach does not provide one-copy serializability, although it has been extended to do
so by the addition of synchronization sites [47]. One disadvantage of primary copy
approaches is that the site at which the primary copy is located or the links to this site can
become a bottleneck. Another disadvantage is that some reconfiguration protocol is
necessary to select a new primary when the primary becomes unavailable. Such
protocols can be expensive and difficult to tune. If the time interval between observing a
failure and attempting reconfiguration is too short, large amounts of resources can be
wasted reconfiguring the system in response to transient failures. If the interval is too
long, a failure of the primary can cause a noticeable interruption in service.

A third basic approach, due to Gifford, is weighted voting [22, 23]. In weighted voting,
there are N replicas, each consisting of a copy of the file and a version number. Writes
are directed to a subset of the replicas, called a write quorum, and reads are directed to a
subset called a read quorum. A write quorum consists of W replicas and a read quorum
consists of R replicas. The quorum sizes, W and R, are chosen so that R + W > N. Thus,
every read quorum intersects every write quorum, and each read quorum includes at least
one copy of the most current version of the file. The version numbers enable the reader
to identify the current version. The read and write quorum sizes control an availability
and performance tradeoff between the read and write operations. The weighted voting
approach forms the basis for our techniques. It is discussed in more detail in Sections 2.2
and 2.2.1.

El Abbadi, Skeen and Cristian extend the unanimous update approach to allow updates
during a partition [2]. In this approach, the nodes maintain virtual partitions, which are
logical groups corresponding to perceived actual partitions. The unanimous update
approach is used within each virtual partition. Only a virtual partition containing a
majority of the replicas for any object can access the object. El Abbadi and Toueg extend
the virtual partitions approach to gain added flexibility [1]. In their approach, nodes
maintain views, which are similar to virtual partitions. Within each view, the weighted
voting technique is used. Performance and availability tradeoffs between read and write
operations can be controlled by choosing appropriate quorum sizes. The virtual partitions
and views approaches incur substantial expense in reconfiguring the system when a node
goes down or comes back up.

Herlihy describes a technique called generalized quorum consensus whereby weighted
voting can be systematically applied to any abstract data type [31]. This technique
provides extremely high concurrency and great freedom in trading off the relative
availability of the operations on an object. However, it has high communication,
computation, and storage costs. The generality of the technique derives from the fact that
it is event-based: an object’s state is represented by a log of the operations that have been

6 Chapter 1

performed on it. The high concurrency derives from the fact that transaction-consistent
timestamps are used instead of version numbers, to implement a hybrid atomic [58, 59]
concurrency control mechanism. Heddaya modifies Herlihy’s technique to address
certain efficiency issues [30].

Joseph describes a technique for replication of arbitrary abstract data objects on a local
area network based on C-schemas [33]. His technique is based on a much more
restrictive model of distributed systems than ours. His model calls for an explicit
operation scheduler and specifically excludes network partitions.

Cooper describes a technique based on replicated procedure calls [14, 15]. Multiple
processes duplicate each other’s actions in parallel to form a troupe. When a client
troupe performs a replicated procedure call on a server troupe, each client process sends
a message to each server process, but each server process executes the RPC only once.
This method applies to arbitrary deterministic data types. A specialized commit protocol
insures that transactions are serialized in the same order at all servers. Therefore the state
of all servers in a troupe remains consistent. When a failed server recovers, it must copy
all of the state information from an operational server in a transaction consistent fashion.
Cooper’s method uses replication instead of stable storage to achieve permanence of
transactions.

Oki describes a technique called viewstamped replication wherein nodes maintain views
and use a primary/secondary copy approach within their view [46]. Unlike the basic
primary/secondary copy approach, the replicas are arbitrary servers, hence Oki’s method
applies to arbitrary abstract data types. To reduce latency, updates are passed from the
primary to the secondaries in the background. If an update has not been passed to enough
secondaries at transaction prepare time, the prepare will block. Like Cooper’s method,
Oki’s method uses replication instead of stable storage to achieve permanence. This has
some efficiency advantages, but requires that the replication system be integrated into the
underlying transaction system.

The replicated sparse memory data structure described in this dissertation derives
directly from the replicated directory, which was developed jointly with Daniels and
Spector [10]. The replicated directory is an extension of earlier work by Daniels and
Spector [16].

The major attribute of our work that distinguishes it from other recent work in the area
of replication is its focus on practicality. The replication protocols underlying our
architecture were designed primarily for efficiency. Our architecture does not provide
complete generality in the data types that it supports. Neither does it maximize the
potential concurrency offered by data objects, or the degree of freedom in trading off the
relative availability of their operations. However, we believe that the generality,

Introduction 7

concurrency, availability and performance of our architecture are high enough that it
presents a practical option to builders of highly available systems. Our architecture is
implementable on current day system software. It is optimized for data types that are
widely used in practice.

Our work has several other unique features. This dissertation describes a fairly
complete prototype implementation of our architecture. The implementation includes
many of the optimizations that would be used in a commercial implementation.
Implementation details are described and various performance figures are reported.

While our protocols are primarily optimized for low message counts, they also provide
low storage consumption and low communication volume. We perform a mathematical
analysis that shows that average computation and space costs remain low over a very
wide range of system configurations and operation mixes. In essence, the analysis shows
that the distributed data structure underlying our protocols is self-cleaning in the sense
that it automatically garbage-collects out-of-date information as fast as it is produced.

1.3. Overview

Chapter 2 describes the replicated sparse memory or RSM, a replicated implementation
of a table-like data object that associates values with addresses over an arbitrary address
space. The object provides operations to write, read, and erase the information associated
with an address. The replication algorithm is based on Gifford’s weighted voting
technique [22, 23]. The replicas in an RSM associate separate version numbers with
individual addresses. In order to support the erase operation, which removes the value
associated with an address, each replica must associate version numbers with every
address in the address space, whether or not it has a value associated with it.

The read and write operations in the RSM are fairly straightforward, requiring one and
two rounds of messages, respectively. The erase operation is more complicated. A
critical step in performing the erase operation is determining the closest addresses above
and below the one being erased that currently have data associated with them. The naive
method for performing this step requires a potentially unbounded number of rounds of
messages. In order to develop an algorithm that performs this step efficiently, we prove a
basic structural property of the replicated sparse memory. The resulting algorithm
requires two rounds of messages in the worst case, and normally runs in a single round.
Predictive formulas derived in Chapter 3 can be used to tune the algorithm so that it
almost always runs in a single round.

Chapter 3 studies the performance of the replicated sparse memory. Simulation results
are presented that suggest that the average time and space performance of the RSM are
good over a wide range of possible configurations. A Markov model of the RSM under

8 Chapter 1

random use is constructed and analyzed using balance equations, mathematical assertions
that a dynamic equilibrium exists in the system. Predictive formulas for the performance
measures studied in the simulation are derived from the solutions of the balance
equations. The predictions of the analysis agree remarkably well with the data gathered
in the simulations. The results of the analysis indicate that the favorable performance
observed in the simulations extends to a very wide range of system configurations and
operation mixes.

Chapter 4 describes several optimizations and extensions to the replicated sparse
memory. Traditionally, write operations in weighted voting algorithms have required
two rounds of messages, one to determine the current version number associated with the
data, and one to write the data. A technique called optimistic timestamps is introduced,
wherein approximately synchronized real-time clocks are used to generate version
numbers. This technique eliminates the first round in the great majority of write
operations. The optimistic timestamp technique is generalized to form a broad class of
optimizations known as optimistic two-stage protocols, which are used throughout this
dissertation to reduce the communications costs of our algorithms. We argue that
optimistic two-stage protocols represent a generally useful paradigm for the design of fast
distributed algorithms in the context of transaction systems.

Other optimizations described in Chapter 4 include a technique for reducing the latency
of the erase operation and a technique for reducing the cost of modifying individual fields
of records stored in RSMs. Two alternative RSM implementations, called hash table
RSMs and array RSMs, are presented. These implementations have significant
performance advantages over ordinary RSMs, but are not as broadly applicable.

Two extensions to the functionality of RSMs are described in Chapter 4: range
operations and navigation operations. Range operations permit a client to read, write or
erase all of the data associated with a range of addresses. Navigation operations permit a
client to scan backwards or forwards through the addresses in an RSM that currently have
data associated with them. Efficient algorithms are presented for the range and
navigation operations.

Chapter 5 discusses the use of replicated sparse memories. RSMs have several
parameters that may be varied to provide a rich family of abstract data types. A brief
taxonomy of this family is presented. RSMs provide a powerful base on top of which
many interesting abstract data types can be built. The efficiency that can be obtained
from such implementations is discussed. Efficient RSM implementations for several
useful data types are presented, including directories, record files with secondary indices
on selected fields, and priority queues. Not all data types can be implemented efficiently
on RSMs. One useful data type that cannot is the counter. An efficient replicated
implementation for this data type is presented, and the use of this implementation in
conjunction with RSMs is discussed.

Introduction 9

Chapter 6 describes an architecture that provides application programmers with
implementations of the replicated data objects described in previous chapters. The
architecture consists of a set of replica servers and a library that implements our
replication protocols on top of these servers. Replicated objects are dynamically created
in response to requests from application programs. Many parameters of the objects,
including address space, value type, and replica representation type may be specified at
runtime. The architecture is easy to use, as it insulates the programmer from the details
of the replication protocols.

We implemented the architecture on the Camelot transaction system. The
implementation is fairly complete, including all of the major RSM variants described in
this dissertation. The implementation is described in Chapter 6.

We performed experiments to evaluate various aspects of the performance of our
prototype. Chapter 7 presents these experiments. Many performance figures are
presented, including some concurrent performance data. We compare our measurements
with predictions based on the performance of underlying primitives. A high degree of
agreement is observed between measurements and predictions, indicating that we
understand the performance of our system. While the performance of the prototype is
limited by that of the underlying system software and hardware, it clearly demonstrates
the practicality of our approach. Our predictions can be extended to predict the
performance that would result if our architecture were implemented on a different
platform.

Chapter 8 contains conclusions and directions for future work.

Chapter 2

Replicated Sparse Memories

2.1. Introduction

The goals of object replication on distributed computing systems are increased
parallelism, reduced communications costs, and increased resilience in the presence of
failures. In particular, replication can permit increased object availability: continued
access to an object despite the failure of one or more of the nodes on which it is stored.
Unfortunately, it is difficult to achieve high performance and availability while ensuring
that the semantics of replicated data objects are identical to those of their non-replicated
counterparts.

This chapter describes a distributed data structure called the replicated sparse memory
or RSM. The RSM implements a sparse memory, a directory-like abstract data object
that maps addresses to values. Addresses are chosen from a set of constants called the
address space. Sparse memories are accessed with the following operations:

Write(IN val: value, addr: address) - Associates a value with an address.
The address is said to be occupied if it has been written and not subsequently
erased.

Read(IN addr: address; OUT occupied: boolean, val: value) - Returns
TRUE and the value associated with the address, if it is occupied, or FALSE
and an undefined value, if it is unoccupied.

Erase(IN addr: address) - Erases any value currently associated with an
address, causing it to return to the unoccupied state.

The sparse memory is an attractive data type when compared with more common
directory-like data types because of its simplicity and generality. It is defined by only
three operations. It allows blind writes: clients can associate a value with an address
without knowing whether a value is currently associated with the address. Sparse
memories provide a good basis for implementing a wide variety of useful data types. The
broad applicability of the sparse memory is discussed at length in Chapter 5.

The only condition that our data structure imposes on the address space is that it be
totally ordered. We make no other assumptions about the structure of the address space;

11

12 Chapter 2

it can be finite, countably infinite, or uncountably infinite, and either dense (like the
rationals) or sparse (like the integers). For all of the examples in this paper, the set of
finite length alphabetic strings with lexicographic ordering is used as the address space.

The RSM data structure presented in this chapter permits concurrent operations and
arbitrarily high data availability. A measure of availability appropriate to this work is the
number of node failures that a replicated object can tolerate while guaranteeing that an
operation can be performed. The semantics of the replicated sparse memory are identical
to those of a sparse memory stored on a single node and accessed serially. Thus the
replication algorithm is said to be transparent.

RSM operations execute as part of distributed transactions, which provide uniform
synchronization and recovery properties for operations on arbitrary shared abstract types.
The RSM is an example of a distributed abstract data type that is constructed from a
collection of more primitive, non-distributed types. Transactions simplify the
maintenance of the invariants necessary to make this replication algorithm work.

The replication technique described in this chapter is an extension of an algorithm for
replicated directories presented by Daniels and Spector [16]. It is based on Gifford’s
weighted voting algorithm [22, 23], and has similar performance and reliability
advantages. Unlike Gifford’s algorithm, this algorithm efficiently associates at each
replica a separate version number with every address in the address space. This permits
concurrent operations on different addresses and solves certain problems in the
implementation of the Erase operation. Unlike early replication algorithms, which
implemented simple objects having only read and write operations, this algorithm uses
the semantic properties of sparse memories to gain increased performance.

The remainder of this chapter is organized as follows. Section 2.2 describes weighted
voting and discusses its use as the basis for an RSM data structure. Section 2.3 motivates
and outlines our technique and Section 2.4 describes it in detail. Section 2.5 develops an
efficient algorithm for the Erase operation. Section 2.6 contains correctness arguments.

2.2. Weighted Voting

In this section, we describe Gifford’s weighted voting algorithm [22, 23], which forms
the basis for our algorithm. Gifford’s algorithm implements a replicated file, supporting

1only the read and write operations. A file is stored as a collection of replicas, called

1While the term ‘‘file’’ has traditionally been used in connection with this work, it is not entirely
appropriate, as the granularity of operations is the entire object. File systems typically permit operations on
individual records.

Replicated Sparse Memories 13

representatives, each of which is assigned a certain number of votes. A representative
consists of a copy of the file and a version number. The entire collection of
representatives is called a file suite. Write operations write an updated copy of the file to
each representative in a group called a write quorum, associating a new version number
with all of these representatives. The new version number must be higher than any
version number previously associated with a representative in the file suite. Read
operations read from each representative in a read quorum and return the data from the
representative with the highest version number. Write operations establish a higher
version number by incrementing the highest version number encountered in a read
quorum.

A write quorum consists of any set of representatives whose votes total at least W and a
read quorum consists of any set of representatives whose votes total at least R. The
constants R and W are chosen so that their sum is greater than the total number of votes
assigned to all representatives, N. Thus, every read quorum has a non-null intersection
with every write quorum and each inquiry is guaranteed to access at least one current
copy of the data. Current copies will always have a higher version number than non-
current copies so the read operation will always return current data. The values chosen
for R and W control a tradeoff between the availability of the read and write operation.

Recall that write operations consult a read quorum to determine the highest version
number previously associated with a representative in the file suite. As a consequence,
the write operation requires the services of a collection of representatives whose votes
total max (R,W): the write operation cannot be made more available than the read
operation. If W were chosen to be less than R, the desired increase in availability of the
write operation would not materialize; instead, the availabilities of both the read and
write operations would decrease. Therefore, we assume that W≥R.

2.2.1. Motivation for the Use of Weighted Voting

Weighted voting has several features that make it appealing as the basis for the design
of a replicated sparse memory. A key feature of weighted voting algorithms is that they
automatically function correctly in the face of network partitions. They do so passively,
without the need for dynamic reconfiguration. Such dynamic reconfiguration adds great
complexity to replication algorithms, and substantially reduces availability during periods
of reconfiguration.

Another appealing feature of weighted voting algorithms is that the sizes of the read and
write quorums may be varied to adjust the relative cost and availability of the operations.
For example, read quorums can be made much smaller than write quorums if data is read
much more frequently than it is written. Vote assignments can be adjusted to further

14 Chapter 2

refine availability tradeoffs. For instance, a node that is more likely to fail can be given
fewer votes, so its absence will have less effect on system availability.

Finally, algorithms based on weighted voting are simplified because consistency and
recovery are primarily the responsibility of an underlying transaction facility. The use of
an underlying transaction facility greatly simplifies the task of ensuring that operations
on multiple distributed objects interact properly.

While weighted voting is an appealing approach to replication, the basic algorithm
cannot be applied directly to sparse memories without undesirable concurrency
limitations. Even though the semantics of sparse memories permit concurrent operations
on different addresses, only a single transaction at a time could modify the contents of the
memory if it were stored in a file suite; each copy of the entire memory would have a
single version number, which would cause the serialization of all operations that
modified the memory. Furthermore, any modification would require sending the entire
updated memory to each representative in a write quorum. For a large memory, this
would result in prohibitive communications costs. In Section 2.3, we develop an
algorithm for replicated sparse memories from the weighted voting algorithm for files.
Our algorithm rectifies the deficiencies described above.

2.3. Development of the Algorithm

In Section 2.2.1, we noted that weighted voting could not be applied directly to a sparse
memory without excessive concurrency limitations and communications costs. It might
seem that these limitations could be overcome if each entry in an RSM representative
were assigned a separate version number. (An entry is defined as the physical data
associated with an address at a representative, and consists of the address and an
associated value.) But this approach proves inviable; it is not always possible to
determine from an arbitrary read quorum whether a given address is occupied. The
problem is illustrated below.

The RSM in this example consists of three representatives. In our examples, we will
assume that each representative has one vote, though all results generalize to RSMs with
arbitrary vote distributions. The read and write quorum sizes for the example are each
two votes. The notation N-R-W refers to an RSM having N representatives, a read
quorum size of R and a write quorum size of W. Thus, we call the RSM in our example a
3-2-2 RSM.

Initially, addresses ‘‘a’’ and ‘‘c’’ have been written to a write quorum consisting of
representatives A and B; A and B contain entries for addresses ‘‘a’’ and ‘‘c’’, and each

Replicated Sparse Memories 15

2entry has version number 1 (Figure 2-1) . Subsequently, ‘‘b’’ is written to a write
quorum consisting of representatives A and C, with version number 1 (Figure 2-2). If a
request to read the data associated with address ‘‘b’’ is sent to representatives B and C at
this point, representative B will respond ‘‘not present,’’ and representative C will respond
‘‘present with version number 1.’’ If ‘‘b’’ is then erased from the RSM by deleting its
entry from representatives A and B (Figure 2-3), requests to read ‘‘b’’ on representatives
B and C will still elicit the responses ‘‘not present,’’ and ‘‘present with version number
1.’’ If RSM representatives fail to associate version numbers with addresses for which
they have no entries, the responses from a read quorum will not, in general, be sufficient
to determine if a given address is occupied.

Representative CRepresentative A Representative B

Addr: "a" Ver:1

Ver:1Addr: "c"

Addr: "a" Ver:1

Ver:1Addr: "c"

Figure 2-1: 3-2-2 RSM With Addresses ‘‘a’’ and ‘‘c’’ Occupied

Representative CRepresentative A Representative B

Addr: "a" Ver:1

Ver:1Addr: "b"

Addr: "a" Ver:1

Ver:1

Addr: "c" Ver:1

Ver:1

Addr: "c"

Addr: "b"

Figure 2-2: RSM After Writing to Address ‘‘b’’

Respresentative CRepresentative A Representative B

Addr: "a" Ver:1

Ver:1

Ver:1

Addr: "c"

Addr: "b"Addr: "a" Ver:1

Ver:1Addr: "c"

Figure 2-3: RSM After Erasing Address ‘‘b’’

2The value field is omitted from all figures for clarity.

16 Chapter 2

The ambiguity illustrated above is associated with the Erase operation and would not
occur if the operation were not permitted. Alternatively, erase could be implemented by
replacing entries to be deleted with version-numbered tombstones and performing a
garbage collection operation periodically. However, the garbage collection operation
would be expensive and availability would be greatly reduced during the operation. A
third strategy is to eliminate the ambiguity by consulting additional representatives
whenever an inquiry to an initial set of representatives does not yield a read quorum of
replies all of which agree on the presence or absence of an entry. But this approach
drastically reduces availability.

None of the solutions presented thus far satisfy our demands for concurrency and
availability. What is really needed is a scheme whereby each representative associates a
version number with every address in the address space. This can be accomplished by
partitioning the address space into disjoint sets and associating a version number with
each set at every representative. The same partitions need not be used at all
representatives.

One approach to partitioning is to divide the address space into ranges based on the
order relation on the address space. The simplest partitioning scheme divides the address
space into a number of fixed ranges. However, it is difficult to guarantee sufficient
concurrency with such a static partitioning technique. If a small number of ranges are
used, then at most that number of transactions can modify the contents of the RSM
concurrently. If transactions perform operations on addresses in more than one range,
concurrency will be further limited. Even if a large number of ranges are used, an
uneven distribution of accesses can limit concurrency. Furthermore, static partitioning
can cause excessive communications costs, as the current values associated with every
address in a partition must be sent to all of the representatives in a write quorum each
time an operation modifies the data associated with any address in the partition.

A more general approach is to allow the partition at each representative to vary over
time, as a function of which entries currently reside at the representative. Such a dynamic
partitioning technique is especially desirable for RSMs having sizes or access patterns
that vary widely over time. A simple method of dynamically partitioning the address
space at a representative is to create a partition for each address that has an entry in that
representative and a partition for each range of addresses between successive entries.
These inter-entry ranges are called gaps. This method forms the basis of our technique.

In this dynamic partitioning approach, read requests sent to a representative that
contains an entry for the address being read return the version number associated with the
entry. Read requests sent to a representative with no entry for the address return the
version number associated with the gap in which the address lies. Write requests increase
the version number of an entry, if it already exists, or split the gap into which the address

Replicated Sparse Memories 17

Addr:

HighAddr:

Representative C

Low

Representative A

Addr: Low

Addr: "a" Ver:1

Ver:1

HighAddr:

Representative B

Addr: High

Ver:1

Ver:1

LowAddr:

Gap

Gap

Gap

Gap

Gap

Gap Gap

Ver:0

Ver:0 Ver:0

Ver:0 Ver:0

Ver:0

Addr: "c"

Ver:0

Ver:0

Ver:0

Ver:0

Ver:0

Ver:0

Ver:0

Addr: "a"

Addr: "c"

Figure 2-4: 3-2-2 RSM With Addresses ‘‘a’’ and ‘‘c’’ Occupied

Addr: "b" Ver:1Addr: "b"

Ver:0Gap

Ver:1

Addr: "a" Ver:1

Gap GapVer:0 Ver:0

Ver:0Ver:0Ver:0 Addr: LowLowAddr: LowAddr:

Addr: "c"

Ver:0Ver:0

Ver:0

Addr: "c"

Ver:0Ver:0Ver:0

Gap

Gap

Gap

Ver:1

HighAddr:

Representative B

Addr: High

Ver:1

Representative A Representative C

Addr: High

Gap Ver:0

Ver:0Gap

Addr: "a" Ver:1 Gap Ver:0

Figure 2-5: RSM After Writing to ‘‘b’’

falls if no entry exists. Erase requests coalesce gaps and entries in a range of addresses
into a single gap. The details of these operations are discussed at length in Section 2.4.

18 Chapter 2

Addr: "b" Ver:1

Addr: "a" Ver:1

Gap GapVer:0 Ver:0

Ver:0Ver:0Ver:0 Addr: LowLowAddr: LowAddr:

Addr: "c"

Ver:0Ver:0

Addr: "c"

Ver:0Ver:0Ver:0

GapGap

Ver:1

HighAddr:

Representative B

Addr: High

Ver:1

Representative A Representative C

Addr: High

Gap Ver:0

Addr: "a" Ver:1 Gap Ver:0

Gap Ver:2 Ver:2Gap

Figure 2-6: RSM After Erasing ‘‘b’’

The RSM containing entries for addresses ‘‘a’’ and ‘‘c’’ in representatives A and B of
3our previous example (Figure 2-1) is represented as in Figure 2-4. If the address ‘‘b’’ is

written to a write quorum consisting of representatives A and C, the RSM in Figure 2-5
results. Note that the entries for address ‘‘b’’ are assigned version number 1, which is
one greater than highest version number previously associated with ‘‘b’’ at A or C.

If a request to read ‘‘b’’ is sent to representatives B and C at this point, representative B
responds ‘‘not present with version number 0’’ and representative C responds ‘‘present
with version number 1.’’ From these responses, a client can determine that ‘‘b’’ is
indeed occupied. If ‘‘b’’ is subsequently erased from representatives A and B, then the
two gaps on either side of ‘‘b’’ on representative A are coalesced. On both
representatives, the gap between ‘‘a’’ and ‘‘c’’ is assigned version number 2, which is
higher than any version number previously associated with an address between ‘‘a’’ and
‘‘c’’ (Figure 2-6). Now, if a request to read ‘‘b’’ is sent to representatives B and C, B
responds ‘‘Not present with version number 2’’ and C responds ‘‘present with version
number 1.’’ These responses indicate that the address is no longer occupied, resolving
the ambiguity that occurred in the initial example, wherein version numbers were
associated only with entries.

3The RSM representatives in Figure 2-4 contain entries for the special addresses Low and High, which
delimit the first and last gaps in the representatives.

Replicated Sparse Memories 19

2.4. Details of the Algorithm

This section presents the details of the algorithm sketched in the previous section. The
descriptions are illustrated with program text in a Pascal-like language that includes a
remote procedure call primitive [6]. Remote procedures are declared like ordinary
procedures except that the first parameter is always the identifier of a remote server and
other parameters must be declared as IN or OUT. Parameters are passed by value in
messages. Remote procedure calls have the same syntax as local procedure calls; the
general purpose distributed transaction facility assumed as the underpinning of our
algorithm guarantees that remote procedure calls have exactly-once semantics. If a node
failure, timeout or other system error occurs during the execution of a remote procedure
call, the calling transaction is aborted. Clarity is emphasized over performance in the
programs. Optimizations that would be used in practical implementations are described
in accompanying text.

Section 2.4.1 presents the operations on RSM representatives, from which the RSM
operations are constructed. Section 2.4.2 presents the RSM operations.

2.4.1. RSM Representative Operations

In a replicated sparse memory, each representative is an instance of an abstract object
that stores one (approximate) copy of the RSM data. Arbitrarily complex atomic
transactions may be constructed using the basic operations provided by RSM
representatives. RSM representatives must synchronize concurrent operations performed
by different transactions and store critical information in a fashion that recovers from
failures. Gifford’s weighted voting algorithm makes similar requirements of its file
representatives.

Every RSM representative contains entries for two distinguished addresses, Low and
High. Low is defined to be less than any address in the address space and High is
defined analogously. The entries for Low and High ensure that every address in the
address space has at least one occupied address before it and one after it. This is essential
for the implementation of the Erase operation, as described in Section 2.4.2.

RSM representatives provide two simple operations to read and write data associated
with an address: RepRead and RepWrite. In addition, RSM representatives provide four
specialized operations that are used to implement the RSM Erase operation:
RepPredecessor, RepSuccessor, RepSuperseder, and RepCoalesce. Figure 2-7 gives
procedure headings for each of these operations. The last line of each procedure heading
specifies the locks obtained by the operation. These locks are discussed below.

20 Chapter 2

RepRead(IN server: RsmRep, addr: address;
 OUT present: boolean, ver: version, val: value);

{ If there is an entry for addr, returns TRUE, the version number of
the entry and its value; otherwise returns FALSE and the version
number of the gap containing addr.

Locks Read(addr).}

RepWrite(IN server: RsmRep, addr: address, ver: version, val: value);
{ Creates an entry for address addr with version number ver and value
val, or updates the entry for address addr if it already exists.

Locks Write(addr). }

RepPredecessor(IN server: RsmRep, addr: address;
 OUT pred: address, GapVer: version);

{ Returns the highest address less than addr that has an entry at the
representative. Also returns the version number of the gap between
addr and its predecessor. (There need not be an entry for addr.)

Locks Read(pred, addr). }

RepSuccessor(IN server: RsmRep, addr: address;
 OUT Succ: address, GapVer: version);

{ Analogous to RepPredecessor.

Locks Read(addr, succ). }

RepCoalesce(IN server: RsmRep, l, h: address, gapver: version);
{ Inserts entries for l and h if they are not present. Inserted entries
get version number 0 and undefined value. Deletes entries for any
addresses between (but not including) l and h. The resulting gap is
assigned version number gapver.

Locks Write(l, h). }

RepSuperseder(IN server: RsmRep, addr1, addr2: address, ver: version,
 OUT superseded: boolean, superseder: address);

{ Searches the range from addr1 to addr2 (exclusive), starting from
addr1. Returns TRUE and the address of the closest entry to addr1
with version number greater than ver, or FALSE if there are no entries
between addr1 and addr2 with version number greater than ver.

Locks Read(addr1, superseder), or Read(addr1, addr2) if no superseder
is found. }

Figure 2-7: RSM Representative Operations

RepPredecessor returns the highest address less than the given address that has an entry
at the representative (i.e. the address of the entry immediately preceding the given
address). It also returns the version number of the gap between the entry for the returned
address and its successor. (Note that a version number is maintained for the gap between
each pair of entries, even if the address space has no addresses in the range that the
entries delimit.) RepSuccessor is analogous to RepPredecessor.

Replicated Sparse Memories 21

RepCoalesce deletes any entries appearing in a range between two specified addresses
and assigns a single version number to the resulting gap, inserting the entries delimiting
the gap, if necessary. In other words, RepCoalesce coalesces a collection of entries and
gaps into a single gap.

RepSuperseder searches a range and returns the entry closest to the first endpoint of the
range with a version number greater than a given version number. If the search reaches
the end of the range without locating an entry to return, RepSuperseder indicates that no
entry was found. Intuitively, the RepSuperseder operation locates the first entry that
supersedes a specified gap.

Each RSM representative must synchronize concurrent operations of different
transactions. While this can be accomplished in many ways, the locks specified in Figure
2-7 assume the use of range locking [54] with shared and exclusive mode locks. Range
locks are just like normal shared/exclusive mode locks, except that a range lock can be
granted only if it is compatible with all of the locks currently held on ranges that intersect
it. In other words, a write lock on a range can only be granted if no locks are held on an
intersecting range by a conflicting transaction. A read lock on a range can only be
granted if no write locks are held on an intersecting range by a conflicting transaction.
The notation Read(x, y) refers to a read (shared) lock on the range from address x to
address y, inclusive. Read(x) is shorthand for Read(x, x). (Read(x) is a degenerate range
lock that locks only a single address.) Write(x, y) and Write(x) are defined analogously.

Inquiry operations (RepRead, RepPredecessor, RepSuccessor, and RepSuperseder) set
read locks on the range of addresses explicitly or implicitly accessed by the operation.
Modification operations (RepWrite and RepCoalesce) set write locks on the range of
addresses being modified.

The locks specified in the procedure headers are sufficiently strong to guarantee that the
actions of transactions operating on an RSM representative are serializable, provided that
two phase locking is used [56]. This form of synchronization simplifies the correctness
arguments given in Section 2.6.

Each RSM representative is responsible for recovery processing. Recovery processing
is necessary to undo the effects of partially completed transactions after a crash or when a
transaction aborts. The details of recovery processing are specific to the implementation
of the RSM representative and depend on the recovery approach used by the underlying
transaction system. Mohan et al., Gray et al., Lindsay et al., and Schwarz, among others,
present more details on general recovery algorithms [43, 28, 38, 53].

In any recovery scheme, it is necessary for an RSM representative to record enough
information reliably to redo or undo the effects of the operations that modify the state of

22 Chapter 2

the representative. If value logging is used, this will be done invisibly by the underlying
transaction system. If operation logging is used, the programmer must specify what data
to record and how to undo the operation. We describe below the data that must be
recorded in order to undo each representative operation and the procedure for undoing the
operation, for use with operation logging.

To undo a RepWrite operation, the value and version number previously associated with
the address at the representative must be recorded. If a RepWrite operation modified a
preexisting entry, it is undone by reverting the entry to its previous value and version. If
a RepWrite caused a new entry to be inserted into a gap, it is undone by deleting the entry
and combining the gaps preceding and following it. These gaps are guaranteed to still
have the same version number they did when the RepWrite took place, as the lock
secured by the RepWrite operation assures that the version numbers cannot be changed.
Thus, it is not strictly necessary to record an old version number when inserting an entry
into a gap.

To undo a RepCoalesce operation, a representative must record the address, value and
version numbers of all entries deleted by the operation, and the version numbers of the
gaps between the entries. To undo the operation, the deleted entries are reinserted and
the gap version numbers are restored to their original values.

Note that the range locks specified in Figure 2-7 assume the use of operation logging. If
value logging is used, transactions will hold on to physical locks until they complete,
making it unnecessary to secure explicit logical locks. While these physical locks are
guaranteed to ensure serializability, they may restrict concurrency excessively. This
effect can be reduced somewhat by exercising care in designing recoverable data
structures, and by explicitly dropping locks prematurely when it is safe to do so.

2.4.2. RSM Operations

An RSM consists of a set of N RSM representatives, an assignment of votes to the
representatives, and the read and write quorum sizes, R and W. The quorum sizes are
chosen to conform to the constraints described below. RSMs implement the operations
Read, Write, and Erase, as specified in Section 2.1. Operations on RSM representatives
are combined to implement an RSM based on the weighted voting rules described in
Section 2.2.

Recall from Section 2.2 that R+W > N and W≥R. Combining these two inequalities, we
have 2W > N. Thus any value between N/2 +1 and N, inclusive, can be chosen for W. R
will generally be set to N−W+1, the smallest value necessary to ensure the required
quorum intersection.

Replicated Sparse Memories 23

The Read operation calls the procedure IRead, shown in Figure 2-8, and discards the
version number, returning a boolean indicating whether or not the address is occupied
and the value associated with the address, if it is occupied. IRead first calls
CollectReadQuorum which returns identifiers for a read quorum of RSM representatives.
Then RepRead operations are performed on the quorum and the data from the with the
highest version number is returned.

IRead(IN addr: address;
 OUT occupied: boolean, ver:version, val:value);

{ Internal read procedure. Returns TRUE, the version number, and the
value associated with addr, if it is occupied; FALSE otherwise. }

var
quorum: array[1..R] of RsmRep;
RepVer: version;
RepVal: value;
present: boolean;
i: integer;

begin
quorum := CollectReadQuorum;

ver := -1; { Lower than any legitimate version number }

for i := 1 to R do
begin

RepRead(quorum[i], addr, present, RepVer, RepVal);
if RepVer > Ver then
begin

occupied := present;
if present then
begin

ver := RepVer;
val := RepVal;

end
end

end
end

Figure 2-8: IRead Operation

CollectReadQuorum and its companion function, CollectWriteQuorum, bind identifiers
to instances of RSM representatives. This may involve message exchanges to establish
communications sessions, so it is desirable that these operations cache information to be
used in subsequent invocations. Furthermore, reuse of the same read and write quorums
will improve the efficiency of the data structure. We discuss this at greater length in
Section 3.4.

The Write operation is straightforward. It calls IRead to find the highest version
number previously associated with the address to be written. This version number is
incremented to create the new version number. The RepWrite operation is used to write

24 Chapter 2

Write(IN addr: address, val: value);
{ Associates a value with an address. }
var

quorum: array[1..W] of RsmRep;
i: integer;
OldVer, NewVer: version;
OldVal: value;
occupied: boolean;

begin
{ Read address to find current version number }
IRead(addr, occupied, OldVer, OldVal);

quorum := CollectWriteQuorum;

{ The new entry’s version number must be higher than the
previous version number associated with the address }

NewVer := OldVer+1;

for i:= 1 to W do
RepWrite(quorum[i], addr, NewVer, val);

end

Figure 2-9: Write Operation

an entry for the address with the new value and version number into a write quorum of
representatives. This operation is illustrated in Figure 2-9.

Addr: "b" Ver:1Addr: "b" Ver:1

Gap Ver:0

Ver:0Ver:0Ver:0 Addr: LowLowAddr: LowAddr:

Addr: "c"

Ver:0Ver:0

Ver:0

Addr: "c"

Ver:0Ver:0Ver:0

Gap

Gap

Gap

Ver:1

HighAddr:

Representative B

Addr: High

Ver:1

Representative A Representative C

Addr: High

Gap Ver:0

Ver:0Gap

Addr: "a" Ver:1Gap Ver:2 Ver:2Gap

Figure 2-10: RSM from Figure 2-5 After Erasing ‘‘a’’

Replicated Sparse Memories 25

Addr: "b" Ver:1

Ver:0Ver:0Ver:0LowAddr:

Ver:0

Ver:0

Addr: "c"

Ver:0

Gap

Gap

Representative B

Addr: High

Ver:1

Representative A Representative C

Gap Ver:2

Addr: "c"

Ver:0

Ver:0

Gap

Ver:1

HighAddr:

Gap Ver:3Ver:3Gap

Addr: High

Ver:1

Gap

Ver:0

Ver:0

Addr: "c"

Figure 2-11: RSM from Figure 2-10 After Erasing ‘‘b’’

Erase must record the fact that an address is not currently occupied at each member of a
write quorum. This is accomplished by coalescing a range of addresses that includes the
entry to be erased and assigning a version number to the resulting gap that is higher than
that of any entry or gap previously contained in the range. To avoid asserting that an
occupied address in unoccupied, the range to be coalesced must not contain any
addresses that are currently occupied, other than the one that is being erased. Erase
coalesces a range that extends from the real predecessor of the address to be erased to its
real successor, thereby ensuring that there are no occupied addresses in the coalesced
range. The real predecessor of an address a is the highest address less than a that is
occupied. The real successor of an address is defined analogously. The presence in the
representatives of entries for the distinguished addresses Low and High ensure that every
address in the address space will have a real predecessor and a real successor.

The coalesce operation inserts the real predecessor and successor into a representative if
they are not already present, to delimit the newly formed gap. The entries between the
address and its real predecessor as well as those between the address and its real
successor comprise the address’s delete list at that representative. The delete list is so
named because these entries are deleted when performing the coalesce operation required
to erase the address.

LowAddr: LowAddr:

26 Chapter 2

Locating the real predecessor and real successor of an address to be erased is complex.
There may be arbitrarily many ghost entries located between the address to be erased and
its real predecessor or real successor. A ghost is defined as an entry for an address that is
no longer occupied. Locating the real predecessor and real successor of an address is
complicated by the fact that the real predecessor or real successor may not be present in
some members of the read quorum.

These problems are partially illustrated in the following example. Consider the RSM in
Figure 2-5. Suppose we erase address ‘‘a’’, using representatives A and C as the write
quorum. This operation is straightforward, resulting in the RSM shown in Figure 2-10.
Now suppose we erase address ‘‘b’’, using representatives B and C as the write quorum.
Figure 2-10 shows that the real successor of ‘‘b’’ is ‘‘c’’. However, no entry for ‘‘c’’
appears in representative C, and the ghost of entry ‘‘a’’ appears between ‘‘b’’ and Low
(the real predecessor of ‘‘b’’) in representative B. To erase ‘‘b’’ from representatives B
and C, the real successor, ‘‘c’’, must be inserted into representative C. The coalescing of
the range from Low to ‘‘c’’ eliminates the ghost of entry ‘‘a’’ from representative B. The
resulting RSM is shown in Figure 2-11.

A simple Erase procedure is illustrated in Figure 2-12. Finding the real predecessor and
successor of an address is the heart of this operation. Given an address, RealPredecessor
returns the address’s real predecessor and the highest version number found in the range
between the address and its real predecessor, exclusive. The RealSuccessor operation is
analogous.

The straightforward procedure for performing the RealPredecessor operation presented
by Daniels and Spector [16] suffers from a serious drawback: it requires that potentially
many rounds of messages be sent between the node determining the real predecessor and
the nodes comprising the read quorum. One round of messages is required for every
ghost between the address being erased and its real predecessor that is found in any
representative in the read quorum. While this message traffic can be reduced by
combining messages, and while the simulations and analysis show that the average
performance is not too bad, the number of fixed length messages that must be transmitted

4for a single Erase operation is potentially unbounded. All the other RSM operations
require only a small constant number of fixed length communications; it would be highly
desirable to have an algorithm for the RealPredecessor operation (hence the Erase
operation) that has this property as well. We develop such an algorithm in Section 2.5.

4In fact, it is bounded by 2R × (the cardinality of the address space), where R is the read quorum size.
For finite address spaces, this expression will be large but finite.

Replicated Sparse Memories 27

Erase(IN addr: address);
{ Erases the contents of an address, causing it to become unoccupied }
var

quorum: array[1..W] of RsmRep;
i: integer;
occupied: boolean;
succ, pred: address;
val: value;
ver, PredGapVer, SuccGapVer, NewGapVer: version;

begin
IRead(addr, occupied, ver, val);

RealPredecessor(addr, pred, PredGapVer);
RealSuccessor(addr, succ, SuccGapVer);

{ The version number of the coalesced gap must be higher than
any previous version number in the range to be coalesced. }

NewGapVer := Max(ver, PredGapVer, SuccGapVer) + 1;

quorum := CollectWriteQuorum;

for i:= 1 to W do
RepCoalesce(quorum[i], pred, succ, NewGapVer);

end

Figure 2-12: Erase Operation

2.5. An Efficient Algorithm for the Real Predecessor Operation

An algorithm for finding the real predecessor must in effect prove that a certain address
is the real predecessor. Such a proof involves showing that all entries between an address
and its real predecessor in each representative of a read quorum are superseded by a gap
with a higher version number in some other representative of the quorum. The number of
ghosts between an entry and its real predecessor is potentially unbounded at each
representative, so the prospects for the existence of an algorithm that requires only a
constant number of fixed length messages might appear dim.

However, RSMs have a property that constrains the system states that can occur.
Because of this property, a single round of messages suffices to find a region guaranteed
to contain the real predecessor as well as the minimum version number necessary for an
entry in this region to represent an occupied address. With this information, the real
predecessor can be found in one additional round of messages. To state and prove the
property that permits this efficient location of the real predecessor, we must introduce
several terms.

A region is a set of addresses; that is, a subset of the address space. A range is a region
containing every address in the address space between some address and another address.
These definitions are consistent with our informal use of the terms in previous sections.

28 Chapter 2

The notation (a , a) refers to the range from a to a excluding a and a , the endpoints1 2 1 2 1 2
of the range.

A gap between entries for addresses a and a is said to cover the region (a , a) and all1 2 1 2
of its subregions (subsets). The remaining terms are defined in the context of an entire
RSM, rather than an isolated representative. A gap g is said to be current over the region
r if the following conditions hold:

1. The gap g covers r.

2. No gap in some other representative covering any non-null subregion of r
has a higher version number than g does.

3. No entry in some other representative for an address in r has a higher
version number than g does.

Intuitively, a gap is current over a region for which it expresses the most up to date
information. A gap’s region of currency is the union of all regions over which it is
current, intuitively, the entire region over which it is current.

For example, consider the RSM in Figure 2-13. Gap g covers (‘‘c’’, High) and all of its
subregions (e.g. (‘‘d’’, ‘‘f’’)). Gap g is current over (‘‘g’’, ‘‘k’’), for example. Gap g’s
region of currency is (‘‘c’’, ‘‘d’’) ∪ (‘‘e’’, High).

We are now ready to state the property that allows us to construct an efficient
RealPredecessor algorithm.

THEOREM 1. In any occurring system state, every gap’s region of currency can be
expressed as the union of a finite number of ranges whose endpoints are currently
occupied addresses.

Before we can prove Theorem 1 or present the real predecessor algorithm we must
introduce one more term and present two lemmas. A collection of ranges

n{r | }, r =(a , a) is said to be canonical if the ranges are in order (a < a)i i i 1 i 2 i 1 (i+1)1i=1
and non-intersecting (∀ i≠ j, r ∩ r = ∅). The following lemma justifies our use of thei j
term canonical.

LEMMA 1. For any finite collection of ranges over a dense address space, there exists
a unique canonical collection of ranges whose union comprises the same set as the union
of the original collection. This is referred to as the canonical form of the original
collection. (An address space is dense if, for every pair of addresses a , a , with a < a ,1 2 1 2
there exists an address a such that a < a < a .) Further, the endpoints of the ranges in3 1 3 2
the canonical form are all endpoints of some range in the original collection.

LEMMA 2. If a gap g is current over a range (a ,a), and addresses a and a are1 2 1 2
occupied, then a is a ’s real predecessor.1 2

Replicated Sparse Memories 29

Gap Ver:0

Ver:1

Addr: "c" Ver:1 Ver:0Gap

Gap Ver:0

Ver:1

Ver:0

Ver:0

Gap

Gap

Addr: High

Ver:1

Ver:2

Addr: "d"

Addr: "e"

Ver:0LowAddr:

Addr: "b"

Ver:0Gap

Ver:2

Addr: Low Ver:0

Addr: "e"

Addr: "d"

Ver:2

Ver:1

HighAddr:

Gap

Gap

Ver:0

Ver:0

Ver:0LowAddr:

Ver:0Addr: High

Representative CRepresentative A Representative B

Ver:0Gap

Gap g

Figure 2-13: RSM For the Illustration of Region of Currency and Related Terminology

2.5.1. Proofs

This subsection may be skipped without loss of continuity. However, it is advised that
the reader study the proof of Theorem 1 if a thorough understanding of the internal
workings of the RSM data structure is desired.

A rigorous proof of Lemma 1 would be tedious, but a detailed proof sketch follows. If a
collection of ranges is not in order, it can be reordered. If any pair of ranges in the
resulting collection overlap, their union is a range. Thus the pair of ranges can be
replaced by the range that is their union. The endpoints of the union are both endpoints
of one of the original ranges. This procedure is repeated until none of the remaining
ranges intersect. At this point, the collection is in canonical form, and the union of the
ranges in the collection is identical to the union of the ranges in the original collection.
Any two canonical collections of ranges over a dense address space that are not identical
have different unions, hence the canonical form of the collection is unique.

30 Chapter 2

Lemma 2 follows immediately from the definition of currency over a region. By this
definition, if g is current over (a ,a), there are no entries for addresses in (a ,a) with a1 2 1 2
higher version number than g’s. Thus there are no occupied addresses between a and1

a , and a is a ’s real predecessor.2 1 2

Now we turn our attention to Theorem 1. We assume that the address space is dense.
This assumption is made without loss of generality by the following argument. Any
totally ordered set can be embedded in a dense set: given a sparse address space A theres
exists a dense address space A such that A ⊆ A . (For example, the integers from 1 tod s d
10 can be embedded in the rationals from 1 to 10.) If we prove that Theorem 1 holds for
an address space, we have also proven it for any subset of that address space, as the user
could arbitrarily restrict his operations to members of that subset. Thus a proof that
Theorem 1 holds for all dense address spaces implies that it also holds for all sparse
address spaces. Note that this has no implications with regard to actual system
implementation. It merely facilitates the proof.

The proof of Theorem 1 is by structural induction. For the base case, we observe that
the theorem holds for an RSM in its initial state: each representative contains a single
gap whose region of currency is (Low, High), and the (distinguished) addresses Low and
High are occupied.

For the induction step, we must show that if the theorem holds for a given system state,
then it holds for all states reachable from that state via a single Write or Erase operation.
We shall consider these operations in turn. For each operation, we must show that the
gaps contained in the representatives comprising the write quorum and the gaps
contained in the representatives outside the write quorum satisfy the required condition
after the operation. We further subdivide these gaps into those whose region of currency
changes as a result of the operation and those whose region of currency remains
unchanged.

First we show that the induction holds for Writes. The Write operation does not erase
any address from the RSM, so any range whose endpoints were occupied prior to the
Write will still have its endpoints occupied after the Write. Therefore, all gaps whose
region of currency remains unchanged by the Write will still satisfy the induction
hypothesis after the operation (given only that they satisfied it before). Thus, we need
only consider the gaps whose regions of currency are altered by the Write operation.

The regions of currency of gaps in representatives outside of the write quorum for an
Write operation are affected only if they are current over the region {a}, where a is the
address being written. The new entry for this address will have a higher version number
than these gaps, so the Write operation will have the effect of removing a from their
regions of currency. By hypothesis, the old region of currency of each of these gaps is

Replicated Sparse Memories 31

expressible as a finite union of ranges whose endpoints are occupied addresses. Let us
ncall these ranges {r | }, r =(a , a). Lemma 1 allows us to assume without loss ofi i i 1 i 2i=1

generality that the collection of ranges is in canonical form.

Since the gaps in question contain a in their region of currency, one of the r musti
contain a. Let us call this range r . (The value of q may be different for each gap inq
question.) When a is deleted from such a gap’s region of currency, the resulting region
will consist of the ranges:

q−1 n{r | } ∪ {(a , a), (a, a)} ∪ {r | }.i q 1 q 2 ii=1 i=q+1

But a and all of the a are occupied after the Write operation, so the induction hypothesisij
is preserved in all representatives outside of the write quorum.

Within the write quorum one of two things can happen. If an entry is already present
for a, no gap’s region of currency will be affected by the operation. If no entry for a
exists, then the gap g into which the address falls will be split into two new gaps. Let us
call them g and g . By the induction hypothesis, g’s region of currency can be1 2
expressed as a finite union of ranges whose endpoints are occupied. Let us call them

n{r | }. We assume the ranges are in canonical form, by Lemma 1. If a is in g’si i=1
region of currency, it is in one of the r . Let us call this range r . Then g ’s region ofi q 1
currency will consist of the ranges:

q−1{r | } ∪ {(a , a)},i q 1i=1

and g ’s region of currency will consist of the ranges:2

n{(a , a)} ∪ {r | }q 1 i i=q+1

(Figure 2-14). All the endpoints of the ranges comprising g and g ’s regions of currency1 2
are occupied after the Write. If the address being written to falls outside of the original
gap’s region of currency, let q be the largest integer such that a< a . Then g ’s regionq 1 1

qof currency will consist of the ranges {r | }, and g ’s region of currency will consisti 2i=1
nof the ranges {r | }. Thus, the induction hypothesis is preserved in alli i=q+1

representatives for Write operations.

Finally, we show that the induction holds for Erase operations. In each representative in
the write quorum, a new gap is created whose region of currency is (p, s), where p is the
real predecessor of the address being erased and s is the real successor. If p was not
already present in a representative, it is inserted. The region of currency of the new gap

32 Chapter 2

.

.

.

.

.

.

Addr: "g"

Addr: "r"

Gap g

Region of CurrencyRepresentative r

Before Insert("m")

Addr: "g"

Addr: "r"

.

.

.

.

.

.

Addr: "m"

Gap g

Gap g1

2

Region of Currency Representative r

After Insert("m")

Figure 2-14: Effect of Write Operation on Regions of Currency Within Write Quorum

extending backward from p consists of the ranges before p previously in the canonical
form of the region of currency of the gap from which the new gap was split off.
Similarly, if s is inserted, the gap extending forward from s will have as its region of
currency the ranges after s previously in the canonical form of the region of currency of
the gap from which the new gap was split off. (Figure 2-15) The addresses p and s are,
by definition, occupied, so all of the gaps whose regions of currency are modified still
satisfy the induction hypothesis.

The gaps whose regions of currency were not modified could not have had any ranges
bounded by a in the canonical forms of their regions of currency. If this were the case,
the gaps would of necessity have covered or bordered a. In either case, the deletion of a
from the representative would have modified the gaps’ region of currency, which, a
priori, did not happen. Thus, these gaps satisfy the induction hypothesis given only that
they satisfied it before the Erase. Therefore, the induction hypothesis holds within the
write quorum.

Replicated Sparse Memories 33

Real Successor

Before Delete("k")

Addr: "v"

.

.

.

After Delete("k")

Region of CurrencyRepresentative r

.

.

.

Region of Currency Representative r

Real Predecessor

Addr: "f"

Addr: "d"

Addr: "b"

.

.

..
.
.

Addr: "k"

Addr: "b"

Ghosts

Addr: "s"

Addr: "v"

Figure 2-15: Effect of Erase Operation on Regions of Currency Within Write Quorum

Outside of the write quorum the situation is as follows: The new gap in the
representatives of the write quorum covers (p, s). Gaps whose regions of currency did
not intersect this region are unaffected. The new gap has a higher version number than
all others in this region, so any portions of other gaps’ regions of currency that lay in
(p, s) are no longer in their regions of currency. Thus, the deletion has the effect of
removing ranges entirely contained within (p, s) from the canonical forms of the gaps’
regions of currency. By Lemma 2, any range in the canonical form that had a as one
endpoint must have had p or s as its other endpoint and so was contained in (p, s). Thus,
all ranges remaining in the canonical form after the deletion are bordered by addresses
other than a that were previously occupied. But these addresses are still occupied after
the deletion, so the induction hypothesis is preserved for gaps outside of the write
quorum in an Erase operation. This completes the proof.

34 Chapter 2

2.5.2. The Algorithm

In this section we describe our real predecessor algorithm. A proof of the correctness of
the algorithm is presented as the algorithm is described. A formal statement of the
algorithm is given in Figure 2-16.

The node determining a ’s real predecessor asks each representative in a read quorum to
return the gap that covers a or has a as its high boundary. All of these ‘‘predecessor
gaps’’ cover some range in common, which we call (a , a). (a is the highest of the low1 1
endpoints of the returned gaps.) Furthermore, the gaps represent information from an
entire read quorum, so no representative contains any higher version numbered
information pertaining to any address in (a , a). Thus, the predecessor gap with the1
highest version number, which we call g , is current over the region (a , a).curr 1

By Theorem 1 and Lemma 1, g ’s region of currency can be expressed in canonicalcurr
form as a union of ranges bounded by occupied addresses. Since (a , a) is in g ’s1 curr
region of currency, it must be contained entirely in one of these ranges. The high end
point of this range is a (since a is occupied prior to the Erase operation), and the low end
point is a ’s real predecessor, by Lemma 2. Of course, the low end point must lie within
g or at its low boundary, which we call a .curr 2

In the final stage of the algorithm, each representative in the read quorum is asked to
return the entry for the highest address less than a and greater than a whose version2
number is higher than g ’s. If a representative contains no entry in the specified rangecurr
with a sufficiently high version number, it returns a message to that effect. At this point,
two things can happen. If none of the representatives return an entry, g ’s low endcurr
point, a , is a ’s real predecessor. If one or more such entries are returned, the highest2
address for which an entry is returned, p, is a ’s real predecessor, by the following
argument.

All addresses for which entries are returned must lie outside g ’s region of currency,curr
so p lies outside of g ’s region of currency. Therefore, the low endpoint of the rangecurr
in the canonical form of g ’s region of currency that contains (a , a) must be ≥p. Butcurr 1
no address between p and a, exclusive, is currently occupied; if there were such an
address, at least one of the representatives in the read quorum would have contained a
current entry for it, which it would have returned in the final stage of the algorithm. Thus
g is current over the range (p, a). Both p and a are occupied, so, by Lemma 2, p iscurr

a ’s real predecessor.

Replicated Sparse Memories 35

RealPredecessor(IN addr: address;
OUT pred: address, GapVer: version);

{ Returns addr’s real predecessor and the highest version number
associated with an address in the range bounded by addr and addr’s
real predecessor, exclusive. }

var quorum: array[1..R] of RsmRep,
MaxGapVer, CandGapVer: version,
MaxGapAddr, CandGapAddr, CandAddr: address,
MaxGapRep: integer;
CandFlag: boolean;

begin
quorum := CollectReadQuorum();

{ Get info on predecessor gaps in each rep in the read quorum and
find out which rep has the gap with the highest version number.
(Called g-curr in accompanying text.) }

MaxGapVer := -1; {Lower than any legitimate version number}
for i := 1 to R do
begin

RepPredecessor(quorum[i], addr, CandGapAddr, CandGapVer);
if CandGapVer > MaxGapVer then
begin

MaxGapVer := CandGapVer;
MaxGapAddr := CandGapAddr;
MaxGapRep := i;

end
end;
GapVer := MaxGapVer;
pred := MaxGapAddr; { Tentatively }

{ Find closest entry that supersedes g-curr in any rep in the read
quorum. This will be the real predecessor. }

for i := 1 to R do
begin

if i <> MaxGapRep then
begin

RepSuperseder(quorum[i], addr, MaxGapAddr, MaxGapVer,
CandFlag, CandAddr);

{ If this rep has a candidate for real pred, and it’s closer
than closest candidate thus far, tentatively select it. }

if CandFlag and (CandAddr > pred)
pred := CandAddr;

end
end

end

Figure 2-16: Real Predecessor Operation

36 Chapter 2

2.5.3. Enhancements to the Real Predecessor Algorithm

As in the other procedures presented, efficiency is sometimes sacrificed for clarity in
the RealPredecessor procedure of Figure 2-16. There are several additional
improvements that would be made in any practical implementation of the algorithm. The
procedure would check if the second round were necessary before doing it; if the highest
predecessor address returned in the first round has a higher version number than any of
the returned gaps that cover it, then this address must be the real predecessor, and there is
no need to continue searching.

This technique can be used to reduce message traffic even further by having each
representative return several gaps and entries preceding the address being erased, instead
of returning just one. This increases the region over which the procedure has ‘‘complete
information’’ (i.e. entries or covering gaps from all representatives in the read quorum).
If there is any address in this region for which an entry has a higher version number than
all covering gaps, then the entry represents an occupied location. In this case, the highest
such address is the real predecessor, and no second round is necessary.

The number of entries returned by the representatives in the first stage of the algorithm
controls a performance tradeoff between execution time at the nodes and inter-node
message traffic. If many entries are returned, it is likely that the second round of
information exchange will not be necessary; however, the execution time at each node is
proportional to the number of entries sent. The number of entries between the address
being erased and its real predecessor will, on average, be half of the address’s delete list
size. (Recall that the delete list consists of all of the ghost entries between an address’s
real predecessor and its real successor.) Thus, the formula developed in Section 3.3.5
that enables us to predict the average length of a delete list aids us in choosing an
appropriate number of entries to return in the first stage. In fact, the limiting behavior
described in Section 3.3.6 shows that the second stage of the algorithm can almost always
be avoided if several entries are returned in the first stage.

Even if the second stage is required, it is not necessary to ask for additional information
from all of the representatives in the read quorum. Any representative that has already
sent entry or gap information for the entire range that has been determined to contain the
real predecessor (the range covered by g) has no more information to add and can becurr
omitted from the second round.

The observation in the previous paragraph can be applied even more aggressively. If
several gaps are tied for the highest version number in the first round, the procedure
should pick the smallest gap (i.e. the one with the highest low bound) to serve as g .curr
If any representatives have already returned a valid predecessor candidate (i.e. an entry
for an address that lies in g but has a higher version number than g), thecurr curr

Replicated Sparse Memories 37

representative has no more information to add, and needn’t be included in the second
round. If any valid predecessor candidates are returned in the first round, the real
predecessor must be greater than or equal to the highest such candidate. Any
representative that has already sent entry or gap information for the entire range from the
highest such candidate to addr cannot possibly have a higher candidate; these
representatives can also be omitted from the second stage.

The real predecessor and real successor can be determined simultaneously by putting
requests and responses for both tasks in each message, thus reducing by almost one-half
the message traffic required to find the real predecessor and successor. In the actual
implementation, there would be a single RealNeighbors procedure instead of separate
RealPredecessor and RealSuccessor procedures. The procedure would initially ask for
gaps and entries surrounding the address on both sides. If this did not provide enough
information to find the address’s real predecessor and successor, it would send a request
for a superseder of either or both ‘‘current gaps,’’ as required.

In the procedure for the Erase operation in Figure 2-12, the address to be erased is
looked up prior to determining its real neighbors. In practice the read would be
combined with the first stage of the real neighbors determination.

The critical factor determining the execution speed of the RSM operation procedures
presented is the number of rounds of small, fixed length messages sent in performing the
operations. Thus, we use this number as a complexity measure for our algorithms. Our
real predecessor algorithm, with the improvements described, is extremely fast in the
average and worst cases. The average performance of this algorithm is close to the trivial
lower bound of one exchange of messages with each member of a read quorum. The
worst case performance is two rounds. The Erase operation requires one additional round
to coalesce the range between the real predecessor and successor.

The procedure, including the improvements, is easy to implement. It also has the
following useful property. The correctness of the algorithm does not depend on the fact
that the address whose real predecessor is being determined is occupied. Thus, it can be
used to locate the real neighbors of any address, regardless of whether it is occupied.
This could, for instance, be used to implement a RangeErase operation, which erased all
of the addresses between one address and another. This operation would require no more
message transmissions than the basic Erase operation.

38 Chapter 2

2.6. Correctness Arguments

The correctness of an RSM’s operations depends on Read always returning current
information about an address. Because every read quorum intersects every write quorum,
Read will return current information as long as that information has a version number
greater than that of any non-current information. These correctness conditions are the
same as those required for Gifford’s file replication algorithm.

Two phase locking applied to the locks specified in Section 2.4.1 guarantees the
serializability of transactions at any single representative. Traiger et al. have shown that
if all nodes participating in a set of distributed transactions follow two phase locking
protocols that guarantee the serializability of transactions at individual nodes, then the
resulting global schedule is equivalent to some serial schedule of transactions [56]. Thus,
the RSM replication algorithm preserves the serializability of transactions that use it.

The Write operation sets the version number of the entries that it creates or modifies to
be greater than the highest version number previously associated with the address to
which it is writing. Therefore, the current data for each occupied address has a version
number greater than that of any non-current data for the address.

Erase coalesces the range between the real predecessor and real successor of the address
to be erased. By the definitions of real predecessor and real successor, there can be no
current entries (other than entries for the address being erased) in the range to be
coalesced. The Erase operation assigns to the gap covering the coalesced range a new
version number that is higher than any version number previously associated with any
address in that range. Therefore, as with Write, the current data for each address in the
range has a version number greater than that of any out-of-date data for that address.
Erase can cause additional entries to be created for the real predecessor and successor of
the address being erased. But these entries have a lower version number than the current
entries for the real predecessor and successor, and every write quorum still contains a
current entry.

Chapter 3

The Performance of Replicated Sparse Memories

In this chapter, we analyze the performance of the RSM data structure developed in
Chapter 2. We present the results of simulations that suggest that the average time and
space performance of the data structure is good over a wide range of quorum choices. A
Markov model of the RSM under random use is constructed and analyzed using balance
equations. Predictive formulas for the performance measures studied in the simulation
are derived from the solutions of the balance equations. The predictions of the analysis
agree remarkably well with the performance data gathered in the simulations. The results
of the analysis indicate that the favorable performance observed in the simulations
extends to any possible quorum choice and any random operation mix.

In essence, the simulations and analysis show that the RSM data structure is
self-cleaning under any possible quorum choice and any random operation mix. The
‘‘incremental garbage collection’’ that is performed automatically as part of the Erase
operation is sufficient to keep the RSM representatives from accumulating a large
quantity of out-of-date information. This ensures that the space cost of the data structure
and the time costs of the algorithms that manipulate it are kept low.

The remainder of this chapter is organized as follows. Section 3.1 describes the system
studied in the simulations and analysis, and the performance measures of interest to us.
Section 3.2 presents the results of the simulations. Section 3.3 develops the model,
analyzes it, and presents performance predictions. Section 3.4 discusses the realism of
the system under study and the applicability of our predictions to practical applications of
the RSM data structure.

3.1. The System

For the purposes of our performance studies, we subdivide Write operations into two
classes: Writes to unoccupied addresses, which we call Inserts, and Writes to occupied
addresses, which we call Updates.

The system studied in the simulations and analysis consists of an empty RSM into
which a certain number of Inserts are performed initially. Thereafter, Inserts, Updates

39

40 Chapter 3

and Erases occur sequentially with equal likelihood. Addresses for Inserts are chosen
randomly from unoccupied addresses, and addresses for Updates and Erases are chosen
randomly from occupied addresses. Read and write quorums are selected randomly for
each operation. No Read operations are performed, as they would have no effect on the
contents of the RSM, and yield no interesting performance data.

The address space used in the simulations consisted of the integers from one to one
billion. The mathematical model is described in sufficient generality to apply to any
finite address space. It does not, in general, make sense to consider the system with an
infinite address space, as addresses to be inserted are chosen at random from those not
already occupied. If a countably infinite address space were used, this would amount to
selecting an object at random from a countably infinite set, an operation that is not well
defined. Interestingly, the cardinality of the address space does not affect the analysis,
except insofar as it affects the validity of several simplifying assumptions. This fact is
discussed at greater length in Section 3.3.8.

Various measures can be used to evaluate the performance of our data structure. In our
view, the most important performance measure is the number of rounds of message
exchanges with a read or write quorum necessary to perform each RSM operation. With
one exception, this measure is a constant that does not vary from instance to instance of a
given operation. The exception is the Erase operation, which, with the enhancements
suggested in Section 2.5.3, requires either two or three rounds of messages depending on
the results of the first round. The communications cost of the RSM operations are
summarized in Table 3-1.

Rounds to Rounds to Total # Total #
Operation Read Quorum Write Quorum Rounds Messages

Read 1 0 1 2R

Write 1 1 2 2(R+W)

Erase 1 or 2 1 2 or 3 2(R+W) or ≤2(2R−1+W)

Table 3-1: Communications Costs of RSM Operations

The node doing an RSM operation has to send RPCs to read and write quorums and, in
the case of read quorums, scan the responses to determine the current information. The
work done by this node is proportional to the total number of messages required for an
operation, and is generally small. More interesting is the work done by the nodes storing
the RSM representatives. All RSM representative operations except for RepSuperseder
and RepCoalesce consist of locating and reading or modifying a single entry or gap. The
time required to perform this operation depends on the number of entries in the
representative and the data structure used to store the entries. If balanced trees are used,
the time is proportional to the logarithm of the number of entries. The storage space

The Performance of Replicated Sparse Memories 41

required at each representative is proportional to the number of entries stored at the
representative.

Thus, the first performance measure we concentrate on in our performance studies,
which we call the size ratio, is the ratio of entries in an RSM representative to occupied
addresses in the RSM. The size ratio indicates the storage required at each representative
as a function of the storage required for a single site sparse memory. A size ratio of one
indicates that a representative has exactly as many entries as a single site sparse memory.
The simulations measured the size ratio directly, while the analytic model allows us to
break the size ratio down into three composition ratios based on a classification of RSM
entries into three categories. The size ratio is the sum of the three composition ratios.

In the second step of the Erase operation (RepSuperseder), each representative has to
scan the delete list for the address being erased. In the third step (RepCoalesce), each
representative has to coalesce the delete list into a single gap. In both steps, the total
work required is proportional to the delete list length. Thus, the second performance
measure we study in our simulations and analysis is the delete list length.

As explained in Section 2.5.3, the second step of the Erase operation is necessary only if
one or more nodes in the read quorum did not return their entire delete list in the first
step. Knowing the expected value of the delete list length allows us to ask for enough
information in the first step so that the second step will usually be unnecessary. Of
course this would not be feasible if the expected value of the delete list length were high.
However, this turns out not to be the case.

In summary, the size ratio characterizes the space complexity of the algorithm. The size
ratio and delete list length characterize the significant components of the time complexity
of our algorithm. Knowledge of the expected delete list length is useful to ensure that the
first round of the Erase operation returns enough data so that the second round is usually
unnecessary. The size ratio and delete list length are the performance measures that form
the basis of our performance studies. In the analysis, the size ratio is further subdivided
into composition ratios, which tell us more about how the storage space is being used.

3.2. Simulation Results

The shaded bars in Figures 3-1 and 3-2 show the average size ratios and delete list
lengths measured in simulations for a variety of RSM configurations. (The unshaded
bars show predicted values obtained from the mathematical model in Section 3.3.) In the
simulations, each RSM initially had one thousand occupied addresses. The duration of
each simulation was twenty thousand operations, and performance measures were
gathered during the final ten thousand operations.

42 Chapter 3

Configuration

A
ve

ra
ge

 S
iz

e
R

at
io

0.7

0.8

0.9

1.0

1.1

1.2

0.6
3-2-2 3-1-3 5-3-3 5-2-4 9-5-5 9-4-6 9-3-7 9-2-8 9-1-9

Actual
Predicted

Figure 3-1: Average Size Ratios for Various RSM Configurations

Configuration

A
ve

ra
ge

 D
el

et
e

Li
st

 L
en

gt
h

0.2

0.4

0.6

0.8

0.0
3-2-2 3-1-3 5-3-3 5-2-4 9-5-5 9-4-6 9-3-7 9-2-8 9-1-9

Actual
Predicted

Figure 3-2: Average Delete List Lengths for Various Configurations

The simulation results in Figure 3-1 show that the average size ratio remains very close
to one for all of the configurations tested. Thus the storage required at each
representative and the time required to locate an entry at a representative are only slightly
higher than for a single site sparse memory. The results in Figure 3-2 show that the
average delete list length is less than a single entry for every configuration tested. This
implies that the second and third steps of the Erase operation will run very quickly at the
representatives, and the second step will rarely be necessary if a few entries are returned
in the first step. Note that the average delete list length for the 3-1-3 and 9-1-9
configurations is zero, and the average size ratio for these configurations is one. For

The Performance of Replicated Sparse Memories 43

X-1-X configurations, our algorithm, like all weighted voting algorithms, degenerates to
universal update. All representatives are identical, containing an up-to-date entry for
every occupied address, and no out-of-date entries.

More detailed simulation results for 3-2-2 RSMs with one hundred, one thousand, and
ten thousand addresses initially occupied are shown in Table 3-2. The duration of each
of these simulations was two hundred thousand operations, with performance data
gathered during the final one hundred thousand operations.

Size Ratio

Initial Number of
Occupied Addresses Mean Max Std Dev

100 1.11 1.27 .03

1,000 1.11 1.19 .02

10,000 1.11 1.13 .01

Delete List Length

Initial Number of
Occupied Addresses Mean Max Std Dev

100 .44 9 .81

1,000 .44 9 .81

10,000 .44 10 .81

Table 3-2: Detailed Simulation Results for 3-2-2 RSMs

These additional simulations suggest that the average values of the performance
measures do not depend on the initial number of addresses occupied. Thus, average
space requirements appear to be proportional to the number of occupied addresses in the
RSM, just as in a single site sparse memory. The time requirements depend on the
number of occupied addresses in the RSM in the same manner as for a single site sparse
memory. The standard deviation of the size ratio decreases as the number of occupied
addresses increases. This is easily explained by the fact that the numerator and
denominator of the size ratio are the number of entries in a representative and the number
of occupied addresses in the RSM, respectively. Similar variation should be observed in
both of these random processes regardless of the RSM size, but a given variation in the
numerator or denominator will cause a greater change in the fraction if the denominator
(the number of occupied addresses in the RSM) is small.

44 Chapter 3

The maximum delete list size observed was 10. This is an indication of the worst case
time to perform the RSM representative operations for the second and third steps of the
Erase operation. Care should be taken not to interpret this as the true worst case time for
any possible run. Theoretically, a delete list can be as long as the number of addresses
that have ever been erased from the RSM. The longer a run, the higher the maximum
observed delete list is likely to be. However, the fact that the largest delete list observed
in three runs of one hundred thousand operations each was only 10 entries indicates that
large delete lists will probably not be a problem in practice. We conjecture that the
expected value of the largest delete list observed in a run is logarithmic in the length of
the run.

3.3. Analytic Model

3.3.1. Introduction

The algorithm as applied in the simulations was modeled and analyzed to predict
various performance characteristics. The goals of the analysis were to increase our
confidence in the simulations by corroborating their results, to gain further insight into
the behavior of the algorithm, and to produce a fast, reliable method for determining the
performance of the data structure in a given application.

In this section, we describe the model and our method of analysis, and present the
analysis. A set of formulas to predict performance characteristics are derived in the
analysis. These formulas are used to check the results obtained from the simulations and
predict performance trends exhibited by the algorithm under various conditions. The
analysis is extended to handle more general operation mixes.

3.3.2. Construction of the Model

The system can be modeled as a Markov chain in a straightforward fashion. One state
corresponds to each possible contents of the entire RSM, henceforth called a system state.
The transitions correspond to the changes in system state effected by the operations.
Transition probabilities are induced by the fact that the operation to be performed (Insert,
Update, or Erase), the address to be operated upon, and the write quorum are chosen at
random.

In the simulations, the system appeared to display equilibrium behavior: each system
attribute being monitored approached an average value that did not vary over multiple
runs of sufficient length. For a Markov model to be of use to us in calculating these
values, it too must display this equilibrium behavior. It is sufficient that the model

The Performance of Replicated Sparse Memories 45

achieve stochastic equilibrium. The simplest class of Markov chains achieving stochastic
equilibrium are those that are finite and irreducible. (By finite, we mean that they contain
a finite number of states, and by irreducible, we mean that each state can be reached from
every other state.)

The straightforward model described above does not possess either of the requisite
properties. It is not finite, as version numbers can grow without bound. Repeatedly
updating a single address produces an infinite sequence of distinct states. Neither is the
straightforward model irreducible: once the system leaves any state, it can never get back
to that state. The version numbers associated with a fixed address in a fixed
representative in successive states form an increasing sequence. Any operation results in
the version number associated with some address increasing in some representative and it
can never return to its original value. However, the model displays an extremely high
degree of lumpability [34]. That is to say, many states are practically identical to some
other state, so sets of similar states can be lumped together to produce a smaller, simpler
model. We construct a new model that possesses the desired properties by this process of
lumping.

This is not the straightforward task that it might appear to be. The obvious way to deal
with the fact that version numbers increase without bound is to equate states where
corresponding representatives contain entries for the same collection of addresses and
corresponding pairs of entries (or gaps) have the same version number ordering.
However, attempts to lump states based on order relations between version numbers run
into complications. Our attempts along these lines produced models that were finite but
not irreducible. An alternative approach, which involves abandoning the version
numbers altogether, produces the desired result. Before we describe it, we must dispense
with some preliminaries.

All of the entries in each representative of an RSM can be divided into three classes. A
current entry is an entry for an occupied address that has the highest version number
associated with the address in any representative. Current entries are the only entries that
contain up-to-date information. An outdated entry is a non-current entry for an address
that is still occupied. If an entry is outdated then some other representative contains an
entry for the same address with a higher version number. A ghost entry is an entry for an
address that is no longer occupied. A ghost entry can be thought of as the ghost of an
address that used to ‘‘live’’ in the RSM. It should be clear that all entries in a
representative fall into one and only one of these classes.

Let us call a representative with all version numbers removed and with the class of each
entry (current, outdated or ghost) appended to the entry the concise representation of the
representative. Note that the concise representation contains no explicit information
about the gaps between entries. By extension, we call the collection of concise

46 Chapter 3

representations of all representatives in an RSM the concise representation of the RSM.
The concise representation has two properties that make it useful:

PROPERTY 1. Given the concise representation of a system state, an operation to be
performed on the RSM (Insert(addr), Update(addr) or Erase(addr)) and the write
quorum selected for the operation, one can determine the concise representation of the
resulting system state.

PROPERTY 2. All of the important information concerning a system state is fully
determined by its concise representation; that is, all system states sharing a concise
representation coincide in all important attributes. By important attributes, we mean
the performance measures: delete list length and composition ratios, and several other
attributes for which we assert that equilibrium distributions exist in the analysis of our
model.

The intuition behind the proof of Property 1 is that version numbers are used solely to
find out which class an entry belongs to when performing the various operations on an
RSM. Let us define class(a,R), the class associated with address a at representative R, to
be the class of the entry for a at R, if R contains an entry for a, or no entry if R contains
no entry for a. For every a and R, each RSM operation affects the value of class(a,R) in a
deterministic fashion based solely on the previous value of class(a,R), the operation to be
performed, and the write quorum Q for the operation. The class change effected by each
operation is illustrated by the finite automaton shown in Figure 3-3. The states in the
automaton represent the current value of class(a,R). The arcs are labeled with an

5operation and a membership relation between R and Q. The automaton mirrors the inner
workings of the RSM algorithms, which are described in detail in the construction of the
balance equations (Appendix A). The automaton in Figure 3-3 is deterministic because
each operation describes at most one arc emanating from each state. Property 1 follows
immediately from the determinism of the automaton.

Property 2 must be checked separately for each important attribute. It is true for
composition ratios, as the concise representation of a representative clearly contains the
same number of current, outdated and ghost entries as the representative itself. It is true
for delete list lengths, as delete lists consist of all the ghost entries between two addresses
in the RSM, and system states sharing a concise representation represent the same RSM,
and have ghost entries for the same addresses at corresponding representatives. The
reader can easily check that Property 2 holds for all other system attributes for which we
assert the existence of an equilibrium distribution in the analysis.

5The notation on the arc from ghost to noentry indicates that a is between the real predecessor and the
real successor of the address being erased.

The Performance of Replicated Sparse Memories 47

sa <
b

<Delete(b), p
b

Insert(a)

Delete(a)

Insert(a)

Delete(a)

Delete(a)

Update(a)

Delete(a)

Update(a)

 ∉R Q

 R ∉ Q

∉R Q

 ∈ Q̨R

 ∈ QR

 ∈ QR

 ∈ Q̨R

 ∈ Q̨R

 ∈ Q̨R

∉R Q

Ghost

OutdatedCurrentNo Entry

Insert(a)

Figure 3-3: Class Change Associated with an RSM Operation

We are now ready to describe the method by which we simplify our model. We define
a new model where all system states sharing each concise representation are lumped
together to form the model states. Property 1 tells us that the induced transition
probabilities in this model are well defined. This is required for the model to be a well
defined Markov chain.

The new model is finite by the following argument. The address space is finite, and
each representative contains entries for some subset of the address space. Each entry
belongs to one of the three classes. Therefore, there are only a finite number of possible
concise representations for representatives. An RSM consists of a fixed number of
representatives, so there are only a finite number of possible concise representations for
system states. This places a finite upper bound on the number of states in our model.

The model is irreducible by the following argument. From any system state, it is
possible to reach a system state where all representatives contain no entries (except for
the permanent entries for Low and High). This can be accomplished as follows: first
erase all of the occupied addresses in any order with any write quorums. At this point, all
of the representatives can contain only ghost entries. If a single address is inserted into
the RSM and then erased using the same write quorum, all of the representatives in the
quorum will be completely empty. Repeat this Insert-Erase process as many times as
necessary to include each representative in at least one write quorum. All system states

48 Chapter 3

where none of the representatives contain any entries have the same concise
representation hence they are represented by a single state in the model. But this state
also represents the initial system state, from which all other system states can be reached.
Thus, any model state reachable from the initial state can be reached from every state.

The Markov model achieves stochastic equilibrium, because it is finite and irreducible.
There is one other property that the model must have in order to fulfill our requirements:
it must not lump together system states that are not really equivalent. In other words, all
system states represented by each model state must be functionally identical in the sense
that they coincide in all attributes for which we wish to infer the existence of an
equilibrium distribution. However, this is precisely what Property 2 tells us.

3.3.3. Method of Analysis

Our model is guaranteed to achieve stochastic equilibrium, so it is theoretically possible
to determine the precise probability of being in any state. In practice, this would be
impossible due to the huge size of the system. Also, the resulting probability distribution
would not be particularly informative as such, and the processing necessary to derive any
useful figures from it would be prohibitive due to its size. However, the existence of this
model proves that any attributes common to all system states represented by each state of
the model have well defined expected values. Thus it makes sense to formulate
relationships among such expected values and solve for them.

The performance characteristics of primary concern to us are all intimately related to the
composition of each representative in terms of the three classes into which entries are
divided. As a consequence of the existence of our model we can assert that a dynamic
equilibrium exists in each of these classes in each representative. These assertions can
take the form of balance equations equating the rates of flow into and out of each
category in a single representative. Such equations hold equally well for all of the
representatives in the RSM due to the symmetry of the system. In the course of the
analysis, we focus our attention on a single representative, but the results apply to every
representative in the RSM.

These balance equations are naturally constructed in terms of three independent
variables, and the system parameters N and W (defined in Section 3.3.4). In constructing
the balance equations, we make some simplifying assumptions in the form of
approximations in the equations. Each approximation will be noted and justified. The
resulting equations constitute a linear system that can be solved easily. Expressions for
the desired performance measures can be constructed from the independent variables,
though we need to make a simplifying approximation in one derivation.

The Performance of Replicated Sparse Memories 49

While our analysis was developed independently, related techniques have been used by
others. For example, see Yao’s fringe analysis of 2-3 trees [60].

3.3.4. Formulation of Balance Equations

The following variables are used in formulating the balance equations. Capital letters
are used to represent stochastic variables and constants (system parameters). Small
letters represent unknowns in the balance equations. We use the notation a ∈ RSM to
indicate that address a is occupied in an RSM. An RSM with no occupied addresses is
said to be empty.

C The number of current entries in the representative under observation.

O The number of outdated entries in the representative under observation.

G The number of ghost entries in the representative under observation.

E The total number of entries in the representative under observation.
Note that E= C+ O+ G.

A The number of addresses currently occupied in the RSM.

D The number of entries in the delete list of address a in the representative undera
observation. (The delete list of an address consists of all of the ghost entries in a
representative between the address’s real predecessor and its real successor.)

D (D)/A. D is the average delete list length in the representative under∑ aa ∈ RSM

observation. Note that D is only defined in states where A≠0 (i.e. the RSM is
non-empty).

c ′ E [C/A] The expected value is taken over all states that represent non-empty
RSMs. C/A is the fraction of occupied addresses that have current entries in the
representative under observation. Thus, c ′ is equal to the probability that a
randomly chosen occupied address has a current entry in the representative under
observation.

o ′ E [O/A] The expected value is taken over all states that represent non-empty
RSMs. O/A is the fraction of occupied addresses that have outdated entries in the
representative under observation. Thus, o ′ is equal to the probability that a
randomly chosen occupied address has an outdated entry in the representative
under observation.

d E [D] The expected value is taken over all states representing non-empty RSMs.
d is the expected value of the average length of a delete list in the representative
under observation. A simple derivation in Section 3.3.5 shows that d is also the
expected length of the delete list of the address being deleted in a transition
representing an Erase operation.

N The number of representatives in the RSM being modeled.

W The write quorum size for the RSM being modeled.

50 Chapter 3

A formal statement of the rate balance assertion for current entries is:

E[Number of entries entering current class in a chosen representative in one opr]
= E[Number of entries leaving current class in a chosen representative in one opr].

The expected values are computed over a space consisting of all the state transitions in
our model. Analogous assertions are made for outdated and ghost entries. The expected
values can be recast in terms of c ′, o ′ and d. These expansions, though relatively
straightforward, are somewhat tedious, as they entail examining the inner workings of the
RSM operations in great detail. They can be found in Appendix A.

The expansions yield the following balance equations, for current, outdated and ghost
entries respectively:

W
c ′ =

N

(N−3W)c ′ + 2W
o ′ =

N+3W

N−W
d = (c ′ + o ′).

W

3.3.5. Solution of Balance Equations

The solution to the balance equations derived in the previous section is:

W
c ′ =

N

3W(N−W)
o ′ =

N(N+3W)

4(N−W)
d = .

N+3W

The first performance measure for which we desire a formula is:

E[The length of the delete list encountered in an Erase operation].

(The expected value is taken over all state transitions representing Erase operations.) We
apply the identity E[X] = E[E[X|Y]], with Y = The system state prior to the operation:

The Performance of Replicated Sparse Memories 51

= E[E[The length of the delete list encountered in an Erase operation
| The system state prior to the operation]]

= E[E[The length of a delete list in a given system state]]
= E[D]
= d .

The second performance measure is the expected value of the size ratio:

E [E/A]
= E [(C + O+ G)/A]
= E [C/A]+ E [O/A]+ E [G/A]
= c ′ + o ′ + E [G/A].

The three terms of this expression (E [C/A], E [O/A] and E [G/A]) are the composition
ratios. While we cannot exactly express the third term of this expression in terms of our
unknowns we can make a very good approximation based on the fact that almost every
ghost in a representative appears in two delete lists, that of its real predecessor and that of
its real successor. The exceptions are the ghosts before the first occupied address and
those after the last, which only appear in a single delete list. But in the vast majority of
states, very few ghosts fall into this category. Thus the sum of the lengths of the delete
lists for all occupied addresses is approximately equal to twice the number of ghosts. A
formal statement of this assumption is:

2G = D .∑ a
a ∈ RSM

Dividing both sides of this equation by 2A and taking expected values over all states
representing non-empty RSMs, we get:

E [G/A] = E [(D)/2A]∑ a
a ∈ RSM

1
= E [D]

2

d
= .

2

Substituting back, our formula for the size ratio becomes:

d
E [E/A] = c ′ + o ′ +

2

2(N+ W)
= .

N+3W

52 Chapter 3

3.3.6. Results

Figure 3-1 (p. 42) compares the average size ratios observed in the simulations with
predictions obtained from the formula developed in the previous section. Figure 3-2 (p.
42) compares actual and predicted average delete list lengths. The predicted values are
nearly identical to the observed values. We compared simulation and analysis results for
many other system attributes and observed this level of agreement uniformly.

Figure 3-4 shows the expected composition ratios in a 20 - (21−W) - W RSM, for all
possible values of W. Figure 3-5 shows expected delete list lengths for these RSMs.
Varying the quorum sizes in a fixed size RSM in this manner controls a fairly complex
performance tradeoff: increasing the write quorum size increases the availability of the
Read operation while decreasing its cost, and decreases the availability of the write
operation, increasing its cost. In the Erase operation, the work done at each node
decreases, but the number of messages that must be sent increases. At one end of the
spectrum (W=20) there is the universal update strategy; at the other (W=11), there is a
strategy where roughly half the representatives are written and half are read. Note that in
the universal update strategy, the size ratio is 1 and there are no outdated or ghost entries,
as the representatives are just copies of the single site sparse memory. The graphs show
that for the spectrum under investigation, the representatives contain at worst 20% more
entries than a single site sparse memory and the expected delete list length remains
shorter than a single entry.

Figures 3-6 and 3-7 show the expected composition ratios and delete list lengths in
(2i−1) - i - i RSMs. Increasing read quorum, write quorum and RSM sizes
simultaneously, as illustrated in these graphs represents a fairly straightforward
performance tradeoff. As the sizes increase, the availability of all operations increases,
but the number of messages that must be transmitted for all operations increases as well.
Specifically, the number of representatives that can fail while still maintaining
availability of all operations in a (2i−1) - i - i RSM is i−1. The flatness of the curves
shows that the amount of work at each node in an Erase operation, and the size and
makeup of each representative do not vary appreciably over the spectrum. Thus the cost
scales up proportionately to the increased availability with no added penalty for very high
availability.

Finally, we present some fairly surprising results concerning the limiting behavior of the
predictive formulas for the performance measures. First let us examine the expected
length of a delete list, d. Recall, the formula for d is:

4(N−W)
.

N+3W

The Performance of Replicated Sparse Memories 53

W
12 13 14 15 16 17 18 19 20

E
xp

ec
te

d
C

om
po

si
tio

n
R

at
io

0.2

0.4

0.6

0.8

1.0

1.2

0.0
11

All Entries (Size Ratio)
Current Entries
Ghost Entries
Outdated Entries

Figure 3-4: Expected Composition Ratios in a 20 - (21−W) - W RSM

W
12 13 14 15 16 17 18 19 20

E
xp

ec
te

d
D

el
et

e
Li

st
 L

en
gt

h

0.2

0.4

0.6

0.8

0.0
11

Figure 3-5: Expected Delete List Lengths in a 20 - (21−W) - W RSM

54 Chapter 3

W
3 4 5 6 7 8 9 10

E
xp

ec
te

d
C

om
po

si
tio

n
R

at
io

0.2

0.4

0.6

0.8

1.0

1.2

0.0
2

All Entries (Size Ratio)
Current Entries
Ghost Entries
Outdated Entries

Figure 3-6: Expected Composition Ratios in a (2i−1) - i - i RSM

W
3 4 5 6 7 8 9 10

E
xp

ec
te

d
D

el
et

e
Li

st
 L

en
gt

h

0.2

0.4

0.6

0.8

1.0

0.0
2

Figure 3-7: Expected Delete List Lengths in a (2i−1) - i - i RSM

The Performance of Replicated Sparse Memories 55

Let us maximize it subject to the (real) constraints that N≥1 and N/2≤W≤N. As one
would expect, this expression grows as the write quorum size decreases. Thus the
expression achieves its maximum when W is set to N/2, its lowest permissible value. So:

N
4(N−)

2
d ≤

N
N+3

2

4= .
5

In other words, the average length of a delete list will not grow beyond .8, no matter what
quorum sizes are used.

A similar result holds for the expected size ratio (E [E/A]). The expression for this
quantity is:

2(N+ W)
.

N+3W

Standard methods show that this expression, subject to the same constraints as above,
also achieves its maximum when W = N/2, independent of N. Thus its value is bounded
by:

N
2(N+)

2
N

N+ 3
2

6= .
5

These two performance measures completely specify the significant time and space
requirements of the system. Therefore, average performance cannot degrade without
bound, regardless of what values we choose for the parameters.

3.3.7. Varying the Operation Mix

In the simulations and analysis, we assumed that Insert, Update and Erase operations
occur with equal likelihood. In practice, the operation mix will vary from application to
application. It is straightforward to extend the analysis to cover other operation mixes.
This is accomplished by substituting the frequencies of each operation for the appropriate

56 Chapter 3

terms in the balance equations, instead of assuming that all such terms are 1/3 (Appendix
A). We extended the analysis along these lines. For brevity’s sake, we will not present
the details of the analysis, but briefly summarize the results.

We allow the probability that the operation is Update, which we call P , to vary fromu
zero to one. If the Insert probability is unequal to the Erase probability, the number of
occupied addresses in the RSM will dwindle to zero or increase without bound; thus we
assume they are equal. Under this assumption, P completely specifies all the operationu
frequencies. The extended analysis consists of recasting the balance equations in terms
of P , solving them and studying the solution. The solution to the generalized balanceu
equations is:

W
c ′ =

N

2W(N−W)
o ′ =

N((1−P)N+2W)u

(3−P)(N−W)u
d = .

(1−P)N+2Wu

The resulting formula for the expected value of the delete list length is:

(3−P)(N−W)u
.

(1−P)N+2Wu

The formula for the expected value of the size ratio is:

(3−P)(N + W)u
.

2(1−P)N+4Wu

As expected, when P is set to 1/3 these expressions reduce to those obtained from ouru
original analysis.

For a 3-2-2 RSM, the expected delete list length does not vary significantly over the
entire spectrum of P values, achieving a minimum of 0.43 at P = 0 and approaching au u
maximum of 0.5 as P approaches 1 (Figure 3-9). Similarly, the size ratio achieves au
minimum of 1.07 at P = 0 and approaches a maximum of 1.25 as P approaches 1u u

6(Figure 3-8).

6The performance measures do not have well defined expected values when P = 1. This will beu
discussed at greater length in Section 3.3.8.

The Performance of Replicated Sparse Memories 57

Probability of Update
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
xp

ec
te

d
C

om
po

si
tio

n
R

at
io

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

All Entries (Size Ratio)
Current Entries
Ghost Entries
Outdated Entries

Figure 3-8: Expected Composition Ratios for Varying P in a 3-2-2 RSMu

Probability of Update
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
xp

ec
te

d
D

el
et

e
Li

st
 L

en
gt

h

0.40

0.45

0.50

0.55

0.35
0.0

Figure 3-9: Expected Delete List Length for Varying P in a 3-2-2 RSMu

58 Chapter 3

The favorable worst case results in Section 3.3.6 can be generalized. For all legal
values of N, W and P , the expected delete list length will always be <1, and theu
expected size ratio will always be <1.5. Thus the performance of the system remains
good for any (random) operation mix.

3.3.8. Discussion of the Analysis

The primary purpose of this section is to discuss the validity of the analysis and the
applicability of the results. The Markov model exactly describes the RSM under random
usage. Three assumptions are made in the construction of the balance equations, hence
the balance equations do not exactly reflect the Markov model. The balance equations
are solved exactly, and a final assumption is made in deriving the expression for the
composition ratio for ghost entries from the solution to the balance equations. These four
assumptions represent the sole source of inaccuracy in our analysis. We enumerate and
examine the assumptions below. The page number after each assumption indicates the
page on which the assumption is made.

1. In constructing each balance equation, we assumed that the three operations
(Insert, Update and Erase) occur with equal probability. (P. 153)

2. In constructing the balance equation for current entries, we assumed that
the probability that a representative contains an entry for the real
predecessor of a randomly chosen occupied address is equal to the
probability that it contains a randomly chosen address in the RSM. (P. 156)

3. In constructing the balance equations for current and ghost entries we
ignored the possibility of a ghost entry becoming outdated or current in an
Insert operation. (Pp. 155, 158)

4. In deriving the formula for the composition ratio for ghosts entries, we
assumed that each ghost in a representative appears in exactly two delete
lists. (P. 51)

The first assumption holds in all states of the model except those representing RSMs
that are empty or full. (An RSM is full if all addresses in the address space are occupied.)
In the description of the system being modeled, we said that addresses to be erased are
chosen from occupied addresses; Erases do not occur in states representing an empty
RSM. By the definition of Insert, an address being inserted must be unoccupied; Inserts
cannot occur in the state representing a full RSM. However, these boundary states
represent a negligible fraction of all system states and occur with extremely low
probability, assuming the address space is reasonably large. If the address space is small,
it takes a much shorter run of Inserts to fill the RSM or Erases to empty it; thus these
boundary states occur with much greater likelihood. The address space used in the
simulations was large enough that these states were never encountered.

The Performance of Replicated Sparse Memories 59

The second assumption concerns the probability that a representative contains an entry
for the real predecessor of a given address. In any system state, the number of occupied
addresses that have an entry in a given representative can differ by at most one from the
number of addresses whose real predecessor has an entry in this representative. This is
so because each occupied address except the last one is the real predecessor of another
occupied address. Thus, the probability that a randomly selected occupied address has an
entry in this representative differs by at most 1/A from the probability that the real
predecessor of a randomly selected address has an entry in the representative. But if the
address space is large, A will be large in the system states that occur with high probability
and this assumption will be almost correct.

The third assumption is that ghost entries cannot enter the outdated or current class in an
Insert operation. This assumption is violated when an address that has been erased from
the RSM is reinserted while a ghost for the original incarnation of the address still exists
in some representative. Unless the assumption is violated in a substantial fraction of all
Insert operations, it will have little effect on the accuracy of our analysis. The larger the
cardinality of the address space, the less likely it is that the assumption will be violated in
any given Insert operation. While it would not surprise us if the assumption were
violated at some point during our simulation runs, the address space used in the
simulations was large enough that the overall effect on the accuracy of the analysis was
almost certainly negligible.

The fourth assumption is very similar to the second. All ghosts in a representative
except those before the first occupied address and after the last occupied address do occur
in the delete lists of two occupied addresses. The other ghosts in a representative occur
in only one delete list. However, in all reasonably likely states, the ghosts are fairly well
distributed among the occupied addresses, thus on average, only a small constant number
of ghosts will be on a single delete list. For representatives containing reasonably many
entries, these few ghosts will be ‘‘swamped’’ by the ghosts that appear on two delete
lists, and D/2 will be almost identical to G/A. If the address space is reasonably large, the
approximation will be good in all reasonably likely states and the assumption will be
valid.

In summary, all the assumptions quickly become reasonable as the address space gets
large. This is the only point where the cardinality of the address space enters into our
analysis. It was not used explicitly in any of the equations. None of the assumptions
break down when N or W get large (assuming the address space is large); thus, the worst
case results obtained from the limiting behavior of the predictive formulas are valid. This
also implies that the formulas can be used with confidence for any quorum sizes.

The extension of the analysis to operation mixes wherein operations occur with unequal
likelihood presents another difficulty. By the nature of the balance equations, their

60 Chapter 3

solutions represent the expected values for certain stochastic variables, assuming the
variables have well defined expected values. In Section 3.3.2 we showed that our model
was finite and irreducible, which allowed us to assert the existence of well defined
expected values for the requisite stochastic variables. However, the proof of
irreducibility assumed that the Erase and Insert operations occur with nonzero
probabilities. If this assumption is false, the proof is no longer valid. In fact, when
P = 1, only a tiny fraction of the model states can be reached from any given state, henceu
the model is no longer irreducible.

Consequently, the delete list length and the composition ratios no longer have well
defined expected values when P = 1. In any given experiment, the observed averageu
values for these performance measures will depend heavily on the initial contents of the
RSM representatives. The average delete list length will remain constant at whatever
value it holds in the initial state, as no ghosts will be added to the representatives nor will
any new addresses become occupied in the RSM. The size ratio will converge to one
plus the (initial) value of G/A, as each representative will eventually contain one entry
(current or outdated) for each occupied address, as well as any ghosts it contained
initially. In practice, this means that when P = 1, the observed average values for theu
performance measures will be even lower than those predicted by the formulas.

Typically, when a model breaks down at some particular parameter value, it begins to
break down in the vicinity of this value; our model is no exception. Observed averages
for the performance measures will approach their predicted equilibrium values more and
more slowly as P approaches one. Thus, observed averages for experiments of a givenu
length will be more and more dependent on the initial system state. If the initial state is
produced by a sequence of Inserts, the representatives will initially contain no ghosts and
the performance measures will have very desirable (i.e. low) values. If the initial state is
produced by prolonged operation of the system with some higher P value, the initialu
values of the performance measures are likely to be better than those predicted for P = 1,u
as our analysis predicts better performance for lower P values. In either case, observedu
average values for these measures will approach the true equilibrium values only slowly.
Thus, early in their operation, update intensive systems will probably display even better
performance than the formulas predict. Not only do the worst case results for the
performance measures remain valid in the region where the model breaks down; they
may be overly pessimistic.

A note should be added concerning the equilibria observed in the simulations. These
equilibria definitely did not represent true equilibrium state distributions over our entire
model. This is clearly demonstrated by the fact that the simulations did not generate
identical average values for the number of addresses in the RSM (A) from run to run.
The observed average values for A were clearly related to the initial number of occupied
addresses in each run. This is not at all surprising, when one considers that the number of

The Performance of Replicated Sparse Memories 61

states in the model is exponential in the cardinality of the address space, and the
simulations were run for far fewer steps than the address space cardinality itself. We
proved that a simulation of sufficient length would display equilibrium behavior over the
entire model, but our runs were not of sufficient length. This leaves unexplained the fact
that the runs exhibited predictable equilibrium behavior for all of the performance
measures of concern to us.

The explanation for this phenomenon lies in the fact that our simplified model is still
highly lumpable. Moderately sized ‘‘clumps’’ of contiguous states with reasonably high
probabilities of occurrence, such as those traversed in each run of the simulation, have
the same average values for the performance variables as those predicted for the entire
model. In fact, our analysis captures these clumps better than it captures the entire state
space, as the clumps tend not to contain the boundary states where the assumptions break
down.

3.4. Discussion

The system simulated and analyzed was not entirely realistic. Read and write quorums
would not be chosen randomly in practice. A node would more naturally communicate
with easily accessible nodes. Because of the cost of establishing a communication
session, the node would probably continue to communicate with the same nodes until it
had no need for further communication or a failure occurred. Therefore, in practice, the
read and write quorums used by any given node would probably change infrequently.
The random distribution of operations and addresses is also unrealistic. However, we
conjecture that the performance observed under real conditions will be as good as or
better than that of the system studied.

One possible usage pattern for the system is that a single read/write quorum that
changes infrequently is used for all operations. This is a special case of the scenario
described in the previous paragraph. We performed additional simulations to investigate
the behavior of the system under this usage pattern. These simulations were identical to
the ones previously described except that before each operation, a decision to change the
quorum was made with probability p. When it was determined that the quorum was to
change, a single, randomly chosen member of the quorum was replaced with a
representative chosen at random from those not already in the quorum. Thus, on any
given iteration at most one member of the write quorum changed. This usage pattern
could occur if an RSM were being used by a single client.

Simulations were performed on 3-2-2 directories initially containing 100 occupied
addresses, with p values of 0.1, 0.01, 0.001, and 0.0001. Two hundred thousand
operations were performed in each simulation and data was collected during the final one

62 Chapter 3

hundred thousand operations. The results showed that as the value of p decreases, the
average delete list length decreases significantly from the value observed under random
usage. The size ratios did not change significantly from the size ratios observed under
random usage. These results indicate that the total number of outdated and ghost entries
remains close to the total under random usage, but they are now concentrated outside of
the write quorum. Thus, the delete lists actually encountered tended to be shorter than
those observed under random usage. The results of this simulation are consistent with
our conjecture that the performance of the system will be at least as good under realistic
usage patterns as it was under the random usage studied in the simulations and analysis.

As noted in Chapter 2, the RSM data structure can be used with infinite address spaces.
In fact, a natural choice for the address space is the set of finite length alphanumeric
strings, which is countably infinite. The system studied in the simulations and analysis is
not well defined for countably infinite address spaces, so it is natural to ask how well the
results of the analysis apply to these address spaces. In practice, the effect of using
infinite address spaces is identical to that of using large but finite address spaces.
Namely, it keeps the system away from boundary states where the assumptions made in
the analysis break down. Thus, the analysis captures actual usage patterns over infinite
address spaces as well as it captures any other actual usage patterns.

One disadvantage of our analysis technique is that it can only be used to determine
expected values for the performance measures. Thus we can only characterize the
average case performance of our data structure. It would be nice to have additional
information on the probability distributions of the performance measures. The
simulations give us some information along these lines, and we can gain some insight by
reasoning directly about the worst case performance of our algorithm.

The simulations and our intuition indicate that under realistic access patterns the size
ratio will not vary much from its average value. But it is worth noting that one can
construct a pathological sequence of operations wherein ghosts are allowed to accumulate
in one representative while the RSM remains almost empty, causing the size ratio to grow
without bound. This can be accomplished by selecting one write quorum for all Insert
operations and a second write quorum for all Erase operations that intersects the first in
only one representative. However there is no reason this should occur in practice.

The pathological sequence of operations described in the previous paragraph is not as
bad it might seem. It causes delete lists to grow without bound in the representatives
only outside of the write quorum for Erases. As long as the pattern continues, the long
delete lists will not be encountered (assuming Erases use the same read and write
quorum). If the representatives outside the write quorum are eventually used for Erases
again, the first few Erases at these representatives will encounter long delete lists. These
first few Erases will run slowly at these representatives, but in the process, they will

The Performance of Replicated Sparse Memories 63

purge the representatives of excess ghosts, so future Erase operations will run quickly.
Each ghost can only slow down a single Erase operation; once it is encountered, it will be
purged.

It should be noted that even in pathological cases like the one described in the previous
paragraphs, a maximum of three rounds of messages are sufficient to perform the Erase
operation; the extra work is all local to the representatives. If pathological behavior of
the sort described were to occur in practice, it would probably not cause noticeable
delays; even a very long delete list (say 100 entries) can be scanned and purged quickly if
an efficient data structure is used to store the data at representatives. If it is particularly
important for some application that all Erase operations run fast, care can be taken to
ensure that all representatives are used frequently in write quorums for Erase operations,
and so kept clean of excess ghosts.

64 Chapter 3

Chapter 4

Optimizations and Extensions to
Replicated Sparse Memories

In this chapter, we present several modifications to the replicated sparse memory data
structure described in Chapter 2. These modifications fall into two broad classes.
Section 4.1 contains optimizations, whose major purpose is to improve some aspect of the
performance of the RSM. Section 4.2 contains extensions, whose major purpose is to
extend the semantics of the RSM.

Section 4.1.1 presents a technique called optimistic timestamps for reducing the
communication cost associated with Write operations. Section 4.1.2 shows how the
technique can be generalized to a broad class of distributed algorithms. The resulting
optimized algorithms are called optimistic two-stage protocols. Section 4.1.3 describes a
technique for decreasing the latency associated with the Erase operation. Section 4.1.4
describes a technique for reducing the cost of modifying individual fields of records
stored in RSMs. Section 4.1.5 presents a modification to the RSM data structure that
permits the representatives to be stored as hash tables. The resulting data structure is
faster than a normal RSM and easier to implement, but it does not support certain
extensions. Section 4.1.6 presents a simple RSM implementation based on arrays. This
implementation is suitable for small address spaces or RSMs in which a substantial
fraction of the address space is occupied.

Section 4.2.1 presents range operations, analogues of the basic RSM operations that
operate on a whole range of addresses. The range operations are very efficient: each
range operation has the same communication cost as its single-address counterpart.
Section 4.2.2 presents navigation operations, which permit the user of an RSM to scan
though its occupied addresses.

65

66 Chapter 4

4.1. Optimizations

4.1.1. Optimistic Timestamps

The Write operation on RSMs, as described in Section 2.4.2, requires two rounds of
message exchanges. The sole purpose of the first round is to determine the highest
version number currently associated with the address being written. One common pattern
of data access is to read an item and then write back a new value that depends on the old
value in some way. Thus, Write operations in an RSM are often preceded by Reads to
the same address. Since the Read operation determines as a byproduct the highest
version number associated with the address, the first round of a subsequent Write
operation from within the same transaction can be eliminated.

Not all Write operations on an RSM are preceded by Reads, however. Those that are
not, called blind writes, require two rounds of messages exchanges. The first round could
be eliminated if it were possible to choose an appropriate version number without
consulting a read quorum. Since the new version number must be greater than any
version number previously associated with the address, it is not, in general, possible to do
this. But it is possible to avoid the first round much of the time, yielding a
probabilistically fast algorithm for blind writes.

The first round of the Write operation allows a client to choose a version number that it
knows to be higher than any currently associated with the address. Instead of performing
this round, the client guesses a version number that it hopes will be high enough. Then it
attempts to do the Write with this version number. Each representative in the write
quorum compares the guessed version number to the version number currently associated
with the address at the representative. If the new version number is greater than the old,
the representative accepts the write request and sends an ‘‘OK’’ response to the client.
Otherwise, it sends a ‘‘Cannot Comply’’ response containing the version number
currently associated with the address. If the client receives ‘‘OK’’ responses from the
entire write quorum, the operation has completed in one round; if the client receives one
or more ‘‘Cannot Comply’’ responses, it generates a version number by incrementing the
highest one returned in a ‘‘Cannot Comply’’ response and sends another write request to
the entire write quorum with the new version number.

If one or more ‘‘Cannot Comply’’ responses are sent, indicating that a follow up round
is necessary, the RSM will be in an inconsistent state between the initial round and the
follow-up. However, the write locks held at the representatives will prevent any other
transaction from observing the inconsistency. The locks will not be dropped until the
transaction commits, by which time the inconsistency will have been corrected by the
follow-up round. If the follow-up round does not complete successfully, the transaction

Optimizations and Extensions to Replicated Sparse Memories 67

will automatically abort and the object will be restored to consistency by the underlying
transaction system’s recovery protocol.

The procedure outlined above is guaranteed to write the RSM location in one or two
rounds; at worst, it has the same communications cost as the naive method. It is not clear
how often it is faster: it depends on the manner in which the new version numbers are
guessed. If all of the nodes had exactly synchronized clocks, message delays were all
identical, and the precision of the clocks were sufficiently high, then guessing the current
clock time would always cause the operation to succeed in one round. While
approximately synchronized real-time clocks do not satisfy these assumptions, they will
usually cause the operation to succeed in a single round, unless the clocks are very poorly
synchronized and the same location is frequently written by different clients. We call

7version numbers selected in this manner optimistic timestamps .

Optimistic timestamps can be used for any blind write operations in version number
based weighted voting algorithms. For instance, they can be applied to the write
operation in Gifford’s original weighted voting algorithm [22].

Optimistic timestamps should only be used for blind writes. If a Read precedes a Write
in the same transaction, a version number just greater than the one read should be used
for the Write. This leaves a larger margin of error for the next optimistic timestamp used
for the address. This is particularly important if the address is updated frequently by
different clients.

Clients should keep track of the last optimistic timestamp they have used. This will
typically be the clock value when the last timestamp was generated. If, however, the
previous operation required two rounds because an optimistic timestamp was too low, it
will be the number that was generated by incrementing the highest version number
returned in a ‘‘Cannot Comply’’ response. If a client needs an optimistic timestamp and
the current real-time clock value is less than or equal to the previous optimistic
timestamp used by the client, the new timestamp should be generated by incrementing
the previous one, rather than using the clock value. This policy ensures that the
optimistic timestamps generated by a client form a strictly increasing sequence. This
property ensures that in a sequence of Writes to a location by a single client,
uninterrupted by Writes from another client, only the first Write can require two rounds;
the remainder are guaranteed to succeed in a single round.

7The name optimistic timestamp is slightly misleading; the algorithm does not use optimistic
concurrency control. Whether or not optimistic timestamps are used, our replication protocols use two-
phase locking, which is a form of pessimistic concurrency control.

68 Chapter 4

As a further optimization, when an optimistic timestamp fails at a representative (i.e.,
the guessed version number is too low), the representative goes ahead with the Write
operation, using a version number one greater than the previous version number
associated with the address at the representative. The representative still sends back a
‘‘Cannot Comply’’ response containing the old version number. If all of the
representatives in the write quorum send back ‘‘Cannot Comply’’ responses containing
the same version number, the operation has completed in one round. In this case, the
client should record the version number used by the representatives, to preserve the
property described in the previous paragraph. Otherwise, a second round is necessary.
The second round need include only those representatives that did not send back ‘‘Cannot
Comply’’ responses containing the highest version number returned in the first round.

For example, suppose a client attempts a Write to a quorum of two representatives. The
client reads a time of 42 from its real-time clock, so it uses 42 as the version number for
the Write. If both representatives in the write quorum have a version number lower than
42 associated with the address being written, the Write will succeed in one round.
Suppose both representatives have version number 45 associated with the address. Both
will insert (or update) the entry, giving the entry version number 46, and return ‘‘Cannot
Comply’’ responses indicating version number 45. Since both responses indicate version
failure with the same version number, the client knows the operation has completed
successfully. Suppose the first representative has version number 20 associated with the
address and the second representative has version number 45. The first representative
will perform the operation and return ‘‘OK.’’ The second will insert (or update) the entry
with version number 46 and return ‘‘Cannot Comply’’ with version 45. The client must
perform a second round but this round only has to include the first representative. In this
round, the client uses version number 46, which is the same version number already used
at the second representative.

Optimistic timestamps can be used to speed up other operations on RSMs besides
simple blind writes. We can provide an additional RSM operation called ReadWrite, that
reads the current value out of a location and (blindly) writes a given value to the location.
This operation is equivalent in function to a Read followed by a Write, but if it is
implemented with optimistic timestamps, it is much more efficient, requiring only a
single round of messages when the optimistic timestamp succeeds. Optimistic
timestamps can also be used to implement fast queues, stacks and priority queues on top
of RSMs, as described in Section 5.3.3.

Optimistic timestamps are most effective if it is cheap to read an approximately
synchronized real-time clock. In the traditional Unix implementation, this requires a
system call (gettimeofday). More modern systems have provisions for mapping a real-
time clock into a user process’s address space. But even a system call is typically an
order of magnitude faster than an RPC. This difference is more than sufficient to warrant
the use of optimistic timestamps.

Optimizations and Extensions to Replicated Sparse Memories 69

Earlier we noted that optimistic timestamps might not be effective if the same location
were frequently written by different clients. While such hot spots represent the least
favorable conditions for optimistic timestamps, the use of optimistic timestamps can still
result in considerable cost savings.

Consider the case of two clients on separate nodes repeatedly performing transactions
that Write to the same address in an RSM. If an optimistic timestamp fails, causing a
Write to require two rounds, the next Write operation is almost guaranteed to succeed in
a single round. If the next Write comes from the same client, the attempt will succeed in
one round because clients generate optimistic timestamps in strictly increasing sequence.
If the next attempt comes from the other client, it will almost certainly succeed in one
round because the version number currently associated with the location is one more than
the last timestamp generated by this client. If clients always generate timestamps that are
at least two more than the last one they generated, the Write following a two round Write
is guaranteed to succeed in a single round. Thus, optimistic timestamps can be
guaranteed to succeed at least half the time if only two clients are writing to a hot spot.

In fact, optimistic timestamps can succeed far more than half the time when two clients
are writing to a hot spot. Earlier in this section, we described an optimization wherein
representatives go ahead with a Write operation even if the version number is too low.
Let us assume this optimization is implemented. A Write operation will succeed in one
round even if its optimistic timestamp is too low if it uses the same write quorum as the
previous Write to the location. Both representatives in the write quorum will return
‘‘Cannot Comply’’ responses with the same version number. This, in combination with
the optimization, causes the operation to succeed in a single round. If both clients
systematically use the same write quorum, all of the Writes will succeed in a single
round. In a 3-2-2 RSM, even if write quorums change from time to time, these ‘‘two
wrongs make a right’’ successes will occur fairly often, as there are only three distinct
write quorums.

Note that version numbers increase much faster when optimistic timestamps are used.
If optimistic timestamps are not used, the version number associated with an address is
roughly equal to the number of operations that have been performed on the address. If
optimistic timestamps are used, version numbers are taken from the real-time clock,
which is constantly increasing. A sufficient number of bits must be used to represent
version numbers to prevent them from wrapping around. If the real-time clock has
microsecond precision and sixty-four bits are used, version numbers will not wrap for
approximately 600,000 years. We conjecture that this is sufficient for most applications.

70 Chapter 4

4.1.2. Optimistic Two-Stage Protocols

We conjecture that there are other useful distributed algorithms with the same
computational structure as the naive algorithm for writing a location in an RSM. These
algorithms require two rounds of message exchanges: one round to gather information
from remote data objects, and one round to modify the remote data objects on the basis of
the information. We call such algorithms two-stage protocols. The optimistic timestamp
technique can be generalized to apply to any algorithm in this class.

The first round of a two-stage protocol can be eliminated if the client can predict the
information that will be returned in this round. In essence, the two rounds are combined
into a single round that performs the update based on some assumption and returns the
information that enables the client to check the assumption. If the assumption was
correct, the operation has succeeded in a single round. If it was faulty, a second round is
required to undo the incorrect updates made on the basis of the faulty assumption and
perform the correct updates instead. The resulting algorithm still has a worst-case
communication cost of two rounds. But if it is possible to predict the information in a
significant fraction of cases, the average-case cost will be much lower. If it is usually
possible to predict the information, the average-case cost will be close to one round. We
call algorithms of this type optimistic two-stage protocols. We call the assumption made
prior to the first round the optimistic assumption.

Optimistic two-stage protocols are only applicable in the context of an underlying
transaction system. The transactions system’s recovery protocols permit servers to write
‘‘optimistic’’ information in their data structures in the first stage, even though it will
temporarily corrupt the distributed data structure if the optimistic assumption is incorrect.
Write locks held at the servers will prevent other transactions from observing the
distributed data structure in its corrupt state. These locks will not be dropped until the
transaction that performed the optimistic two-stage protocol commits. The transaction
will not commit until after the second stage of the protocol completes, rectifying the
inconsistency in the data structure.

If some failure occurs that prevents the protocol from completing, the enclosing
transaction will abort, and the recovery protocol will restore the data structure to its
original state before the optimistic two-stage protocol was initiated. There is no chance
of accidentally committing an incorrect write that was performed in the first stage as a
result of a faulty assumption. If an optimistic assumption was correct, the client does not
have to send explicit messages to the servers that wrote data based on the assumption. In
essence, the client uses the messages sent in the transaction system’s commit protocol to
inform the remote servers that the optimistic assumption panned out.

Optimizations and Extensions to Replicated Sparse Memories 71

While an optimistic two-stage protocol will never have a higher communication cost
than the two-stage protocol from which it was derived, it can be more time-consuming.
In the original two-stage protocol, the first stage involves only reading the data object; in
the optimistic version, it involves writing the object as well. Also, the optimistic version
requires generating the optimistic assumption, which may have some cost associated with
it. (In the case of optimistic timestamps it is the cost of reading the real-time clock.) If
the assumption is faulty and the second stage is required, the total time cost of the two
stages will be higher than that of the original two-stage protocol by the cost of the writes
in the first stage plus the cost to generate the assumption.

The observation in the previous paragraph can be formulated mathematically to produce
a quantitative criterion for determining whether a given two-stage protocol will benefit
by being made optimistic. The derivation also yields a formula for the amount of time
that will be saved by the use of the optimistic protocol. First we define some variables:

p The probability that the optimistic assumption is correct.s

c The cost of doing the writes in the first stage of the optimistic protocol (i.e., thew
portion of the difference in cost between the two-stage protocol and the
assumption failure case of the optimistic protocol that is due to the writes in the
first stage).

c The time cost of making the optimistic assumption. (This will often bea
negligible.)

c The cost of doing the second stage in the optimistic protocol (i.e., the difference2
in cost between the assumption failure and assumption success case of the
optimistic protocol).

The preceding variables are the parameters that describe a particular two-stage protocol
and its optimistic variant. The following variables are introduced to facilitate the
derivation.

c The cost of the basic two-stage protocol.

c The cost of the optimistic protocol when the optimistic assumption is incorrect.of
Note that c = c + c + c .of w a

c The cost of the optimistic protocol when the optimistic assumption is correct.os
Note that c = c −c .os of 2

c The expected cost of the optimistic protocol. Note that c = p c + (1−p) c .o o s os s of

We desire to know the expected time savings if the optimistic protocol is used. This is
simply c−c :o

72 Chapter 4

= c − p c − (1−p) cs os s of

= c − p (c −c) − (1−p) (c + c + c)s of 2 s w a

= c − p (c + c + c −c) − (1−p) (c + c + c)s w a 2 s w a

= p c − (c + c) .s 2 w a

Intuitively, the preceding equation says that the expected cost savings are equal to the
expected savings from eliminating the second stage minus the constant overhead incurred
by the optimistic protocol. The optimistic version of the protocol will result in a net
savings if the expected savings are greater than zero:

p c − (c + c) > 0 .s 2 w a

Simplifying:

c + cw a
p < .s c2

Let us examine what the preceding formulas mean in practical terms. Consider the case
of optimistic timestamps for writing to a simple 3-2-2 replicated file implemented on the
Camelot system, running on IBM-RT/PC APC workstations connected by a 4 Megabit
per second token ring. The cost of doing the writes in the first stage, c , is essentially thew
incremental cost of doing a write to recoverable memory. Although writes take place at
several representatives, we only count the cost of one write, as the writes execute in
parallel and we are measuring latency at the client. Thus c is approximately 1.0 ms.w
The cost of making the optimistic assumption, , is essentially the cost of reading thea
gettimeofday clock. In principle, Mach permits the clock to be mapped into the client’s
address space, but this facility does not work properly on RTs. To be conservative, we
assume the cost of a gettimeofday system call, approximately 0.2 ms. The cost of doing
the second stage of the optimistic protocol is the incremental cost of doing two parallel
remote RPCs, each of which performs a single write to recoverable memory. This was
measured to be approximately 31 ms. Thus, the minimum p value necessary for thes
optimistic protocol to be worthwhile is approximately 1.2/31 or 4 percent.

Under any usage pattern, optimistic timestamps will succeed far more than 4 percent of
the time. Thus, their use is highly recommended in the example of above. While the
four percent figure is specific to this example, we believe that five to ten percent is a
reasonably good estimate of the minimum p value necessary for any optimistic two-stages
protocol to be worthwhile. This is so because c will always be the cost of one or severalw
writes to recoverable storage, c will never be more expensive than a system call (often ita
will be negligible), and c will always be the cost of a replicated remote RPC. In any2

Optimizations and Extensions to Replicated Sparse Memories 73

reasonable system, c will be roughly an order of magnitude higher than c + c ,2 w a
regardless of the details of the specific application or the underlying transaction system.

Let us consider the class of two-stage protocols where the information gathered in the
first stage consists of the answer to a yes-or-no question (e.g., ‘‘Do any of the remote
data structures have an entry for a given key?’’). The five to ten percent guideline
developed in the previous paragraph has an interesting consequence with regard to these
protocols. Even if no information is available that helps the client select the correct
answer to the question, random guessing will produce a correct answer fifty percent of
the time. This is far greater than the minimum five to ten percent required for a
performance gain; an optimistic version of the protocol wherein the optimistic
assumption is made by guessing at random will yield a great performance improvement.

Optimistic two-stage protocols have repeatedly proven useful in the work described in
this dissertation. They yield fast algorithms for doing blind writes to RSMs (Sections
4.1.1, 4.1.4), Inserts and Modifies to directories (Section 5.3.1), Enqueues to queue-like
data objects (Section 5.3.3), Erases to RSMs where the replicas are implemented as hash
tables (Section 4.1.5) and Increments to bounded counters (Section 5.4.1). We conjecture
that optimistic two-stage protocols represent a generally useful paradigm for designing
fast distributed algorithms in the context of transaction systems.

4.1.3. Low Latency Erases

The Read operation for RSMs requires a single round of message exchanges. If
optimistic timestamps are used, the Write operation usually requires one round,
occasionally two. The Erase operation, however, usually requires two rounds and can
require as many as three. This expense is inherent in the RSM data structure. Arguably,
it is reasonable, as the Erase operation performs the ‘‘incremental garbage collection’’
that is responsible for giving the RSM data structure its favorable performance properties.
But there is no reason the expense has to be incurred on the latency path of the Erase
operation.

In this section, we present a simple technique that allows part of the cost of the Erase
operation to be removed from its latency path. The basic idea is to replace the Erase with
a Write to the same address, with a special value indicating that the address is
unoccupied. This produces a fast logical erase operation. The actual Erase operation is
performed at a later time, off the latency path of the logical erase. The latency of the
Erase operation will be reduced to that of a Write.

An easy way to implement the logical erase is to add an occupied flag to each entry,
initialized to TRUE when the entry is created. The logical erase inserts an entry with this
flag set to FALSE at each member of the write quorum. This obviates the need for

74 Chapter 4

reserving a special unoccupied value in the value domain. If the Read operation
observes that the highest version number associated with an address belongs to an entry
with the occupied flag set to FALSE, it reports that the address is unoccupied, just as it
would if the highest version number belonged to a gap.

It is critical that the actual Erase operation eventually get performed. Otherwise the
logical erase will leave behind a tombstone, and eventually the RSM will become
cluttered with tombstones, ruining its space performance. To insure that the actual Erase
get performed, one of the representatives in the write quorum for the logical erase must
enter the address into a list of Erases to be performed. The list must be stored in
transaction-consistent recoverable storage to ensure that the actual Erase will be
performed if and only if the transaction containing the corresponding logical erase
commits.

When a representative enters an address onto its list, it takes responsibility for
eventually performing the Erase. When the representative decides to do the Erase, it acts
as the client for the operation. It is free to select any write quorum, though it will almost
certainly include itself in the quorum for efficiency.

Some care must be taken when performing the Erase: it should only be performed if the
tombstone left behind by the corresponding logical erase is still current. If the address
has been written between the time of the logical erase and the corresponding actual Erase,
the actual Erase must be suppressed. This effect can be achieved by checking at the same
time as the address’s real neighbors are being determined that the highest version number
associated with the address has not changed since the logical erase. If the version
number has changed, the RepCoalesce phase of the Erase operation is suppressed.

A disadvantage of the technique described in the previous paragraph is that it requires
that the version number associated with the tombstone be stored with each address in the
list of Erases to be performed. However, we observe that it is permissible to go ahead
with the RepCoalesce phase of an actual Erase as long as the address to be erased is
unoccupied at the time of the actual Erase, even if the version number has increased. As
a consequence, the check to confirm that the version number has not increased may be
replaced with a check to confirm that the address is currently unoccupied. If this
technique is used, it is no longer necessary to store the tombstone’s version number in the
list of Erases to be performed.

From a performance standpoint, doing low latency Erases is equivalent to preceding
each Erase with a Write. These Writes are all Updates, in the terminology of Chapter 3.
Thus low latency Erases increase the Update frequency of an RSM. In Section 3.3.7, we
showed that this has minimal effect on the space and time performance of the RSM.

Optimizations and Extensions to Replicated Sparse Memories 75

This does not indicate that low latency Erases should always be used. While the latency
of the Erase operation is reduced to that of the Write, the overall cost of the operation is
increased by the cost of a Write, plus any overhead incurred in scheduling the actual
Erase and creating a transaction to perform it. This substantially reduces the maximum
possible throughput. If the system goes through periods where it is not heavily loaded,
all of the delayed Erases operations can be performed during those periods, and effective
throughput will be increased. But if the system is heavily loaded at all times, low latency
Erases should probably not be used.

It is interesting to note that an RSM can support low latency Erases and normal Erases
simultaneously. This permits clients to use low latency Erases only in cases where the
decreased latency is judged to be worth the added cost.

4.1.4. Frequently Modified Fields

In many typical applications for record files, clients will modify certain fields of the
records much more frequently than others. For example, suppose each record represents
a charge account; the field representing the outstanding balance will be modified much
more frequently than the fields representing the customer’s name, address and phone
number. If an RSM were used to represent such a record file in the obvious fashion,
writing a single field of a record would entail reading the entire record, modifying the
chosen field, and writing the record back to the RSM.

The portion of the record that was not being modified would needlessly be sent from
each representative in the quorum to the client, and back to the representatives. This
portion of the record would also be needlessly written into recoverable storage at each
representative in the write quorum, resulting in unnecessary logging activity by the
underlying transaction system. Records in commercial databases are often 1-2 Kbytes in
length, whereas some frequently modified fields are only several bytes in length; the
unnecessary work may be substantial. Network bandwidth and log bandwidth are both
scarce resources, so it would be desirable to avoid this work.

Another problem with modifying individual fields by the method described above
concerns blind write operations. A blind write to an entire record can usually be
performed in one round using optimistic timestamps. This optimization cannot be
applied to a blind write to an individual field, as the client must read the contents of the
other fields in the record before performing the Write operation.

These problems can be solved by associating a separate version number with each field
that will be modified frequently, in addition to the version number associated with the
remainder of the record (the normal part). This allows the client to write any of the
frequently modified fields individually, without affecting any other part of the record.

76 Chapter 4

When the entire record is written, the same version number is associated with the normal
part of the record and all frequently accessed fields. This version number must be greater
than any version number previously associated with any part of the record, or any gap
covering the address corresponding to the key. When an individual field is written, only
the data and version number associated with this field are modified. When a record is
read, the client selects the data corresponding to the highest version number that was
returned for each part of the record and merges all of the selected parts to yield the
current value of the record.

If an individual field is written to a representative that has no entry for the given key,
the representative creates a new entry and assigns version number zero to all fields other
than the one being written. In effect, this creates an additional outdated entry for the key,
which causes no harm. There is one problem with this technique: if the file contains no
record for the given key, it can destroy the integrity of the RSM data structure. To
prevent this possibility, the representative returns the version number currently associated
with the key, and a flag indicating whether or not there was an entry for it. From this
information, the client can determine whether the address corresponding to the key was
occupied. If it was not, the client must undo the operation or abort the enclosing
transaction. Note that this is an optimistic two-stage protocol.

In summary, associating separate version numbers with frequently modified fields
reduces message sizes and logging activity, and allows fast blind writes to individual
fields. These advantages are not without cost. The Read operation is slightly slower, as
it must select the data with the highest version number for each field and merge the fields
into a record. Additional storage is required at the representatives for the extra version
numbers.

4.1.5. Hash Table RSMs

The description of RSMs in Chapter 2 did not specify what data structure should be
used to represent the RSM representatives. The RSM representative operations require
the ability to lookup, insert, modify, and delete entries for specific addresses. They also
require the ability to do linear scans of the entries preceding and following a given
address. (This is required, for example, to perform either stage of the real predecessor
operation.) Data structures that naturally lend themselves to this set of operations include
various types of balanced trees as well as skip lists [49].

Balanced trees and skip lists perform lookups, inserts, modifies and deletes in time
proportional to the log of the number of entries in the representative. While hash tables
allow constant time lookups, inserts, modifies and deletes, they do not permit scans of the
entries surrounding a given address. Thus, it is not possible to implement RSMs directly

Optimizations and Extensions to Replicated Sparse Memories 77

on top of hash tables. In this section, we describe a variant of the RSM in which the
representatives are represented as hash tables.

The hash tables for all representatives in an RSM must have the same number of
buckets and use the same hash function. Each entry in a representative is stored in the
hash bucket corresponding to the entry’s address. The entries in each bucket are
maintained in a linked list, ordered by address. The gap between a pair of adjacent
entries covers only a subset of the range spanned by the entries: those addresses in the
range whose hash values would place them in the same bucket. The real predecessor and
real successor of an address are redefined as the preceding and following occupied
address in the same bucket as the address. This allows the Erase operation to operate
entirely within a single hash bucket, like all other RSM operations. To ensure that every
address has a real predecessor and real successor that lie in the bucket, each bucket must
have its own Low and High entries.

In essence, the hash function partitions the address space into as many subspaces as
there are buckets, and a separate RSM is maintained for each subspace. The
representatives for these sub-RSMs are the hash buckets. Thus, representatives are really
represented as linked lists, not hash tables. We need not describe the operations on hash
table RSMs in detail, as they are precisely the ordinary RSM operations applied to the
appropriate sub-RSM.

Each sub-RSM will rarely contain more than a few occupied addresses. This has
interesting implications concerning performance, concurrency control and possible
performance optimizations.

Normally, linked lists would be a poor choice of representation for RSM
representatives, as access time is linear in the number of entries. However, this is
effectively reduced to constant time by the fact that each sub-RSM contains very few
occupied addresses. The performance analysis in Chapter 3 does not apply to hash table
RSMs, as it applies only to RSMs in equilibrium, and the sub-RSMs in a hash table RSM
are far too small to achieve equilibrium.

In a normal RSM, it is essential to do locking at the granularity of individual addresses,
in order to achieve reasonable concurrency. In hash table RSMs, it is perfectly
acceptable to lock entire sub-RSM representatives (i.e., hash buckets). If the hash
function and hash table size are chosen carefully, it will be very rare that two operations
are performed simultaneously on distinct addresses with the same hash value.

Bucket locking has two big advantages over the locking schemes required in balanced
trees or skip lists. First, it is cheap: each representative operation in a hash table RSM
requires only a single lock. Operations on concurrent balanced trees or skip lists require

78 Chapter 4

several locks, even if they are implemented as efficiently as possible. Second, it is trivial
to implement bucket locking on hash tables, whereas efficient concurrent B-Trees are
quite complex [37, 12]. It is still an open research problem to develop an efficient
concurrent skip list implementation.

The small number of occupied addresses in a sub-RSM suggests an interesting
optimization to the implementation of the Erase operation. In the terminology of Section
4.1.2, the Erase operation can be considered a two-stage protocol in which the first stage
determines the real predecessor and successor of the address being erased and the second

8stage coalesces the range between the real predecessor and successor. If the hash
function and table size are chosen carefully, it should frequently be the case that the sub-
RSM containing the address being erased has no occupied addresses other than the
address being erased. Thus, we generate an optimistic two-stage protocol based on the
assumption that the real predecessor and successor of the address being erased are High
and Low.

To be effective, this optimization must be combined with the use of optimistic
timestamps; otherwise it would be impossible to perform the coalesce in one step even
knowing the real predecessor and real successor. In effect, the protocol is ‘‘doubly
optimistic’’: the optimistic assumption is that the sub-RSM contains no other occupied
addresses and the optimistic timestamp for the Erase is greater than the highest version
number previously associated with the address being erased.

When the optimistic assumption is true, the Erase operation requires only a single round
of message exchanges. When it is false, an additional round is required, or two
additional rounds in the extremely unlikely event that it takes two rounds to find the real
predecessor and real successor. This would seem to indicate that low latency Erases as
described in Section 4.1.3 should be unnecessary in a hash table RSM. However, it
should be noted that the optimistic assumption made in this optimization is stronger than
the optimistic timestamp assumption that enables low latency erases to succeed in a
single round. Therefore, low latency erases may still be advisable in a hash table RSM if
minimizing latency is of paramount importance.

Note that hash table RSMs cannot support the range operations or navigation operations
described in Sections 4.2.1 and 4.2.2. While these operations could be applied directly to
the sub-RSMs, this would produce incorrect results, as the hash table RSM effectively
re-orders the address space.

8In fact, this operation does not precisely fit the framework outlined in Section 4.1.2, as the real
predecessor operation can itself require two rounds. However, the framework is easily extended to
accommodate such operations.

Optimizations and Extensions to Replicated Sparse Memories 79

4.1.6. Array RSMs

Replicated sparse memories provide a very efficient replicated implementation for
memories with a large, sparsely occupied address space; they are less well suited to small
address spaces. The real predecessor determination phase of the Erase operation locks
several addresses surrounding the address being erased. If the address space only
contains a few addresses, this severely restricts the concurrency on the data object. The
Erase operation requires two or three rounds of message exchanges, and representatives
must store version number information for gaps between entries. These expenses are
acceptable because they are responsible for the data structure’s self-cleaning behavior. If
the address space is small, however, the number of ghosts that can accumulate at a
representative is already limited by the size of the address space. These arguments also
apply to larger but finite address spaces that are densely occupied: if there are few
unoccupied addresses, there can be few ghosts.

For small address spaces and densely occupied finite address spaces, there is a more
suitable implementation for RSMs, wherein the representatives store their data in arrays.
Each representative maintains a single array with one location for every address in the
address space. Each location contains an entry consisting of a value and a version
number. It is unnecessary to store the address, as each location is permanently associated
with a single address. The entries are all initialized with a special unoccupied value, like
the one described in Section 4.1.3. All entries initially have version number zero. Reads
and Writes are implemented just as for ordinary RSMs. Erases are merely Writes with
the special unoccupied value.

While this data structure supports the same operations as ordinary RSMs, it is much less
powerful, in that it cannot support infinite address spaces, and it cannot be made to
support the extensions described in Section 4.2. Furthermore, it can be grossly space-
inefficient for large, sparsely occupied address spaces. But it has many advantages when
used with appropriate address spaces. It is extremely fast. The representative operations
(lookup, insert, modify and delete) all execute in constant time. No address comparisons
are necessary. The Erase operation is exactly as fast as a blind Write operation. If
optimistic timestamps are used, a single round of message exchanges is usually sufficient
to perform any operation. All operations, including Erase, lock only the address that is
actually being accessed.

It is somewhat of a misnomer to call this data structure a replicated sparse memory.
While it is sparse in the sense that it supports the Erase operation, it is entirely unsuited to
address spaces that are truly occupied sparsely. A more appropriate term for the data
structure might be replicated array. If the address space is of cardinality one, the data
structure could be considered a replicated variable. Note that such a replicated variable
is essentially identical to Gifford’s original file suite data structure.

80 Chapter 4

4.2. Extensions

4.2.1. Range Operations

RSMs can easily be extended to support range operations, analogues of the basic RSM
operations that operate on entire ranges of addresses:

ReadRange(IN low, high: address; OUT addr: array of address, val:
array of value) - Returns all occupied addresses between low and high,
inclusive, and the values associated with these addresses.

EraseRange(IN low, high: address) - Erases all occupied addresses
between low and high, inclusive.

Implementation of the ReadRange operation is fairly straightforward. The client
requests information on the entire range from each representative in a write quorum, and
merges all of this information into a single, current version of the range. The entries in
the current version represent the occupied addresses in the range.

The EraseRange operation is implemented in similar fashion to Erase. In the Erase
operation, the client locates the real predecessor and successor of the address being
erased, and coalesces the range from the real predecessor to the real successor into a
single gap. In the EraseRange operation, the client locates the real predecessor of the low
endpoint of the range being erased and the real successor of the high endpoint, and
coalesces this range into a single gap. The same procedure is used to locate the real
predecessor and successor for EraseRange as is used for Erase (Section 2.5).

Added care must be taken when assigning a version number to the new gap formed in
the EraseRange operation. In the Erase operation, the new gap is assigned a version
number that is greater than the current version numbers associated with the address being
erased, its predecessor gap, and its successor gap. In the EraseRange operation, the
version number must be greater than the current version numbers associated with the
predecessor gap of the low endpoint, the successor gap of the high endpoint, and every
entry and gap from the low endpoint to the high endpoint inclusive. Each representative
in the read quorum must traverse this range to determine its highest version number in the
range. Once the representatives have determined these version numbers, they must return
them to the client. This step does not increase the communication cost of the operation,
as it may be performed at the same time as the first step of the real predecessor algorithm.

The implementations sketched above for the ReadRange and EraseRange operations are
both efficient. In fact, the communication cost of each range operations is identical to the
cost of the corresponding single-address operation, with one minor exception. When the
ReadRange operation is performed, the representatives will have to send back multiple
message buffers if they have too many entries and gaps in the range to fit into a single

Optimizations and Extensions to Replicated Sparse Memories 81

buffer. But this is inherent in the semantics of the operation: it can return arbitrarily large
quantities of information.

As specified above, ReadRange and EraseRange operate on closed ranges (ranges that
include their endpoints). This was done merely for ease of exposition. It is fairly
straightforward to modify these operations to allow the client to specify open ranges
(which exclude both endpoints) or half-open ranges (which exclude one endpoint).
Modifying the ReadRange operation is trivial. Modifying the EraseRange operation is
slightly more complex. If the client wishes to exclude the low endpoint, which we shall
call l, from the range being erased, the low endpoint of the gap to be coalesced is
determined as follows. If l is occupied, it is used as the low endpoint of the range;
otherwise, its real predecessor is used. The check to see if l is occupied may be
combined with the first stage of the real predecessor determination; it does not increase
the communication cost of the operation. The high endpoint is treated analogously.

A range analogue of the Write operation can also be added to the RSM. Unlike
ReadRange and EraseRange, the WriteRange operation fundamentally changes the
character of the sparse memory abstract data type. As described in Chapter 2, RSMs can
have only a finite number of occupied addresses. The WriteRange operation would
permit the client to associate a value with all of the addresses in a range, giving rise to
occupied ranges. If the address space is a dense set, occupied ranges contain infinitely
many occupied addresses.

Note that RSMs with dense address spaces that support the WriteRange operation must
also support EraseRange. Otherwise there would be no way to undo the effects of a
WriteRange. Once a range became occupied, all but a finite number of the addresses in
the range would remain occupied forever.

Internally, the WriteRange operation permits values to be associated with gaps as well
as entries at representatives. This changes the workings of the Erase operation slightly.
If an address being erased lies in an occupied range, the address does not have a unique
real predecessor or successor: any address sufficiently close to the address being erased is
occupied. In effect, the gap from the real predecessor to the real successor degenerates to
a singleton range containing only the address being erased. To erase such an address, an
entry that asserts that the address is unoccupied is inserted at each representative in a
write quorum. We call these entries zombies. Unlike the tombstones inserted by the
low-latency Erase operation, there is no follow-up operation to remove zombies: they
remain until the surrounding range is erased with EraseRange.

The analysis in Chapter 3 is no longer directly applicable if the EraseRange operation is
supported. However, we conjecture that the favorable space and time performance
characteristics of the RSM are preserved. In particular, zombies do not represent a

82 Chapter 4

garbage collection problem. As long as the range in which a zombie lies remains
occupied, the zombie represents current information. If the range is erased with
EraseRange, the zombies in the write quorum are deleted, and those outside the write
quorum become ordinary ghosts, which are deleted by subsequent Erase or EraseRange
operations.

4.2.2. Navigation Operations

The basic RSM operations offer no way for a client to determine which addresses in an
RSM are occupied. If the ReadRange operation is supported, it can be applied to a
portion of the address space to determine which addresses in this range are occupied. But
this can be very expensive and damaging to concurrency, as ranges may contain
arbitrarily many occupied addresses. RSMs can easily be extended with operations that
allow the client to navigate through the occupied portions of the address space directly:

ReadNextOccupiedAddr(IN addr: address) - Returns the first address
greater than addr that is currently occupied, and the value associated with
this address.

ReadPrevOccupiedAddr(IN addr: address) - Returns the first address less
than addr that is currently occupied, and the value associated with this
address.

The ReadNextOccupiedAddr operation is equivalent in function to the RealSuccessor
operation, and ReadPrevOccupiedAddr to RealPredecessor. Thus, implementing the
navigation operations consists merely of exporting RealPredecessor and RealSuccessor,
which must be implemented anyway to support the Erase operation.

Note that the semantics described above for the navigation operations are inappropriate
in the context of an RSM that supports RangeWrite. If an address lies in an occupied
range, it has no distinct next or previous occupied address. The semantics of the
navigation operations could be extended in several ways to support occupied ranges. For
example, ReadNextOccupiedAddr could be modified to return the next unoccupied
address after the given address, if the given address lies in an occupied range, along with
a flag indicating whether or not the given address lies in an occupied range.

Chapter 5

The Use of Replicated Sparse Memories

In this chapter we discuss the application of the replicated sparse memory data structure
presented in Chapters 2, 3 and 4. Section 5.1 describes the variety of data structures that
can be obtained by varying the implementation parameters of the RSM. Section 5.2
discusses the efficiency that can be achieved with data objects implemented on top of
RSMs and Section 5.3 presents efficient RSM implementations for various data types.
Section 5.4.1 discusses the counter, a data type that can not be implemented efficiently
on top of RSMs. An efficient replicated implementation for counters that does not
involve RSMs is presented.

5.1. Parameters

The replicated sparse memory is defined quite generally. It has several parameters that
may be varied to provide a rich family of data types. The most important parameters are
the address space, the type of data associated with occupied addresses and the
representation of the underlying RSM representatives.

Almost any address space may be used in an RSM. The only restriction on the address
space is that it be a totally ordered set. The cardinality of the set may be finite or infinite.
The set may be sparse or dense. If a range of positive integers is used, a traditional
random access memory organization is obtained. If the variable length character strings
with lexicographic ordering are used, a directory is obtained. If the floating point
numbers are used and the RangeWrite function is implemented (Section 4.2.1), certain
real functions can be represented. Addresses consisting of ordered tuples with
lexicographic ordering yield hierarchical file organizations. The range operations are
particularly useful in combination with hierarchical file organizations.

No restrictions exist on the data that may be stored in an RSM: a byte string of arbitrary
length may be associated with each occupied address. The byte string will typically be
interpreted as a simple or complex data item in the host language (e.g. an integer, a
string, or most commonly, an aggregate data structure). It is not necessary that all
occupied addresses in an RSM have the same amount of data associated with them, or

83

84 Chapter 5

that successive values written to an address be of equal size. Many applications,
however, will have the property that all occupied addresses in a single RSM have the
same amount of data associated with them. Efficient implementations will take
advantage of this.

Various representations may be used for the representatives that make up an RSM. The
application for which an RSM is used dictates what sorts of operations will be performed
on it. This, in turn, dictates which representation for the representatives will result in
efficient implementations. If an RSM is used in an application that guarantees that all
operations will occur at or near the lowest or highest occupied address in the RSM, it is
wasteful of time and space to represent the representatives as balanced trees or skip lists,
which allow random access. Under these circumstances, a linked list is the appropriate
data structure. If an application requires random access but does not require any range
operations or navigation operations, a hash table RSM is appropriate (Section 4.1.5). If
an application calls for a small address space, or a larger finite address space that will be
almost completely occupied, an array RSM is called for (Section 4.1.6).

The number of representatives in an RSM and the number of votes assigned to each
representative may be varied to select the desired availability. The read and write
quorum sizes may be adjusted to vary the relative availability of different RSM
operations. For a fixed number of representatives, the larger the write quorum, the more
available the Read operation will be relative to the Write and Erase operations. The
selection of quorum sizes is discussed in more detail in Section 3.3.6. Considerable
research has been done on the topic of vote assignment and quorum size selection [21].

5.2. Efficiency Guidelines

Section 5.3 presents efficient implementations for several data types built on top of
RSMs. First, we must say what it is that we mean by efficient. We do not have precise
criteria for what constitutes satisfactory efficiency, but we do have rough guidelines. Our
goal in formulating these guidelines was to demarcate a good, achievable engineering
tradeoff between communication, computation and space costs, ease of implementation,
concurrency and availability. The guidelines are based on the efficiency that RSMs
display when used directly; essentially, we want data types implemented on top of RSMs
to be of comparable efficiency to the RSMs themselves.

We are concerned with three performance measures: communication cost, computation
cost and space cost. We are primarily concerned with average costs, where the averages
are computed over sequences of operations that are representative of the data object in
actual use. We also consider it important that the worst case costs are bounded by some
reasonable values.

The Use of Replicated Sparse Memories 85

The most important measure of the complexity of a distributed algorithm is the
communication cost. In current day distributed systems, and for the foreseeable future,
communication costs tend to dominate local computation costs in efficient replication
algorithms. The communication cost measure of primary concern to us is the number of
rounds of message exchanges required between the node performing an operation and the
remote nodes involved in the operation. Each round may involve one or more remote
nodes. The messages must be bounded in length by some system dependent constant.
(Eight K bytes is typical.) A communication cost measure of lesser concern is the total
number of messages sent in performing the operation. It is of lesser concern because the
number of rounds is a much better indicator of the latency that will be incurred in
performing the operation.

Operations that do not modify an object’s state should require only a single round of
messages. Similarly, operations that modify an object’s state in a fashion unrelated to its
current state (e.g. the RSM Write operation) should usually execute in a single round of
messages. We call such operations state-independent modify operations. We say they
should usually execute in a single round because optimistic timestamps and other
optimistic two-stage protocols are required to achieve this efficiency, and optimistic
assumptions will occasionally be incorrect.

An important exception to the above guideline is the RSM Erase operation, or any other
state-independent modify operation that relies on the Erase operation on an underlying
RSM. Unless a hash table or array RSM can be used, these operations will require two,
rarely three rounds of messages. However, they perform the ‘‘garbage collection’’ that is
responsible for giving the RSM data structure its self-cleaning property, so we consider
the additional round of messages to be acceptable.

Operations that modify a data object in some way that depends on its value should
usually execute in two rounds. Such operations, which we call state-dependent modify
operations, typically fall into the two-stage protocol framework described in Section
4.1.2. Therefore, it will sometimes be possible to execute such operations in a single
round if the state on which the modification depends is predictable. It is not feasible to
perform all state-dependent modify operations in two rounds. There may be operations
that require two rounds just to get the state: one round to find the address of the relevant
information and one round to Read it. If the modification requires an Erase, two rounds
will be required after the data is read.

By computation cost, we mean the computation time required to perform an operation,
excluding the time spent doing communication. The computation cost of an operation
can be divided into two parts, the time spent at each representative, and the time spent
combining the information returned by the representatives. We desire that both of these
components be at worst comparable to the processing time on a standard single site

86 Chapter 5

implementation of the data type. Typically, the time required to combine the information
from the representatives is a small constant depending only on the quorum sizes.

We define space cost as the size of the data stored at each representative. We desire
that the average size of each representative be comparable to the size of the
corresponding non-replicated data structure. The analysis in Chapter 3 shows that, under
a wide variety of usage patterns, the number of entries in each representative of an RSM
will on average be less than 1.2 times the number of occupied addresses, which has good
implications for the space cost of our algorithms. While this result applies only to
random operation mixes, and does not apply to hash table RSMs, we conjecture that it is
actually a pessimistic indicator of the space cost that can be expected from an RSM in
practice. (See Section 3.4.)

Our basic concurrency requirement is that operations that commute should generally be
allowed to execute concurrently. For instance, operations on different keys in a
directory, or an Enqueue and a Dequeue operation on a nonempty queue should be able to
execute concurrently.

Our basic availability requirement is that the system should be able to tolerate one or
several node failures and still perform all of the operations offered by a data type. We
are less concerned with being able to adjust the relative availability of the operations.
Sometimes our implementations allow various quorum choices which permit us to trade
off the relative availability of the operations on a data type. We view this as a useful
feature, but not as our primary goal.

5.3. Data Types Built on RSMs

Since an RSM can be made to look like primary memory and accessed using all of the
data structuring facilities of the host language, a single site serial implementation of any
data type can be mechanically converted into a replicated implementation. Such
implementations, however, will usually be inefficient and display poor concurrency
performance. In this Section, we present efficient RSM implementations for several data
types.

5.3.1. Singly Indexed Record Sets

Singly indexed record sets are data types with operations to associate information with a
key, and read, alter or remove the information associated with a key. Examples include
directories, dictionaries, sets and multisets. The RSM data structure was developed from
a replicated directory data structure [10] so it should come as no surprise that it is
straightforward to implement directories and their kin efficiently on top of RSMs.

The Use of Replicated Sparse Memories 87

The directory data type supports the following operations:
Insert(IN k: key, v: value) - Inserts the key k into the directory and
associates the value v with k. This operation is permitted only when k is not
already in the directory.

Update(IN k: key, v: value) - Associates the (new) value v with the key k.
This operation is permitted only when k is already in the directory.

Delete(IN k: key) - Removes k from the directory. (This operation is
permitted only when k is in the directory.)

Lookup(IN k: key; OUT present: boolean, v: value) - Returns TRUE, and
the value associated with the key k, if k is in the directory. Returns FALSE
and an unspecified value if k is not in the directory.

If the client attempts to perform an operation that is not permitted, an exception is
returned by whatever mechanism the host language provides and the contents of the
directory remain unchanged. If no exception handling mechanism is provided, an
additional OUT parameter must be added to the Insert, Update and Delete calls to allow
the directory to indicate whether the operation was permitted.

A directory is stored in an RSM whose address space is the directory’s key space. The
straightforward way to perform an Insert operation is to Read the relevant address in the
RSM, and Write the value out if the address is unoccupied. This requires two rounds of
messages. If optimistic timestamps are used, however, this can be cut down to one
round, in most cases, by using the ReadWrite operation (Section 4.1.1). With the
ReadWrite operation, a single round generally suffices to store the new value and check
if the key was already in the directory prior to the operation. If the key was already in the
directory, the Insert is illegal, so it is undone with a Write operation. It is interesting to
note that the resulting operation is doubly optimistic: it assumes that the address to be
written was previously unoccupied, and that the optimistic timestamp is higher than any
version number previously associated with the address.

Using the technique described in the previous paragraph, the Insert operation usually
requires only one round of messages. The same technique can be applied to the Update
operation. The Lookup operation always requires only one round. The Delete operation
requires one, rarely two rounds if a hash table RSM is used (Section 4.1.5).

The directory implementation does not require range operations or navigation
operations, so the hash table RSM is the appropriate representation to use, assuming the
approximate number of keys that will be stored in the directory is known. It is possible
to extend the directory with range operations, which lookup or delete all of the keys in a
given range. If this is desired, the RSM representatives should be implemented as
balanced trees or skip lists. In this case, two, rarely three rounds of messages will be
required for the Delete operation.

88 Chapter 5

The concurrency of the directory implementation is good but not optimal. Operations
on different keys can generally proceed concurrently. For each key, a single transaction
can perform write operations (Insert, Update and Delete) at any given time. Multiple
transactions can lookup the same key concurrently. Multiple write operations could
proceed in parallel if hybrid atomic methods were used [31]. The availability of Lookups
can be traded off against that of write operations, but write operations must access a
majority of the representatives. Updates (though not Inserts or Deletes) could be
performed with fewer representatives at the expense of lookups if hybrid atomic methods
were used.

The directory implementation can be modified to implement a set by eliminating the
value field from the entries in the RSM. A multiset can be represented by replacing the
value field with a count field. Many similar variations are possible.

5.3.2. Multiply Indexed Record Sets

This section describes two implementations for a data type that provides record level
storage facilities for databases. The data type is known as the record file with secondary
indices on selected fields. According to Date, it is ‘‘one of the most common storage
structures in current use.’’ [17]

Each record in the file consists of a primary key, k , secondary keys, k - k , and a1 2 n
non-key data part, d. The primary key must be unique: no two records can have the same
primary key. Files are accessed with the following operations. (The notation key refersi
to the data type of the ith key.)

Insert(IN r: record) - Inserts the record r into the file. If a record already
exists with the same primary key, an error is signaled.

Lookup(IN kp: key ; OUT present: boolean, r: record) - Returns TRUE1
and the record with primary key kp, if the file contains such a record. If the
file contains no record with the given primary key, FALSE is returned with
an unspecified record.

Lookup2(IN i: integer, ks: key ; OUT r: array of record, n: integer) -i
Returns in r all of records in the file whose ith secondary key is ks. The
number of records in r is returned in n.

Delete(IN kp: key) - Deletes the record with primary key kp from the file.1
If there is no record in the file with this primary key, an error is signaled.

ModifySecondaryKey(IN kp: key , i: integer, ks: key) - Changes the ith1 i
secondary key of the record with primary key kp to ks. If there is no record
in the file with the given primary key, an error is signaled.

ModifyData(IN kp: key , d: data) - Changes the non-key data part of the1
record with primary key kp to d.

The Use of Replicated Sparse Memories 89

The Insert, ModifySecondaryKey and ModifyData operations could be combined into a
single Write operation, whose function varied depending on the data previously
associated with the given primary key. We chose to treat the three cases separately, as
each case demands a different algorithm, and the three algorithms have different
communication costs associated with them. It is fairly straightforward to combine the
Insert, ModifySecondaryKey and ModifyData procedures described in this chapter into a
single procedure whose behavior and performance varies depending on which case
applies.

The record file with secondary indices can be implemented as follows. Records are
stored in a single RSM that is indexed by primary key. A separate RSM is used to
represent each secondary index. The address space for the ith index RSM (for i > 1)
consists of ordered pairs of the form (ks, kp), where ks ∈ key and kp ∈ key . The addressi 1
space is ordered lexicographically. Each index RSM has one item (occupied address) for
every record in the file. The item for the record with primary key kp in index RSM i has
address (ks , kp), where ks is the ith secondary key of the record. No values arei i
associated with the items.

To do an Insert, the record is written to the main RSM and appropriate entries are
written to each index RSM. The client must check that there was no record in the file for
the given primary key at the time of the Insert. This can be done at no added
communication cost using the optimistic two-stage protocol described for the Insert
operation in the Directory data type (Section 5.3.1). To do a Lookup2, the range from
(ks, k) to (ks, k) (where k and k represent the highest and lowest keys in1min 1max 1min 1max
the primary key space) is read from the relevant index RSM. Each occupied address in
the resulting list corresponds to a record with the correct secondary key value. The
primary key of each address on the list is extracted, and the records corresponding to
these keys are read from the main RSM.

To do a Delete, the record is read from the main RSM. This enables the client to
determine the addresses of all of the relevant items in the index RSMs. These items, as
well as the record in the main RSM are then erased. All of the erases can be performed
in parallel. To do a ModifySecondaryKey, the record is read from the main RSM. Then
it is written back to the main RSM with the modification. The old item is erased from the
relevant index RSM, and a new item is added to this RSM to reflect the new secondary
key value. The Erase and the two Writes can be performed in parallel, though care must
be taken to ensure that the Erase and the Write to the index RSM do not interfere with
one another. Implementation of the remaining operations (Lookup and ModifyData) is
straightforward.

No range operations or navigation operations are required on the main RSM, so a hash
table RSM is appropriate. The Lookup2 operation requires RangeReads on the index

90 Chapter 5

RSMs, so the representatives of these RSMs are best represented as balanced trees or skip
lists. The communication cost of this implementation is summarized in Table 5-1. Note
that some operations have two values listed for their communication cost. The higher
value indicates the cost in cases where an optimistic timestamp is too low or the real
predecessor operation requires two rounds. The lower value should apply most of the
time.

Rounds of Message
Operation Exchanges

Insert 1 or 2

Lookup 1

Lookup2 2

Delete 3 or 4

ModifySecondaryKey 3 or 4

ModifyData 2 or 3

Table 5-1: Communication Costs for the Record File with Secondary Indices

The first round of the Delete, ModifySecondaryKey and ModifyData operations merely
looks up the record being deleted or modified. Therefore, the costs of these operations
can be reduced by one round if they are preceded in the same transaction by a Lookup of
the same record.

The communication cost of the ModifySecondaryKey operation can be reduced to two,
rarely three rounds for secondary keys that are nearly unique. A key is nearly unique if
few records have the same value for the key (e.g. employee name). Hash table RSMs can
be used to represent the indices for such keys, even though range operations are required
on secondary index RSMs, if the hash functions are chosen carefully. It is imperative
that the range from (ks, k) to (ks, k) contains all of the entries with secondary key1min 1max
ks. If hash functions are chosen so that all keys with a given secondary key value land in
the same bucket, this property will result. To achieve this effect, the hash functions
merely ignore the primary key component of the address. This technique must be used
with caution, as poor performance and concurrency will result if it is applied to a
secondary key that does not have the required near-uniqueness property.

Our first implementation of the record file with secondary indices has one major
performance problem: the Lookup2 operation requires two rounds of messages. For
many applications, Lookup2 will be the most common operation, as primary keys are
often artificial or obscure. Lookup2 is a read-only operation, so our efficiency guidelines
dictate that it should generally run in one round (assuming the returned list of records is
small enough to fit in a message buffer).

The Use of Replicated Sparse Memories 91

Lookup2 requires two rounds because the secondary indices store primary keys, rather
than storing the records themselves. It takes one round to get the relevant primary keys
and one more round to dereference them. We could avoid this expense by storing copies
of the records in each secondary index, but this would require as many copies of the
records at each representative as there were indices. Furthermore, the ModifyData and
ModifySecondaryKey operations would have to write updated copies of the record to all
indices. The space and computation costs would be prohibitive. But we make the
following observation about this implementation: the usage discipline imposed by the
data type ensures that all of the RSM representatives at a given node will always contain
identical data for each primary key they address. Thus, each node need only store a
single copy of the data for every primary key that it knows about. The entries in all of
the index RSM representatives can store pointers to the data in the main RSM
representative rather than storing their own copies of the data. This reduces the data
storage requirement of this implementation so that it is comparable to that of the original
implementation.

The revised implementation of the record file with secondary indices cannot be built on
top of ordinary RSMs; in order to allow multiple RSM representatives to point to the
same piece of physical data, the RSM model must be extended. We call the resulting
distributed data structure a multiple replicated sparse memory or MRSM. The RSMs that
constitute an MRSM are permanently ganged together, and are only accessible with
MRSM operations, which are essentially identical to the record file operations. Each
MRSM representative consists of one RSM representative for each of the constituent
RSMs.

The Insert operation causes the record to be (logically) inserted into all of the RSMs that
constitute the MRSM: at each MRSM representative in the write quorum, an entry for
the record is inserted into each of the component RSM representatives. All of these
entries at a given MRSM representative point to a single copy of the record. The Lookup
and Lookup2 operations are straightforward.

The implementation of the Delete operation is essentially unchanged from the original
implementation of the record file. There is one additional subtlety. When a record is
deleted from an MRSM representative, there may still be ghost entries that point to the
record in some secondary index RSM representatives. For example, suppose a record is
inserted into the MRSM, a secondary key of the record is modified using a different write
quorum, and then the record is deleted using the original write quorum. At each MRSM
representative in the write quorum for the Insert and Delete that was not in the write
quorum for the Modify, the RSM representative corresponding to the secondary key that
was modified will contain a ghost entry for the original value of the modified key. Future
Lookup2s on this secondary index will cause the record pointer of the ghost entry to be
dereferenced, but the record no longer exists.

92 Chapter 5

The obvious solution to this problem is to put a reference count in each record. But this
solution is unnecessarily inefficient. It entails retaining each record until the last ghost
entry for the record is deleted, which increases the average size of the representatives.
More seriously, it adds to the computation cost and decreases the concurrency of the
Delete and ModifySecondaryKey operations. We present two alternate solutions, both
superior to reference counting.

The first solution consists of ignoring the problem. Surprisingly, this technique will
yield correct behavior in most systems. The data pointed to by the dangling pointer may
be read by the Lookup2 operation but it will never be written. The data may well be
garbage, but its version number, which is stored in the entry, will be valid. The data and
its version number are passed back to the client together. Since the entry is a ghost, some
other representative will have a higher version number for the same address; the garbage
data will always be ignored. This technique was suggested by MacManus [40]. The
technique has three main advantages: it has no computation cost, no adverse effect on
the concurrency of the file, and demands no implementation effort. It has one
disadvantage: each entry in a secondary index RSM representative must contain a copy
of its address (i.e. the secondary and primary key of the record to which it pertains). If
reference counting were used, the address could be read from the record pointed to by the
entry.

The technique described in the previous paragraph relies on one assumption: a valid
pointer must remain valid for all time, in the sense that reading the data addressed by the
pointer does no harm. This is true, for instance, in the Camelot system, where a server’s
recoverable segment cannot change in size or virtual address once the server has been
started [7]. Even in a system where record buffers are physically deallocated when the
record is deleted, it may be possible to determine that a pointer is no longer valid and
suppress the dereference. It is, however, possible to imagine a system where there is no
way to tell whether a pointer is valid and dereferencing an invalid pointer can cause harm
to a server. For such systems, there is another solution to the dangling pointer problem.

The basic idea behind the solution is to prevent dangling pointers from forming by
zeroing out incipient dangling pointers before the record they point to is deleted. If a
Lookup2 operation causes a representative to read an entry whose pointer has been
zeroed, the null pointer serves as an indication to the representative that the dereference is
to be suppressed. The representative may return arbitrary data to the client, as it knows
that the entry is a ghost. This technique is no more complex to implement than reference
counting and provides superior computation performance and concurrency. As in the
previous technique, entries in secondary index RSM representatives must contain copies
of their addresses. Details of the technique are described in the next four paragraphs,
which are fairly technical and may be skipped without loss of continuity.

The Use of Replicated Sparse Memories 93

Dangling pointers are formed when ghost entries in an index RSM representative point
to a record at the time it is deleted. (A record is deleted from an MRSM representative
when its entry in the main RSM representative is deleted.) The entries whose pointers
will dangle after the record is deleted can be divided into two categories: those whose
addresses correspond to the secondary key values that are currently specified in the
record at the representative, and those whose addresses correspond to older values.
Entries in the former category can be located at the time the record is deleted, and their
record pointers can be zeroed at that time. Entries in the latter category are no longer
accessible from the information contained in the record. These entries must be detected
at the time they become inaccessible, and their record pointers zeroed at that time.

There are two events that can cause a record to be deleted from an MRSM
representative: a Delete operation on its primary key and a RepCoalesce operation
resulting from the Delete of a nearby key. In the latter event, any secondary index entries
described by the record that still remain at the representative are ghosts, as the file no
longer contains a record for the given primary key. The record pointers of all such
entries must be zeroed. In the former event, it is only necessary to zero the record
pointers of the secondary RSM entries corresponding to outdated secondary key values.
Current entries in the index RSM representatives will be expunged as a result of the
Delete operation, which affects both the main and index RSMs. While it is permissible to
zero all of the entry pointers described by the record, it is expensive and unnecessary.

Since the Delete is preceded by a Read of the record, the client knows the current
version numbers associated with each secondary key, as well as the current values for the
keys. If the client passes the version numbers to the MRSM representative in the second
stage of the Delete operation, cheap version number comparisons can be substituted for
more expensive value comparisons to determine whether the index RSM entry for a given
secondary key needs to have its record pointer zeroed.

There is only one event that causes an entry in an index RSM representative to become
inaccessible from the relevant record in the MRSM representative. Suppose a
ModifySecondaryKey operation takes place, and an MRSM representative in the write
quorum already has a record for the given primary key. If the record’s value for the
given secondary key is up to date, the corresponding entry in the index RSM
representative will be deleted by the Erase that occurs as part of the
ModifySecondaryKey operation. But if the record’s value for the given secondary key is
out-of-date, the corresponding entry in the index RSM representative will not be deleted
by the Erase. The secondary key value in the record that would allow the MRSM
representative to find the entry will be overwritten by the new value, causing the entry to
become inaccessible. The MRSM representative can detect this situation by examining
the secondary key value in the record prior to overwriting it. If the old value is not the
current value, the representative must locate the relevant (ghost) entry in the appropriate
secondary RSM and zero its record pointer.

94 Chapter 5

The ModifySecondaryKey operation is fairly straightforward. It differs from the
original implementation in that the modified record must be written into every index
RSM, not just the one corresponding to the changed key. This does not cause any
additional communication, as all of the Writes can be done in parallel. The ModifyData
operation is similarly affected: the modified record must be written to all index RSMs in
addition to the main RSM. The ModifySecondaryKey operation can easily be extended
to modify multiple secondary keys simultaneously.

Because records in MRSMs can be accessed via multiple RSMs, normal locking in
component RSMs is not sufficient to guarantee the serializability of an MRSM; in
addition, operations must secure locks on the records they access. As an optimization,
only the Lookup2 ModifySecondaryKey and ModifyData operations need secure locks
on records; for other operations, locking in the main RSM suffices to guarantee
serializability.

In summary, the communication costs of the MRSM implementation of the record file
differ from those of the original implementation only in that the cost of the Lookup2
operation is reduced to a single round. All of the other operations have the same
communication costs shown in Table 5-1. The optimizations described for the original
implementation apply equally well to MRSM implementation. The computation costs for
the ModifySecondaryKey and ModifyData operations are slightly higher in the MRSM
implementation, but this should not be very significant, especially if there are few
secondary indices.

5.3.3. Queue-Like Data Types

The easiest way to implement a queue on an RSM is to use an RSM whose address
space is the positive integers as a shared array, and build a standard array implementation
of a queue on top of it. Two integer replicated variables (i.e. an array RSM that stores
two integers) serve as head and tail cursors for the queue. Enqueues Read the tail cursor,
store the item to be enqueued at the RSM location addressed by the tail cursor, and
increment the tail cursor by writing back the next integer in sequence. The Writes to the
RSM and the tail cursor can be done in parallel. Dequeues read the head cursor, read the
RSM location addressed by the head cursor, and increment the head cursor, unless the
address specified by the head cursor is unoccupied. In this case, the queue is empty. The
Read of the element and the Write of the head cursor can be performed in parallel, though
the Write will have to be undone if the address turns out to be unoccupied. (This is an
optimistic two-stage protocol.)

This implementation requires two, rarely three rounds of messages to perform an
Enqueue or a Dequeue. While this is not grossly inefficient, Enqueue is a common, state-

The Use of Replicated Sparse Memories 95

independent modify operation, so our efficiency guidelines say that it should generally
complete in one round. We will describe a more complex implementation that achieves
this goal. The techniques used in this implementation form the basis of our efficient
implementations for all queue-like objects.

The implementation uses optimistic timestamps in a new way. Previously, we used
them only to generate version numbers for blind write operations (Section 4.1.1). In our
queue implementation, we also use them to order entries in the queue, in much the same
manner as clock times might be used in a single site system. The queue is stored in an
RSM whose address space is the integers large enough to hold optimistic timestamps.
The basic idea of the technique is to Enqueue items by storing them at the address
corresponding to the time that they are enqueued. Merely generating an optimistic
timestamp at the client and storing an item at the location addressed by the timestamp is
not sufficient to ensure the FIFO property. A different transaction could Enqueue with an
optimistic timestamp lower than one used for the previous Enqueue, causing an item to
be enqueued out of sequence. Multiple transactions could arbitrarily intersperse elements
on the queue, compromising serializability.

The reason this technique does not work is that optimistic timestamps for Enqueues are
not compared with the timestamps for previous Enqueues. The problem is corrected by
associating a replicated variable with each queue and requiring each Enqueue operation
to write this variable at the same time as it writes to the queue RSM, using the same
optimistic timestamp. If the timestamp is insufficiently high to write the replicated
variable, an additional stage is added to the operation. The initial Write to the queue
RSM is undone and the Writes to the replicated variable and the queue RSM are redone
with a sufficiently high optimistic timestamp. Using this technique, the Enqueue
operation usually requires a single round of messages, rarely two rounds.

The Write to the replicated variable, which we call EnqLock, will only succeed if the
optimistic timestamp for the Enqueue is higher than the highest optimistic timestamp
previously associated with EnqLock. But the highest timestamp previously associated
with EnqLock is the same as the highest address ever occupied in the queue RSM. Thus,
the Write to EnqLock ensures that items will be enqueued in sequence. Furthermore, the
locks secured in the process of writing to EnqLock ensure that Enqueues are serialized:
once a transaction Writes to EnqLock, no other transaction can write to EnqLock until the
first transaction commits. Items placed on the queue by different transactions will not be
interspersed.

It makes no difference what value is written to EnqLock; it is acceptable to associate no
data whatsoever with the replicated variable. All that matters is that the write lock on
EnqLock is obtained at each representative in the write quorum, and the optimistic
timestamp for the Write is confirmed to be higher than the highest version number
associated with EnqLock at the time of the Write.

96 Chapter 5

Note that this implementation requires a new RSM representative operation to undo the
effects of an erroneous RepWrite to the queue RSM. Unlike our previous use of
optimistic timestamps, the effects of attempting an Enqueue with a timestamp that is too
low cannot be undone merely by doing another Write with a legitimate timestamp. The
erroneous entry in the queue RSM has a different address from the correct entry, so it
must be removed explicitly. It is entirely straightforward to implement the operation,
which we call RepUndoWrite.

To Dequeue an item, the client must locate the oldest item in the queue RSM and Erase
it. The oldest item will always be found at NextOccupiedAddr(Low). Locking for the
Dequeue will occur naturally as a consequence of performing the underlying RSM
operations: once a transaction has dequeued an element, no other transaction will be able
to dequeue an element until the first transaction commits. If a transaction attempts to
dequeue an element and observes that the queue is empty, no other transaction will be
able to dequeue or enqueue an element until the first transaction commits.

Naively, the dequeue operation appears to require three, rarely four or five rounds of
message exchanges: one, rarely two rounds to find NextOccupiedAddr(Low) and two,
rarely three more rounds to Erase it. In fact, the second round of the real successor
operation that is required to do the Erase will never be necessary: there will never be any
ghosts between the addresses corresponding to the first and second items in the queue. It
is often possible to locate the high boundary of the region to be coalesced in the Erase
(i.e. the real successor of the real successor of Low) from the information returned in the
first round of the NextOccupiedAddr(Low) operation. When this occurs, the Dequeue
operation can be performed in two rounds.

The Dequeue operation cannot be performed in two rounds if it is implemented on top
of the NextOccupiedAddr and Erase operations. To achieve this performance, the RSM
must be extended with an operation that finds the real successor of an address and the
real successor of the successor as quickly as possible. A natural form for this operation
to take is a DeleteNextOccupiedAddr operation, which finds the next occupied address
after a given address, returns the data associated with the occupied address, and erases it.
Such an operation would require two rounds in the common case, three or four in rare
cases. Implementation of this operation is straightforward. In fact, it does not require
any new RSM representative operations beyond those required for the Erase operation.

In summary, the Enqueue operation requires one, rarely two rounds of messages and the
Dequeue operation requires two, rarely three or four. Since the RSM used to represent a
queue is always accessed from the bottom, the representatives are best represented as
linked lists. With this representation the storage required at each representative will be
comparable to the storage required for a non-replicated queue. The concurrency of the
implementation is fairly good but not optimal. As long as the queue is not empty, it

The Use of Replicated Sparse Memories 97

allows one enqueueing transaction and one dequeueing transaction to run concurrently.
An unfortunate artifact of the implementation is that when a transaction removes the last
element from the queue, enqueueing transactions are prevented from running
concurrently even if the dequeueing transaction never observes that the queue is empty
by attempting to dequeue another element. In this respect, the array implementation is
superior to the timestamp implementation. Hybrid atomic methods would permit
multiple concurrent enqueueing transactions.

Stacks can be implemented in a manner entirely analogous to queues. The Push
operation is identical to the Enqueue operation. The Pop operation is performed by
reading and erasing the last occupied address in the RSM, instead of the first.

Priority queues can be implemented using a technique very similar to the one used for
queues. The priority queue is represented as an RSM whose address space consists of
ordered pairs of the form (Priority, Optimistic Timestamp), with lexicographic ordering.
Priorities are chosen from the integers between one and some maximum value. Higher
values represent lower priorities. Enqueues are performed by storing an item at the
appropriate address in the RSM. In order to ensure serializability and FIFO ordering
within priority classes, each priority class must have its own EnqLock. Thus we require a
separate array RSM indexed by priority class alone to provide EnqLocks. Each Enqueue
operation must secure the EnqLock for the priority class of the Enqueue. Dequeues are
performed exactly as in ordinary queues.

Like our queue implementation, our priority queue implementation requires one round,
rarely two, to Enqueue, and two rounds, rarely three or four to Dequeue. The
representatives in the RSM used to represent a priority queue should be represented as
balanced trees or skip lists, as random access is required for Enqueues. Hash table RSMs
cannot be used, as the elements in the RSM must be organized sequentially in order for
the Dequeue operation to function properly. The concurrency of the priority queue
implementation is similar to that of the queue implementation: one dequeueing
transaction and one enqueueing transaction in each priority class may run concurrently.
A transaction that dequeues the last element from the priority queue may not run
concurrently with any enqueueing transactions.

5.4. Replicated Counters

Not all data types can be implemented efficiently on top of RSMs. In this section we
describe a useful data type called the counter, for which an RSM implementation would
provide poor performance and concurrency. We present an efficient replicated
implementation for this data type that provides the performance and concurrency lacking
in RSM implementations. We discuss the use of the implementation in conjunction with
RSMs.

98 Chapter 5

The counter supports three operations: Increment, Decrement and Value. Increment
adds some positive integer to the counter, Decrement subtracts from it, and Value returns
the counter’s current value. We will assume that all counters are initialized to zero,
although the data type and our implementation of it can be trivially modified to allow
initialization to arbitrary values. Counters that have no minimum or maximum legal
values are called unbounded counters. Counters that have a minimum or a maximum but
not both are called bounded counters. Counters that have both a minimum and a
maximum are called doubly bounded counters. In bounded or doubly bounded counters,
an attempt to increment or decrement beyond the bounds generates an error. The total
sales volume for a cash register, or the total number of keys in a directory are natural
examples of unbounded counters. A bank account is a natural example of a bounded
counter.

It is entirely straightforward to implement a counter on top of a replicated variable. The
Increment and Decrement operations read the value associated with the variable, add or
subtract as appropriate, and write the new value back to the variable. The Value
operation merely reads the value associated with the variable. The resulting
implementation requires two rounds of message exchanges for an Increment or
Decrement and one for a Value. The Increment and Decrement operations each secure
write locks on the replicated variable, thus only one transaction at a time can increment
or decrement the counter.

In unbounded counters, Increment and Decrement operations commute freely, so our
efficiency guidelines say that multiple Incrementing and Decrementing transactions
should be able to execute concurrently. For bounded counters with lower bounds,
Increment operations commute, so multiple incrementing transactions should be able to
execute concurrently. While it is not impossible to achieve this concurrency in an RSM
based implementation, we strongly conjecture that it is impossible to do so efficiently. In
Section 5.4.1 we present an efficient, highly concurrent distributed data structure for
replicated counters.

5.4.1. An Efficient Implementation for Replicated Counters

This implementation is built on top of local (non-replicated) highly concurrent counters.
It is trivial to implement such counters in a transaction system that supports operation
logging [54, 36], and slightly more complex on a system that supports only value
logging. Unlike our RSM implementation, our replicated counter implementation does
not use version numbers. It does, however, rely on quorum intersection.

A replicated counter consists of N representatives, each of which has a certain number
of votes associated with it; a Value quorum size, V; and an Increment quorum size, I.

The Use of Replicated Sparse Memories 99

The same quorum size (I) is used for Increment and Decrement operations. V and I must
be chosen so that I + V > N, which assures that every value quorum intersects every
intersect quorum. As in our treatment of RSMs, we assume that all representatives have
one vote assigned to them, but all of our results generalize to arbitrary vote assignments.
We use the notation N-V-I to refer to a replicated counter with N representatives, a Vote
quorum size of V and an Increment quorum size of I. Each replicated counter
representative consists of a collection of local (non-replicated) counters, one for each
Increment quorum that the representative is a member of. All of the counters in a
representative are initialized to zero.

Let us first consider unbounded counters. To perform an Increment operation, the client
selects an increment quorum consisting of I representatives. The client sends a
CounterRepIncrement RPC to each member of the Increment quorum. The RPC takes
two arguments, the number to be added to the replicated counter, and the increment
quorum being used for the operation. (Each increment quorum must have an ID
associated with it. An easy way to generate these IDs is to assign one bit in a word to
each representative in the counter, and set the bits of all representatives in a quorum to
form its ID.) Each representative processes the RPC by selecting the local counter
corresponding to the given Increment quorum and adding the specified number to it.
This causes the transaction to secure increment locks on the (local) counters. (An
increment lock allows other transactions to increment a counter, but prohibits them from
reading it.)

The decrement operation is similar to the increment operation in all respects, except that
the specified value is subtracted from the relevant local counter at each representative
instead of being added to it.

There are several key facts to notice about the Increment operation. Each invocation of
the operation increments the local counters pertaining to one and only one Increment
quorum. Furthermore, each invocation increments all the local counters pertaining to its
Increment quorum. The Increment and Decrement operations are the only operations that
modify the local counters, so all of the counters pertaining to a given Increment quorum
will always be equal. Let us call the value shared by all of the counters for an Increment
quorum its counter value. The Increment operation preserves the invariant that the sum
of the counter values for every Increment quorum is equal to the value of the replicated
counter.

To perform a Value operation, the client selects a Value quorum consisting of V
representatives. The client sends a CounterRepValue RPC to each member of the Value
quorum. In response to this RPC, each representative reads the values of all of its local
counters and sends them back in some form that allows the client to discern which
Increment quorum each counter value pertains to. Since every Value quorum intersects

100 Chapter 5

all Increment quorums, there is at least one representative in the Value quorum that is a
member of any given Increment quorum. Therefore, when the client has received
responses to all of the CounterRepValue RPCs, it knows the counter value for every
Increment quorum. But the value of the replicated counter is merely the sum of all the
counter values. The client adds up all of counter values it receives, discarding any
duplicates, and the result is the current value of the replicated counter.

In the process of executing the CounterRepValue RPC at a representative, the
transaction acquires value locks on all of the counters in the representative in question. A
value lock allows other transactions to read the value of a counter, but prohibits them
from incrementing it. Since the Value operation acquires values locks on at least one
counter for each Increment quorum, no other transaction can execute an Increment
operation concurrently. Since Increment operations acquire only increment locks and
Value operations acquire only value locks, multiple concurrent Increment or Value
transactions are permitted.

Increments on bounded counters with upper bounds and doubly bounded counters are
implemented by executing the Value operation as described above, and then executing
the Increment operation only if the value is sufficiently low to allow the Increment. Note
that this causes Increment operations to conflict with one another as well as with Value
operations. Decrements on bounded counters with lower bounds are analogous.

5.4.2. The Performance of Replicated Counters

In unbounded counters, Increment and Value operations each require one round of
message exchanges. Recall that two rounds were required for Increments in the RSM
implementation. If Increments on bounded counters are implemented as described in
Section 5.4.1, two rounds of message exchanges will be required. However, this can be
reduced to a single round in all cases where the operation is legal with the use of an
optimistic two-stage protocol.

The purpose of the first stage of the Increment operation on a bounded counter is to
determine whether the counter is low enough to allow the increment. In the optimistic
two-stage protocol, the client assumes that the operation is legal and performs
CounterRepRead and CouterRepIncrement operations in a single round. If the results of
the CounterRepReads indicate that the operation was illegal, the client performs a second
round to decrement the local counters that were incremented erroneously.

As described in Section 5.4.1, the CounterRepValue operation acquires multiple locks
at each member of the Increment quorum, one lock for each counter at the representative.
In fact, it is possible to replace all of these locks with a single lock on the entire
collection of counters. To make this work, the CounterRepIncrement operation must

The Use of Replicated Sparse Memories 101

secure an Increment lock on the single lock representing the entire collection, instead of
securing a lock on the individual counter being incremented. This optimization greatly
reduces the locking cost associated with the Value operation and the space required to
store locks at the representative. Somewhat surprisingly, it does not decrease

9concurrency at all.

Let us consider the space performance of the replicated counter. Each representative
consists of one local counter for each Increment quorum in which it participates. In an

N −1N-V-I counter, each representative participates in Increment quorums. For a given()I −1

N, this expression will be highest when V = I (i.e. the Value and Increment operations are
equally available). Unfortunately, this may well be the most common usage.

In an N - (N +1) /2 - (N +1) /2 counter, the number of Increment quorums in which each
representative participates is:

N−1
.()(N−1) /2

By Stirling’s formula, this is approximately equal to:

N2
.

√2π(N−1)

In other words, the amount of storage required at each node is essentially exponential in
the number of representatives in the replicated counter. While this might appear
troubling at first, we conjecture that replication levels will never be high enough to make
it a problem in practice: as a rough guideline, we doubt that replication levels greater
than five are of practical significance. For N = 3, each representative has two counters.
For N = 5, each representative has six counters. Even for the unrealistically high
replication level of N = 7, each representative has only twenty counters.

The implementation allows complete flexibility in trading off the availability of
Increment and Value operations: I and V can take on any value between one and N,
inclusive, subject to the constraint that I + V > N. In practice, it is unlikely that anyone
would want to use I = 1, as the Value operation would no longer be available in the face
of even one representative failure. Similarly, choosing V = 1 would unacceptably restrict
the availability of the Increment operation.

9In a paper on the Camelot library [7], we argued that low-level operations like (local) reads and writes
should not secure locks automatically, so that the programmer could exercise flexibility in locking to
improve concurrency and performance. The optimization described in this paragraph would be impossible
if the (local) increment operation secured a lock automatically.

102 Chapter 5

5.4.3. The Use of Replicated Counters in Conjunction with RSMs

In this section we present two examples of the use of replicated counters in conjunction
with RSMs. While the details are specific to replicated counters, the techniques
presented in this section are illustrative of the manner in which other replicated data
objects can be combined with RSMs to produce efficient replicated implementations of
complex objects.

Suppose we want to extend an RSM implementation of a directory (Section 5.3.1) with
a Size operation, which returns the number of keys in the directory. Reasonable
performance can be obtained only if an explicit counter is maintained.

Let us examine the effect it would have on the performance of the directory if the
counter were implemented on top of a replicated variable. The Insert operation in a
normal directory requires a single round of messages, assuming the optimistic two-stage
protocol is used. In a directory with the Size operation, each legal Insert operation must
increment the counter. The increment operation on a replicated variable always requires
two rounds so the cost of the Insert operation will almost double. In a normal directory,
multiple transactions can Insert different keys concurrently. If the count is maintained in
a replicated variable, only a single transaction at a time can increment it, hence multiple
transactions can no longer do Inserts concurrently. Representing the count as a replicated
variable dramatically reduces the concurrency of the directory.

Maintaining the count in a replicated counter instead of a replicated variable solves both
of the problems described in the previous paragraph. In a normal directory, the Insert
operation usually requires one round unless the key is already in the directory, in which
case a second round is required to undo the effects of the erroneous Write. The replicated
counter can be incremented in the first round, and decremented in the second round, if it
takes place; either way, the communication cost of the operation is unchanged. Multiple
transactions can increment a replicated counter concurrently, so the concurrency of the
Insert operation will not be reduced by incrementing the counter.

Suppose we use an RSM to represent a file of bank accounts, indexed by account
number. Account records consist of the customer’s name, address and bank balance. If
we represent the balance as ordinary data in the RSM, deposits and withdrawals are
implemented by reading the record, modifying the balance field, and writing it back.
This requires two rounds of messages, and prevents multiple deposits to the same account
from taking place concurrently.

These deficiencies can be corrected by associating a replicated counter with each
occupied address in the RSM. This is done by adding a counter representative to each
entry in the RSM representatives. The Value quorum size for each replicated counter is

The Use of Replicated Sparse Memories 103

the same as the read quorum size for the RSM, and the Increment quorum size is the
same as the write quorum size. When an entry is inserted into an RSM representative, all
local counters in its counter representative are initialized to zero. When a preexisting
entry in the RSM representative is modified, its counter representative is not affected.
When an entry is deleted, its counter representative is deleted as well.

When an entry is read from the RSM, each representative returns its entry for the given
account and all the counter values in the entry’s counter representative. If a
representative has no entry for the account, all of its counter values are assumed to be
zero. The client selects the data from the entry with the highest version number, with the
exception of its counter data. If the highest version number for the account belongs to a
gap, the file contains no record for the account and the counter values are irrelevant.
Otherwise, the account balance is determined by adding all of the returned counter
values, discarding duplicates. In essence, the client is executing an RSM Read and a
counter Value operation in parallel.

In the Deposit operation, each RSM representative in the Value quorum looks up the
relevant entry. If no entry is found at a representative, an entry with version number zero
is inserted. This entry associates a counter representative with the account without
affecting the contents of the RSM. (The local counters in the new counter representative
are initialized to zero.) After looking up or inserting an entry for the account, each
representative adds the amount of the deposit to the relevant local counter in the entry’s
counter representative.

The withdrawal operation is just like the Deposit operation, except that the RSM
representatives in the Value quorum send back their counter values, and the client checks
to make sure that there are sufficient funds in the account to cover the withdrawal. If
there are insufficient funds, another round is performed to undo the attempted overdraft.
The second round is identical in implementation to the Deposit operation.

Unlike the pure RSM implementation, the hybrid implementation performs deposits in
one round, usually performs withdrawals in one round, and allows concurrent deposits to
the same account. The communication costs and concurrency of other operations are
identical in the two implementations. Note that the hybrid implementation cannot be
built on top of the representative operations for RSMs and replicated counters. The
representative operations must be combined to implement the protocols described above.

There is one problem with the implementation as described above. If an account is
erased and another account is inserted with the same account number, ghost entries
remaining from the first incarnation of the account can cause erroneous balance readings.
Version numbers assure that the data in these ghost entries will not be used, but an
entry’s version number does not apply to its counter representative. The easiest

104 Chapter 5

‘‘solution’’ to this problem is not to reuse account numbers. If it is essential that account
numbers be reusable, the problem can be solved by associating a version number with
each counter representative, and storing in each record the version number with which
the record was originally created. This allows the client to detect responses from counter
representatives that were created before the account to which they apply. For brevity’s
sake, we omit the details of this scheme.

Chapter 6

An Architecture for Replication

In this chapter, we present an architecture that provides programmers of a general
purpose distributed transaction system with the replicated data objects described in
Chapters 2 - 5. The main features of the architecture are the ease with which it can be
used and the wide variety of data types that it provides. We built a fairly complete
prototype system embodying the architecture. The prototype implements all four of the
major RSM variants. It incorporates many of the optimizations that would be used in a
commercial implementation.

The remainder of this chapter is organized as follows. Section 6.1 describes and
motivates the architecture and Section 6.2 describes our prototype implementation in
detail. Section 6.3 briefly evaluates the architecture and presents several lessons we
learned from the building the prototype.

6.1. Architecture

Our replication architecture assumes an underlying general purpose distributed
transaction system supporting the client-server model. The architecture consists of two
main layers: a collection of representative servers and a replicated data system library
(RDS library). Each representative server manages a collection of representatives, one
for each replicated object in the system. Representative servers support operations to
create, lookup and destroy representatives, and representative operations, like the ones in
Section 2.4.1. Operations on replicated objects are invoked by calling procedures in the
RDS library. These procedures execute RPCs to the appropriate representative servers
and process the results, implementing the replication protocols described in previous
chapters.

Conceptually, there need only be one representative server per node, managing data for
arbitrarily many clients. However, if only one representative server were used at each
node, the set of object names would constitute a shared global name space. Concerns of
naming, resource allocation, security and failure isolation suggest that a separate
collection of representative server processes should run for each application that uses our
system.

105

106 Chapter 6

The system provides its clients with objects of several primitive data types, principally
the RSM variants described in Chapters 2 - 5. Other primitive data types might include
replicated counters (Section 5.4) and nondeterministic types like weakly fifo queues (not
covered in this dissertation). The primitive data types provided by the system are
generic: the base types from which complex primitive types are constructed may be
specified by the client. For instance, the system’s RSM type allows the client to specify
the RSM’s address space and value space.

The system might also implement one or more derived data types on top of the
primitive data types. For example, a priority queue could be implemented on top of an
RSM and a replicated variable using the technique described in Section 5.3.3. The
architecture is illustrated in Figure 6-1. Note that multiple clients may share replicated
objects.

Server 2 Server 3
Representative RepresentativeRepresentative

Server 1

RDS Library

Client 1

RDS Library RDS Library

Client 2 Client n

Figure 6-1: Replication System Architecture

A client wishing to create a replicated object calls the Create procedure for the
appropriate type in the RDS library. The create procedure takes a name by which the
object will be referred to and various parameters describing the particulars of the object.
These parameters include the names of the representative servers at which representatives
for the object are to reside, quorum sizes, and various type-specific parameters. An
RSM, for example, has the following type-specific parameters: the data type of addresses
in the RSM, the data type, or at least the size in bytes, of the values in the RSM, and the
representation and size of the underlying RSM representatives.

The Create procedure generates a serial number for the new object, to be stored at each
of the object’s representatives. This allows the RDS library to confirm that a set of

An Architecture for Replication 107

representatives all refer to the same object. Ideally, the serial numbers generated by
Create should be unique over all time. Alternatively, a pseudo-random number generator
can be used to generate serial numbers. Serial numbers generated in this fashion give
only a statistical guarantee that a set of representatives refer to the same object, but the
probability of error can be made small by using random numbers of sufficient size. Care
must be taken in seeding random number generators so that serial numbers generated in
different client processes are nearly independent.

The RDS library Create procedure executes RepCreate RPCs to each of the indicated
representative servers to create representatives for the new object. If any of the
representative servers is unavailable or already has a representative for an object with the
given name, the Create procedure returns an error.

The RepCreate RPC takes as parameters the object’s serial number, quorum sizes and
type-specific parameters. RepCreate causes a representative server to dynamically
allocate space for a representative from its persistent storage pool and initialize the new
representative. The representative has a header in which the object’s serial number,
quorum sizes and type-specific parameters are stored. The RepCreate RPC returns a
handle for the new representative that is its address in persistent storage. The RDS
library uses the handle to refer to the representative in future RPCs to the server.

Each representative server contains a local (non-replicated), persistent directory of all
the representatives currently stored at the server. The RepCreate RPC causes the server
to make an entry in its directory for the newly created representative. The directory
allows the server to translate object names to representative handles, which enables
clients other than an object’s creator to use the object via the RDS library’s Lookup
procedure, described below.

The RDS library maintains at each client a local, volatile directory of the replicated
objects that it currently knows about. This directory is indexed by object name. Each
entry contains the object’s type, its quorum sizes and type-specific parameters, the names
of the servers at which representatives reside, and the handles of the representatives. The
Create procedure inserts an entry in this directory for the replicated object being created,
and returns a handle that is a pointer to this entry. The client uses this handle to refer to
the object in all of the RDS library procedures that operate on the object. The handle is
only valid as long as the client process continues to run.

In each entry in the replicated object directory, the server names and associated
representative handles are stored in an ordered list. The representatives at the head of the
list constitute the current read and write quorums for the replicated object. If any of these
representatives become unavailable, the RDS library reconfigures the quorums to exclude
the unavailable representative by reordering the list.

108 Chapter 6

A client wishing to use a pre-existing replicated object calls the Lookup procedure in
the RDS library. Conceptually, the Lookup procedure needs only the name of the
replicated object and the names of the servers at which representatives are stored.
However, it may be prudent to include as parameters the type of the object, its quorum
sizes, and its type-specific parameters. This allows Lookup to check that the client’s
notion of the named object is correct, providing additional type safety.

The Lookup procedure performs RepLookup RPCs to the given representative servers.
The RepLookup RPC causes a server to locate the given object name in its representative
directory and return the handle for its representative, as well as the information in the
representative’s header, including the object’s serial number. The Lookup procedure
checks to see that all of the returned serial numbers match, and that the information
returned by the servers is consistent with the parameters provided by the client. If any of
these checks fail, Lookup returns an error. If the checks succeed, Lookup creates an
entry in the client’s replicated object directory, functionally identical to the entry that was
made when the object was created. Like the Create procedure, the Lookup procedure
returns a pointer to the object’s directory entry, which the client uses as a handle for the
object.

Unlike the Create procedure, the Lookup procedure must succeed even if one or more of
the object’s representative servers are unavailable, assuming enough servers are available
to perform operations on the object. Therefore, provisions are made in the object
directory to indicate that the client has not yet succeeded in determining one or more of
an object’s representative handles. This permits the RDS library to defer the RepLookup
operation on an unavailable representative.

The RDS library exports procedures for all of the operations supported by each of the
replicated objects that it implements. For the RSM, it exports Read, Write and Erase
procedures. Once a client has obtained the handle of a replicated object by creating it or
looking it up, the client can access the object using any of the procedures exported by the
RDS library for objects of the given type.

The primary motivating factor for our architecture is that distributed programming is
difficult and time consuming. In the framework provided by our architecture, the
application programmer is insulated from the difficulties of distributed programming.
The data types provided by the RDS library provide the sole programming interface to
the system; the representative servers themselves are never referenced directly by the
application programmer. The generic nature of the data types provided by the RDS
library allows the programmer to produce a wide variety of replicated abstract data types
by merely parameterizing the library types appropriately. More complex data types can
be implemented on top of one or more of the objects provided by the library.

An Architecture for Replication 109

In our generic type implementation, the client passes data types as parameters to the
RDS library Create and Lookup procedures. This implies that the language in which the
system is implemented should support parametric polymorphism [11]. But it is easy to
build such support on top of a language that does not provide it, assuming the language is
not too strongly typed. Our implementation takes this approach (Section 6.2.1.1). An
alternate approach is to leave type parameters unspecified at object creation time, and to
specify them implicitly when operations are performed on the object. This would be the
natural approach if the system were implemented in a late-binding object oriented
language like Smalltalk [25]. This approach would allow individual RSMs to contain
elements of multiple types, though it is not clear how useful this feature would be in
practice. The approach has some performance drawbacks, and requires special effort to
ensure that all of the address types used for a given object are compatible.

A note should be added concerning the handles used in our architecture. Neither the
handles used by the client to refer to replicated objects nor the handles used by the RDS
library to refer to representatives are fundamentally important to the architecture. Clients
could refer to objects by name in all of their dealings with the RDS library. Similarly, the
RDS library could refer to an object’s representatives by the object’s name in all of its
dealings with replica servers. However, this approach would require several additional
hash table lookups for each operation on a replicated object. While the additional
computation would probably not be very significant, it is unnecessary, and the use of
handles does not add appreciably to the system’s complexity or detract from its
cleanliness.

6.2. Implementation

Our prototype implementation runs on the Camelot distributed transaction system [19],
which relies on the support of the Mach operating system [50]. Our prototype was
written in a C language [35] extension called the Camelot library [7]. The primitive data
types supported by the prototype are the four major RSM variants described in this
dissertation: RSMs, hash table RSMs, array RSMs and MRSMs. The prototype includes
support for derived data types, though none were actually implemented.

The prototype is fairly complete. It faithfully implements the architecture described in
Section 6.1, with several exceptions. The RDS library does not include a Destroy
function; there is no way to reclaim the recoverable storage that was occupied by an
object’s representatives short of reinitializing the representative servers. The Lookup
function requires that all representative servers with representatives for an object be
running at the time the object is looked up. The prototype faithfully implements the
replication protocols described in Chapters 2 - 5, including most of the suggested
optimizations. The primitive data type implementations are quite realistic, with the few

110 Chapter 6

exceptions discussed in Section 6.2.3. Most notably, the skip list RSM representative
implementation does not display paging and concurrency performance comparable to that
of a commercial B-Tree package.

The prototype was tested and found to be fairly robust (Section 6.2.5). Even after
debugging was complete, the system still crashed on occasion, especially during highly
concurrent use, but all of these crashes were traced to failures in underlying system
software. The system was sufficiently stable that we were able to generate large
quantities of high quality performance data, as described in Chapter 7.

6.2.1. System Structure

The representative servers in our prototype are ordinary Camelot servers. The
representative server program takes a single command line argument, the server’s name.
The RDS library is an ordinary Unix library whose constituent object files are generated
from Camelot library source files. To use the system, the programmer merely compiles
an application with the RDS library, starts the representative servers for the application if
they are not already running, and runs the application.

The replication protocols described in Chapters 2 - 5 do not make explicit use of nested
transactions. However, when implementing these protocols, the failure isolation
provided by nested transactions is invaluable in masking failures and providing good
error semantics. The RPCs provided by the Camelot library are transactional RPCs:
they provide exactly-once semantics by aborting the enclosing transaction if they do not
succeed. If the RDS library makes RPCs to a set of representative servers from within
the direct scope of the calling transaction, and one of the called servers is unavailable, the
calling transaction aborts. All work done by the transaction prior to calling the RDS
operation is lost, and the caller must retry the transaction in order to take advantage of the
high availability furnished by the replication protocols. Furthermore, the abort code
passed back to the calling transaction comes directly from the underlying communication
facility; it provides little information as to the source of the abort. All in all, this is not a
satisfactory implementation.

One solution to the problems in the previous paragraph is to nest each RPC in its own
subtransaction. (The Argus language [39] automatically does this to all RPCs.) This
allows the RDS library to identify an unavailable server and retry the failed
representative operation on another server. The calling transaction is not aborted unless
the RDS library chooses to do so, for example, because it cannot contact enough servers
to complete the operation. If the RDS library must abort the enclosing transaction, it
passes back an abort code indicating precisely the nature of the problem.

An Architecture for Replication 111

We experimented with this approach initially, but found the cost of the nested
transactions to be prohibitive. The same effect can be had by nesting each entire round
(i.e., each set of parallel RPCs to a collection of representative servers) in a single nested
transaction. This allows the RDS library to identify an unavailable server and redo the
entire round. The added cost of aborting and redoing the representative operations that
succeeded is small. More significantly, this cost is only incurred when a server fails,
which happens rarely. Therefore, it represents a good engineering tradeoff to enclose
rounds rather than individual RPCs in subtransactions. Our prototype implementation
takes this approach.

The RDS library is instrumented to maintain histograms of the numbers of rounds of
RPCs required by each operation whose communication cost is not constant. The library
has a GetStats call, which returns the contents of the histogram for an object. This
facility allows us to monitor the effectiveness of optimistic timestamps and other
optimistic two-stage protocols used in our system.

Several facilities required by our system were not provided by the C programming
language, the Camelot library, or the standard Mach programming environment. We
wrote several utility packages, described below, to provide these missing facilities.

6.2.1.1. Dynamic Data Specification Facility

As previously noted, our architecture requires a facility for passing data types as
parameters to local and remote procedure calls. While the C programming language does
not provide this facility, C is weakly typed: the cast operator allows great flexibility in
choosing the interpretation of a piece of data. We wrote a package called DDS (short for
Dynamic Data Specification), which takes advantage of C’s weak type structure to add a
type descriptor data type to the language.

DDS data objects consist of a pointer to some data and a type descriptor, which
describes the interpretation of the data. DDS type descriptors can be constructed to
describe simple data types (C’s char, int, short, or float types), arrays, and aggregate
structure types. The DDS package consists of a macro for creating a type descriptor
constant and various functions for manipulating DDS data objects. Functions are
provided to compare DDS data objects (lexical comparison), hash them, print them,
compute their sizes, and compute byte offsets of fields within them.

DDS operations run interpretively (viewing the type descriptor as a program). They
typically require at least one function call per field in a DDS object. This implementation
does not yield extremely high performance, but it is sufficient for our purposes; in our
prototype system, DDS operations always execute in conjunction with an RPC, whose
cost swamps that of the DDS operations.

112 Chapter 6

6.2.1.2. RPC Batching Facility

The MRSM data type (Section 5.3.2) stores each index in a separate RSM. Certain
operations on the MRSM perform complex multistage operations on each of these
component RSMs. In order to achieve the low communication costs detailed in Section
5.3.2, the component RSM operations must be parallelized: RPCs that perform
representative operations on component RSMs must be combined. In essence, the RPCs
going to each server must form ‘‘carpools’’ to save on communication costs. In this way,
the number of rounds of RPCs required to perform an MRSM operation will equal the
maximum number of rounds required to perform a component RSM operation, not the
total of the numbers of rounds required to perform each component operation. There are
several ways to achieve this effect.

One could manually combine logical RPCs on several component RSM representatives
into a single RPC. This would entail providing the stub generator with interface
descriptions for each possible ‘‘compound RPC’’. Since the multistage operations on
component RSMs are optimistic in nature (i.e., they may omit stages), the number of
possible compound RPCs is large, even if only two component RSMs are involved. This
approach would at best be tedious, and the resulting program would be large and messy.
The approach could not be applied to MRSMs with arbitrarily many indices, as the
number of possible compound RPCs would be unbounded.

A far more satisfactory approach is to combine RPCs dynamically at runtime. This is
done by extending the communication system to support three new operations: an
operation to initialize a batch, an operation to enqueue an RPC into a batch for later
execution, and an operation to execute in a single message exchange all of the RPCs that
have been enqueued into a batch. Of course, the return arguments for all of the enqueued
RPCs are not set until the batch is executed. This facility is similar to the asynchronous
RPC facility in the Mercury system [24]. A major advantage of this approach over the
one described in the previous paragraph is that the stub generator needs to be provided
with only the interface descriptions for operations on individual component RSM
representatives. The resulting program is far smaller and less messy than the one that
would result from the previous approach.

We wrote a package called batch to implement the RPC batching technique described in
the previous paragraph. The package exports one data type, the batch, and the three
batch operations described above. The package allows an existing server to be trivially
modified to accept batched RPCs in addition to normal RPCs.

One performance disadvantage of the batching approach is that batched RPC arguments
are marshaled twice: once by the BatchEnqueue operation, and again by the client stub
for the BatchExecute function. This problem could be corrected by integrating the
batching facility into the stub generator.

An Architecture for Replication 113

6.2.1.3. Other Packages

The representative server requires the services of a dynamic recoverable storage
allocator to allocate and free object representatives and records contained therein. Initial
experiments showed that the storage allocator distributed with the Camelot library was
far too slow for use in our prototype. The storage allocator’s poor performance stems
primarily from the fact that it achieves concurrency by implementing simple operation
logging on top of Camelot’s value logging facilities. This requires that two top-level
transactions be executed at a server for every recoverable malloc, one when the malloc
occurs and one when the enclosing transaction family commits.

We implemented a fast recoverable storage allocator package, called RFA, short for
Recoverable Fixed Allocator. RFA does not allow arbitrary size blocks to be allocated
from a single storage pool. Instead, it allows the server to create multiple storage pools,
each containing blocks of one fixed size. Instead of taking a size, RFA’s malloc and free
procedures take a pool. The fixed block size approach was taken for ease of
implementation. RFA’s malloc operation requires only one recoverable storage modify
and one lock. The free operation requires two modifies and one lock. RFA is
conservatively an order of magnitude faster than the allocator distributed with the
Camelot library. The details of RFA’s operation are outside the scope of this thesis.

The representative server’s representative directory is simply a recoverable hash table
containing a record for each representative at the server. We were able to implement it
with a preexisting generic recoverable hash table package called RHT.

6.2.2. Version Numbers

Our prototype uses 32 bit version numbers. All of the primitive data types in the RDS
library use optimistic timestamps for blind write operations. Optimistic timestamps are
generated from the operating system’s real-time clock. Ideally, the operating system
should allow the RDS library to map the real-time clock into the client’s address space.
This would result in a clock access latency equal to the latency of a memory read. In
principle, Mach provides this capability, but it did not function properly on the IBM RT-
PC at the time of our experiments. Therefore, we were forced to rely on the gettimeofday
system call.

Our prototype generates optimistic timestamps by subtracting a compile time constant
from the current time and dividing the result down to millisecond precision. (The
constant is set equal to the time value returned by gettimeofday at the time the program
was written.) A simple computation shows that our version numbers wrap every fifty
days. This would be unacceptable in a commercial implementation, hence we advise the
use of 64 bit version numbers in such implementations (Section 4.1.1).

114 Chapter 6

We do not view the cost of the gettimeofday system call as a fair cost in generating an
optimistic timestamp. Therefore, we provided an alternate mode in the RDS library,
wherein a counter is used to generate optimistic timestamps instead of the real-time
clock. This mode avoids the cost of the system call, while guaranteeing that operations
using optimistic timestamps will always succeed in one round if objects are accessed by
only a single client. (The same guarantee is provided by optimistic timestamps generated
from a real-time clock.) This mode is not suited for use when objects are accessed
concurrently. We used the alternate mode for the experiments involving only a single
client (Sections 7.2.5 and 7.2.6). In retrospect, this was unnecessary, as the cost of a
gettimeofday call on the system used in the experiments is 0.2 ms, and the fastest
operation measured in any of the experiments was 18 ms.

6.2.3. Primitive Data Types

6.2.3.1. Replicated Sparse Memories

The RDS library implementation of the RSM data structure is a fairly straightforward
rendering of the protocols described in Chapter 2. All of the optimizations to the real
predecessor algorithm described in Section 2.5.3 were implemented. The maximum
number of entries returned in the first stage of the real neighbors determination is
specified by a compile time constant, which we initially set to 8. We did not implement
range operations (Section 4.2.1), low latency Erases (Section 4.1.3), or separate version
numbers for frequently modified fields (Section 4.1.4) in our prototype.

The representative server uses skip lists [49] to represent RSM representatives. The
skip list, invented by William Pugh, is a new data structure for representing directories
(dictionaries). A skip list consists of a sequence of linked lists, each containing only a
fraction p of the elements on the previous list in the sequence. The first list in the
sequence contains all of the elements in the directory. The storage requirements for a
skip list are comparable to those of a balanced tree. Like balanced trees, the average time
to access an element in a skip list containing n elements is O(log n). Unlike balanced
trees, no rebalancing is required to maintain this performance. Skip lists derive their
good performance from the use of random numbers in the insertion procedure. We used
skip lists in our prototype implementation because they are much easier to implement
than balanced trees.

The skip lists that we used differ from Pugh’s in that we added backward links to the
linked list containing all of the elements in the skip list. This allows us to traverse the list
backwards as well as forwards, which makes it possible to read the entries surrounding a
given entry. This operation is required in the first phase of the real neighbor
determination algorithm (Section 2.5.3). We used p = 0.5, the standard value for this
parameter. In addition to the standard insert, lookup, and delete operations on skip lists,

An Architecture for Replication 115

we implemented the range delete operation, which is required for RepCoalesce, the
representative operation used in the final stage of the Erase operation (Section 2.4.1).

Perhaps the most significant deficiency in our prototype is that our skip list
implementation allows no concurrency; a single lock is used for the entire list. We felt
that locking at the pointer level would be unduly expensive, but the design of an efficient
locking algorithm for skip lists was outside the scope of this thesis. In retrospect, locking
costs were such an insignificant fraction of operation costs that pointer locking would not
have been prohibitive.

A related deficiency in our implementation is that our skip lists do not have the good
paging properties associated with commercial B-Tree implementations [12]. This was
not an issue in our experiments because the data sets were small enough to fit in primary
memory. Modifying the skip list data structure to yield paging performance comparable
to that of a B-Tree is an open problem, outside the scope of this thesis.

While the deficiencies described in the preceding paragraphs would be unacceptable in
a commercial implementation of our architecture, they do little harm to our prototype.
The design and implementation of a commercial quality B-Tree package is a very large
undertaking, entirely orthogonal to the subject matter of this thesis. In practice, a
commercial implementation of our architecture would likely use a pre-existing B-Tree
package to represent RSM representatives. We view as an attractive feature of our
architecture that it naturally inherits so much functionality from a readily available
software package.

6.2.3.2. Hash Table RSMs

The RDS library uses a single implementation for both hash table RSMs and ordinary
RSMs. The code was originally written for hash table RSMs and ran on normal RSMs
without modification. The representative server has two sets of RSM representative
functions, one for normal (skip list) RSM representatives and one for hash tables. The
RPCs for the RSM representative operations check the representation type of the
indicated representative and execute the appropriate function. In the parlance of object
oriented programming, the RPC dispatches the message to the method appropriate to the
class of the RSM representative object.

In addition to all of the optimizations implemented for ordinary RSMs, our hash table
RSM implementation incorporates the optimistic two-stage protocol described in Section
4.1.5, which allows some Erase operations to complete in a single round. This
optimization has a complication not found in our other optimistic two-stage protocols: if
the optimistic assumption turns out to be false (i.e., the bucket contains other occupied
addresses besides the one being erased), representatives that erroneously assumed that the

116 Chapter 6

assumption was true will need the information they have overwritten in order to restore
consistency.

In theory, it would be possible to restore consistency in the face of a failed optimistic
two-stage protocol by aborting the subtransactions that performed erroneous
modifications. However, the expense of doing aborts is such that the performance of this
approach would be intolerable. As a rule of thumb, operations should never abort
transactions during forward processing, except when it is necessary to break deadlocks.
Therefore, each representative that believes that the optimistic assumption is true must
save enough information to restore consistency if it turns out to be false.

While this information does not need to be stored recoverably, the use of volatile
storage would pose difficulties in ensuring proper deallocation in the case of abort.
Therefore, we store the information in a special field in the (recoverable) hash bucket
data structure, which we call the optimistic erase record.

To keep the amount of information that must be stored to a minimum, representatives
reject the optimistic assumption if they have any entries in the relevant hash bucket for
addresses other that the one being erased. This policy ensures that the only data that
representatives must record in the optimistic erase record are the version numbers
associated with the gaps preceding and following the address being erased.

6.2.3.3. Array RSMs

Our array RSM implementation is entirely straightforward. The only feature of note is
that the client is not permitted to specify an arbitrary DDS data type as the address space
of an array RSM. The address spaces of array RSMs are restricted to ranges of integers:
the size of the address space is specified when an array RSM is created, and the integers
less than the size constitute the address space. There is no good reason for this
restriction. The performance of the implementation would not change noticeably if we
extended it to allow ranges drawn from arbitrary DDS data types to be used as address
spaces.

6.2.3.4. MRSMs

Our MRSM implementation is somewhat limited, in that it allows only a single
secondary index per MRSM. Both the primary and secondary indices are represented as
hash tables. This implies that our implementation should only be used with secondary
keys that are nearly unique if good performance is to result (Page 90).

On page 91, we described a dangling pointer problem associated with the MRSM
Delete operation and presented several solutions. Our implementation incorporated the
easiest solution, which consists of ignoring the dangling pointers.

An Architecture for Replication 117

The use of a batching facility to combine logical RPCs on the primary and secondary
index RSMs had a strong effect on the shape of the MRSM code in the RDS library.
While concurrent multistage operations on the two index RSMs were logically separate,
the semantics of the Batch Enqueue operation imposed a program structure that grouped
them together artificially. Each stage in complex MRSM operations was divided into
two phases, one phase to enqueue the component logical RPCs and one phase to process
all of the results. This resulted in complex procedures with names like
DelDoThirdRound, DelEnqThirdRound, and DelProcessThirdRoundResults, whose
functions cannot be concisely described, except by appealing to the notion of RPC
batching. These procedures usually have excessive numbers of arguments, often as many
as seventeen or eighteen.

While much of the logic for the MRSM implementation was taken from the hash table
RSM implementation, programming the MRSM was time-consuming and tedious due to
the code restructuring necessitated by our use of RPC batching. It is apparent that the use
of RPC batching on concurrent optimistic protocols has fairly serious consequences with
respect to program structure. However, the performance gains made possible by
combining RPCs on component RSMs are essential to achieve reasonable performance
from the MRSM data structure. In Section 6.3, we describe an alternate approach to RPC
batching that performs almost as well as the approach we used, without imposing
unnatural program structure.

6.2.4. Program Size

The sizes of the modules comprising our prototype implementation are shown in Table
6-1. The sizes of major modules are broken down into submodules. The line counts
include comments but not blanks lines.

Several things should be borne in mind when examining the Table 6-1:

RPC stubs were generated with MIG [32], the RPC stub generator for the Mach
operating system. MIG is somewhat lacking in its support for variable length arguments,
allowing only one such argument to be passed in-line in each direction in each RPC. The
generic nature of our representative implementations required extensive use of variable
length arguments, which left us with no choice but to pack multiple logical arguments
into a single MIG argument. This required a fair amount of argument packing and
unpacking code.

The Camelot library has a similar restriction with respect to concurrent threads, which it
inherits from the cthreads facility [13]: each thread executes a function that is permitted
only a single argument. If multiple arguments are desired, they must be packed into a
single argument block structure [7]. Our protocols make extensive use of concurrency,
so this restriction caused a substantial increase in code size.

118 Chapter 6

Component Line Count

RDS Library 4566

RSM/Hash table RSM 1255

Array RSM 550

MRSM 2084

Shared Code 677

Replica Server 3090

RSM Representative 848

Hash Table RSM Representative 819

Array RSM Representative 201

MRSM Representative 1075

Shared Code 147

Utility Packages 1487

DDS 498

Batching Facility 635

RFA 354

System Total 9143

Table 6-1: Sizes of Replicated Data System Components

As mentioned previously, the RSM representative implementation is not entirely
realistic: it lacks the paging and concurrency performance that would be required of a
real implementation. A real implementation, however, would likely use a pre-existing
B-Tree package, in which case it might well be smaller than our prototype.

Finally, our decision to nest each round of concurrent RPCs in a separate subtransaction
caused an unnecessary increase in code size and complexity. This is discussed in more
detail in Section 6.3.

An Architecture for Replication 119

6.2.5. Testing and Debugging

We subjected our data type implementations to a two stage testing process. In the first
stage, we used an interactive driver program that allows the user to create an object, or
look up a pre-existing object, and manually construct transactions that perform operations
on the object. The driver program is similar in spirit and structure to the Camelot demo
program called jack [9]. The driver program was used to get a data type off the ground.
It allowed us to start testing a data type even before all of its operations were written, and
to closely observe the effects of individual operations on an object. Objects created with
the driver program used various address and value spaces, like personal names and phone
numbers. When all of a data type’s operations appeared to work under interactive use,
we subjected the data type to more rigorous torture testing.

Torture testing was done with the aid of a basher program that allows the user to
configure an object and perform a specified number of transactions, each containing a
specified number of operations on the object. There are separate basher programs for
RSMs and MRSMs. The details of this description correspond to the RSM version, but
the MRSM version is similar. Operations are chosen at random from the operations that
modify the object (Writes and Erases, for RSMs). The basher maintains a local, non-
replicated table that tracks the RSM that is under test. Each time a transaction commits,
all of its operations are recorded in the local table.

The address for each Write operation is selected at random from the address space,
which consists of the integers less than some user-specified value. The value for each
write operation is its sequence number in the run. If an error occurs, values generated in
this fashion can be of some assistance in locating the operation that is responsible for the
error. The address for each Erase operation is chosen randomly from the set of currently
occupied addresses in the RSM, as indicated in the local table. Since operations are not
recorded in the local table until a transaction commits, unoccupied locations are
occasionally erased.

Before each run, the user specifies a quorum change interval and a consistency check
interval. These intervals indicate the number of transactions that occur in between each
occurrence of the designated event. A value of zero for either of these intervals indicates
that the event will not occur during testing, though a consistency check is performed at
the end of each run even if its consistency check interval is zero.

The consistency check is fairly thorough: it consists of looking up every address that
has ever been occupied in the RSM and making sure that it has the correct value
associated with it, or that it is unoccupied if it has been Erased more recently than it has
been written. If the consistency check fails, it prints a message detailing the nature of the
discrepancy and exits. For MRSMs, the consistency check looks up every primary and
secondary key that has ever been used.

120 Chapter 6

For torture testing, objects were configured to cause as many code paths as possible to
be executed. For example, hash table RSM representatives were set to consist of just a
few buckets. This ensured that many collisions would occur and delete list would grow
large enough to drive the real predecessor algorithm into its second round occasionally.
It would not have been as effective to set hash table RSM representative size to a single
bucket; while this would have caused more collisions, it would not have tested the hash
value generation process.

Torture tests runs were long, between 10,000 and 25,000 transactions, each containing
ten operations. The quorum change interval was set to fifty transactions for all runs. The
consistency check interval was initially set to ten transactions, to shake out simple bugs.
Each time a consistency check failed, we attempted to locate the bug that caused the
failure and fix it. Once a bug was located and fixed, the run was repeated. The pseudo-
random number received the same seed for each run, so all runs attempted the same
sequence of operations. Therefore, we knew that we had located the bug that was
responsible for a consistency check failure if the test ran beyond the point where it had
failed in the previous run. The effectiveness of this technique depended on the fact that
there were no significant timing dependencies in our test runs.

The test-debug cycle was repeated until the entire run completed with no consistency
check failures. As bugs were corrected and the data type implementation became more
robust, we increased the consistency check interval up to a thousand transactions. This
was necessary because consistency check transactions become extremely expensive as
the data object is used. Even with a consistency check interval of a thousand
transactions, consistency checks account for a large fraction of the total run time.
Successful runs consumed roughly 4 to 6 hours of computer time, depending on the data
type. All tests were conducted locally to keep run times reasonable: the basher and all
three representative servers ran on the same machine. While this reduced the amount of
underlying system code that was exercised, it has no effect on the execution paths
through our replication system.

The fact that our data objects are persistent was very useful for debugging. The driver
program used in the initial phase of our testing could be run on a data object that had just
failed a consistency check. This allowed us to further investigate the condition of the
now inconsistent object. For one particularly thorny bug in our MRSM implementation,
it was necessary to examine the contents of MRSM representatives directly. Since the
object was persistent, we were able to add an MRSM representative dump operation to
the representative server, recompile the server, and perform the new operation, without
redoing the run that corrupted the MRSM. A single application of this technique saved
us many hours.

An Architecture for Replication 121

The repeatability of our test runs enabled us to use another powerful debugging
technique, which we call the surgical strike. The RDS library and the representative
servers both contained a fair number of debugging print statements. These statements
were enabled during early phases of testing with the interactive driver. It made no sense
to enable these print statements during torture tests because of the tremendous volume of
output they would have generated. However, we modified the system so that debugging
output could be turned on automatically each time an operation was performed on a
designated address, and turned off when the operation finished. When a consistency
check failure occurred, we could repeat the run with debugging output enabled only for
operations on the address that caused the failure.

One bug in our RSM implementation was resistant to the debugging techniques
described thus far. By the time the consistency check in the basher program failed, the
skip lists representing the RSM representative were so thoroughly corrupted that it was
impossible to determine which operation was originally responsible for their fall from
grace. In order to locate this bug, we had to outfit the representative server with a
consistency check procedure for the skip list data structure, and call this procedure after
every representative operation that modified the skip list. This local consistency check in
the server quickly pinpointed the source of the trouble, which lay in the skip list range
delete operation.

6.3. Conclusions

Our prototype demonstrates that it is feasible to implement the architecture described in
Section 6.1 and the replication protocols described in Chapters 2 - 5. We wrote several
applications on top of our prototype, including the interactive driver and basher
described in Section 6.2.5, and the performance measurement application described in
Section 7.1. Experience with these programs strengthens our belief that the architecture
is easy to use and reasonably flexible. Its ease of use stems primarily from the fact that
the sole interface to the system is the RDS library, and in particular, that new data objects
are created by simply calling a function in this library. The flexibility of the architecture
is due primarily to the generic nature of the data objects it exports.

Our debugging and testing procedures were effective. No additional bugs in our
prototype surfaced during the performance measurement process described in Chapter 7.

The process of implementing the architecture was reasonably straightforward.
However, we made two design decisions that made this process more difficult than it had
to be, and increased the complexity of the resulting software. The first of these decisions
concerned the use of subtransactions. The second concerned the use of RPC batching.
Below, we discuss these decisions and the changes that should be made if our
architecture is re-implemented.

122 Chapter 6

For performance reasons, we nested each round of every replicated operation in a
subtransaction, rather than nesting individual RPCs (Section 6.2.1). In retrospect, we
should have taken this line of reasoning one step further, by nesting each replicated
operation in a single subtransaction. This would have had two major benefits. First of
all, it would have greatly reduced the amount and complexity of the error handling code
in the RDS library. In our prototype, we had separate error handling procedures for each
round of every operation. Some of this code was quite complex. If we had nested entire
operations, a single error handling procedure would have sufficed for all operations. This
procedure would be extremely simple: it would reconfigure the quorum and retry the
entire operation.

The second benefit of nesting entire replicated operations in a single subtransaction is
increased performance. The cost of recovering from an RPC failure would increase
slightly, as a failure would necessitate repeating an entire replicated operation, instead of
just the round containing the failure. But failures are rare; in the normal case, the cost of
the second and successive rounds of an operation would be reduced by the cost
associated with a nested transaction. Under Camelot, this cost is extremely significant
(Section 7.2.8). Note that this change would only improve the performance of multi-
round operations; single round operations would be unaffected.

To secure good performance from our MRSM implementation, we used an RPC
batching facility to combine multiple RPCs on the same server (Section 6.2.1.2).
However, this resulted in a fairly convoluted program (Section 6.2.3.4). The problem
results from the use of RPC batching to merge complex multistage operations that are
performed concurrently. To remedy this problem, we propose a new RPC batching
technique, which we call auto-batching.

The operations performed on the component RSMs of an MRSM are independent of
one another. The natural idiom for expressing concurrent execution of independent
operations is threads. However, the direct use of RPC batching makes the use of this
idiom impossible. Ideally, we would like each thread to perform its operations oblivious
to the existence of the other threads, with RPCs being combined to the maximum extent
possible. This is precisely what auto-batching allows us to do.

There are four operations associated with the auto-batch type. Each auto-batch must be
initialized once by calling AutoBatchInitialize. This operation takes an auto-batch and a
server, which it associates with the auto-batch. A thread can Join an auto-batch, Quit an
auto-batch, and perform AutoBatchRPCs.

The RDS library maintains one auto-batch for each representative server. Each thread
performing an independent multistage operation initially joins the library’s auto-batch for

An Architecture for Replication 123

10each server involved in the operation. Whenever a thread wants to call a server, it
makes an AutoBatchRPC, which differs from a normal RPC only in that it takes one
additional parameter, the auto-batch for the relevant server. The beauty of the auto-
batching approach is that the AutoBatchRPC has essentially the same semantics as an
ordinary RPC; the only difference is that AutoBatchRPC automatically waits for all other
threads using the same auto-batch to contribute an AutoBatchRPC. When the last thread
using the auto-batch does an AutoBatchRPC, the auto-batch is executed in a single RPC,
and all threads using the auto-batch automatically continue execution. When each thread
finishes its multistage operation, it calls AutoBatchQuit for all auto-batches used by the
operation.

It is fairly straightforward to implement an auto-batches on top of ordinary batches,
using a condition variable [13] to synchronize threads, and two integers. One integer is
used to keep track of the number of threads that are currently members of the auto-batch
(i.e. they have joined the auto-batch but not yet quit it). The other integer is used to keep
track of the number of threads that have already contributed an AutoBatchRPC to the
next real RPC.

The auto-batching approach would cause a slight decrease in the performance of our
MRSM operations due to the use of additional threads, but we do not believe that the
effect would be significant.

Auto-batching can be used to improve our architecture in another, fairly significant,
way. If all operations on all primitive types are implemented using auto-batches,
concurrent calls to operations on objects exported by our system will ‘‘carpool’’
automatically, to the maximum extent possible. This means that derived types built from
multiple replicated objects can be easily and efficiently implemented on top of primitive
types. In our prototype, derived types had to be implemented directly on top of
representative operations using the RPC batching facility if they were to display
reasonable performance. This essentially excluded end users from implementing
efficient derived data types.

10For efficiency, the Join operation should take a list of auto-batches and join all of them. For
symmetry, the Quit operation should do likewise, though it is not as important from an efficiency
standpoint.

124 Chapter 6

Chapter 7

The Performance of Our Architecture

We performed experiments to evaluate various aspects of the performance of the
prototype system described in Chapter 6. We were quite successful in explaining its
performance in terms of the performance of underlying transaction system primitives.
While the performance of the prototype is limited by that of the underlying system
software and hardware, it clearly demonstrates the practicality of our approach.

The remainder of this chapter is organized as follows. Section 7.1 describes our
experimental setup. Section 7.2 presents basic timings of the operations on our data
objects when accessed by a single client, and a comparison of these timings to predictions
based on the performance of underlying primitives. Section 7.3 presents timings for an
array RSM under concurrent use. Section 7.4 presents an experiment that investigates the
performance of optimistic timestamps in the presence of hot spots. Section 7.5 discusses
failure recovery performance and Section 7.6 briefly evaluates the overall performance of
our prototype system and of our architecture.

7.1. Experimental Setup

Our experiments were done with a performance measurement program that allows the
user to configure and create a data object, perform an initial run consisting solely of
Write operations, and subject the object to one or more timing runs. Each timing run
consists of a number of timed sets, each of which consists of a number of transactions.
Each transaction performs a number of operations. All operations in a set are of the same
type. For each run, the user selects an operation mix, a quorum change interval, the
number of sets in the run, the number of transactions in a set and the number of
operations in a transaction. The operation mix consists of a sequence of integers
describing the relative frequencies with which the operations supported by the data type
are to be performed. After each set ends, the program prints the average time per
transaction for the set. After each run ends, the program prints the average time per
transaction observed over the duration of the run, for each operation in the mix. The
program also prints the communication cost histograms gathered by the RDS library
during the run (Section 6.2.1).

125

126 Chapter 7

Our replication system presents us with a large number of parameters whose values
affect its performance. To keep the number of experiments from getting out of hand, we
held many parameters constant for all experiments. All objects consisted of 3
representatives. All used read and write quorum sizes of 2. All used 32 bit integer
address and value spaces. Addresses for operations were chosen randomly from the

16integers between 0 and 2 − 1 . Hash table RSM representatives had 1000 buckets. In
each experiment, 500 Write operations were performed initially, yielding 500 occupied
addresses. The operation mixes for all runs were uniform: all of the operations supported
by the object were performed with equal likelihood. The quorum was changed every
1000 operations, cycling through the three possible choices.

All experiments were performed on IBM-RT/PC APC workstations [57], running
Camelot 1.0 (Version 83) on top of Mach 2.5 (Version CS7d). The workstations are
rated at approximately 2.5 VAX MIPS. Local experiments were performed on a
workstation with 16 megabytes of main memory and distributed experiments were
performed on workstations with 12 megabytes each. The workstations used in the
distributed experiments are connected via a large, complex local area network. The
relevant portions of this network are coarsely illustrated in Figure 7-1. The network
segments shown in this figure have many other machines attached to them besides those
used our experiments.

Server 3

Server 2
Representative

Representative

Gateway
Server

Cisco

Representative
Server 1

Application 2

Performance
Measurement

Performance
Measurement
Application 1

token ring
4 megabit/s

Model AGS/2

10 megabit/s ethernet

Figure 7-1: Network for Distributed Experiments

In Figure 7-1, we see that both performance measurement applications were on the
token ring, while two of the three servers were on the Ethernet. Therefore, each read or
write quorum contained at least one server on the token ring; at least one RPC in every
round of two parallel RPCs had to cross the gateway server. The latency associated with
a round is determined by the slowest RPC in the round, so the communication cost of a
two-server round in our experiments was roughly independent of which quorum was
chosen for the round. This was checked experimentally and found to be correct. The

The Performance of Our Architecture 127

latency for a Camelot RPC from a client on one side of the gateway to a server on the
other was measured to be 27 ms. The latency for a round-trip UDP datagram [48]
between the same pair of machines was measured to be 10 ms.

For local experiments, the workstation was not running in single user mode. While no
extraneous user processes were running, no attempt was made to disable system demons
or limit their activity. For distributed experiments, extraneous user processes, even large
ones like display managers and text editors, were allowed to run on the workstations
hosting the clients and servers. However, no one was actively using these machines for
any other purpose while the experiments were in progress. All distributed tests were run
late at night, when the network was lightly loaded.

7.2. Basic Timings

For each of the primitive data types supported by our prototype, we performed local and
distributed timings. In these experiments, a single server performed operations on a
single replicated object.

7.2.1. Methodology

We used the primitive analysis methodology of Spector and Daniels [55]. This
methodology treats a set of operations and a set of primitives used to implement them.
The idea behind the methodology is to compare the measured performance of the
operations with predictions based on the measured performance of the primitives. If the
difference between the measured and predicted performance is small, it can be taken as
evidence in favor of two things: the experimenter’s knowledge of the decomposition of
the operations under study in terms of the primitives is correct; and the primitives
represent the bulk of the work required to perform the operations. Broadly, this indicates
that the experimenter understands the operation of the system, and that the measured
performance of the operations under study is an accurate representation of their
performance on the test system. The decomposition used to make the predictions can
then be used with some confidence to predict the performance that would be observed if
the operations were implemented on a different platform, given only the performance of
the primitives on the new platform.

The performance measure used in Spector and Daniels’s methodology is incremental
latency, defined as the time added to the latency of a transaction when a single operation

11of a given type is added to the work performed by the transaction. The incremental

11Spector and Daniels use a more general definition for incremental latency, making the technique
applicable to other units of work besides transactions.

128 Chapter 7

latency of a given operation is measured as follows. The average latency to execute a
transaction that performs the operation once is measured, as is the average latency to
execute a transaction that performs the operation n + 1 times. The difference between
these latencies is computed and divided by n to yield the incremental latency for the
operation. The choice of an appropriate value for n depends on the details of the
operation whose incremental latency is being measured.

To apply Spector and Daniels’s methodology, the incremental latencies of the
operations under study are measured, as are those of the primitives, unless they are
already known. The decomposition of each operation O into primitives is characterizedi

→by a primitive usage vector u , which consists of the average number of times that each ofi
→the primitives is executed in the process of executing O . The primitive cost vector ci

consists of the incremental latency of each primitive operation. The predicted
→ →incremental latency of O is merely u ⋅ c.i i

7.2.2. Primitives and Their Costs

We used three primitives in the analysis of the operations on our data types. The
incremental latencies of these operations were measured with a simple Camelot client
and server written for the purpose.

The first primitive used was the Round, a nested transaction containing a parallel RPC
to two servers. This is the computational structure associated with a round in any of our
replicated protocols as implemented in our prototype system. The round represents the
communication costs associated with our protocols. It would be more natural to have the
nested transaction and the parallel RPCs be two separate primitives. The reason we do
not do this is discussed at length in Sections 7.2.9. The RPCs in the rounds that we timed
had a single integer argument and no return arguments.

There are two types of Rounds, local and distributed, corresponding to the rounds that
occur in our local and distributed experiments. In the local case, the client and both
servers reside on the same machine. In the distributed case, all three processes reside on
different machines. In measuring the cost of a distributed round, we made sure that the
client and servers were situated on machines that would host a performance measurement
application and representative servers, respectively, in our experiments. This ensured
that the latency measured for the distributed Round primitive would correspond roughly
to the latency incurred for a distributed round in the experiments.

The second primitive we used was the Modify, a recoverable storage modify operation.
The amount of recoverable data affected by each modify operation in our experiments
varied, though it was never very large. The Modify operations that we timed affected
four bytes.

The Performance of Our Architecture 129

The third primitive we used was the Lock, an operation that secures a lock on behalf of
a transaction. We measured two latencies for this primitive, one corresponding to a
completely uncontested lock, and one corresponding to a lock held by fifty transactions
in the same family as the locking transaction. The latter latency more accurately
reflected the latency observed in experiments on data types that used the recoverable
storage allocator (RSMs, hash table RSMs and MRSMs). Note that this effect is an
experimental artifact, a subtle interaction of our experimental procedure with our
recoverable storage allocator and the Camelot library’s lock manager.

The primitives and their measured incremental latencies are illustrated in Table 7-1.

Primitive Latency (ms)

Round (local) 17.7

Round (distributed) 43.0

Modify 1.0

Lock (uncontested) 0.2

Lock (inherited) 0.4

Table 7-1: Incremental Latencies of Primitive Operations

One more incremental latency should be noted, that of the Non-replicated Round (i.e., a
subtransaction containing an RPC). While this figure is not used in our analysis, it
provides a useful baseline for interpreting the results of the analysis. The measured value
of this latency in the distributed case is 38 ms.

7.2.3. Primitive Usage

Decomposing the operations on our replicated data objects into the primitives is
complicated by the complexity of our algorithms, and in particular by our use of
optimistic two-stage protocols. The code executed by a representative server when
performing certain complex representative operations is very much a function of the
contents of the representative. For example, the RepCoalesce operation must create
entries for the real predecessor and successor of the address that is being erased only if it
does not already contain these entries. Because we use of optimistic two-stage protocols,
some stages of some operations will be skipped on occasion. The primitive costs
associated with an optional stage must be multiplied by the probability of executing the
stage, but our protocols are complex enough that it is not always practical to calculate the
probability of executing a given stage.

The approach we took to dealing with representative operations whose use of the
primitives varies from call to call was simple, if slightly crude. We examined the code,

130 Chapter 7

and in cases where we had some intuition as to the probability of a primitive being
executed, we assumed this probability. In all other cases, we assumed that the program
took either branch of each if statement with equal probability. From these probabilities,
we were able to calculate an approximate decomposition of complex representative
operations into Update and Lock primitives.

The approach we took to performing the decomposition of our operations that do not
run in a fixed number of rounds was to do a rough estimate as described in the previous
paragraph for each possible length of the operation in rounds. Using the terminology

→introduced above, we computed a separate u vector for each running length. Then wei
used the actual relative frequency of the different running lengths of the operation

→observed in the experiments to compute a weighted average of the u values. Thisi
weighted average was used to compute the predicted cost of the operation.

The technique described in the previous paragraph might sound somewhat suspect, in
that we are using data gathered in an experiment to compute ‘‘predictions’’ for the
performance measured in the experiment. Several things should be kept in mind,
however. For most of our optimistic protocols, we had strong intuitions about how many
stages would actually be executed. For instance, we knew that the Erase operation in the
RSM would almost always require two rounds. For such operations, we did not really
use the technique. If the observed relative frequency of running lengths for such an
operation had not matched our intuition, we would have investigated the discrepancy.
For some optimistic protocols, like the one round delete for the hash table RSM, our
understanding of the efficacy of the optimization is based almost solely on empirical data
gleaned from our experiments. Therefore, it seems fair to use the relevant experimental
data in the decompositions that are supposed to represent our understanding of the
system. Note that there are only three operations whose primitive usage vector relied on
histogram data to a significant degree among the fifteen operations we studied: the hash
table RSM Erase operation and the MRSM Delete and Modify2 operations.

The primitive usage estimates are shown in Table 7-2. These estimates combine the
estimates we made by studying the source code with the communication cost histogram
data gathered in our experiments, as described above. Histograms from local and
distributed experiments were combined to make this table. As expected, histograms from
corresponding local and distributed experiments were nearly identical. Note that the

→rows in Table 7-2 correspond to primitive usage vectors (u).i

The Performance of Our Architecture 131

Operation Rounds Modifies Locks

RSM

Read 1 0 1

Write 1 5 2

Erase 2 8 2

Hash Table RSM

Read 1 0 1

Write 1 3 1

Erase 1.6 4.5 1.6

Array RSM

Read 1 0 1

Write 1 1 1

Erase 1 1 1

MRSM

Lookup 1 0 1

Lookup2 1 0 2

Insert 1 8 5

Delete 2.9 10.9 8.4

ModifyData 2 4.7 4

Modify2 2.8 11.7 10.1

Table 7-2: Estimated Primitive Operation Counts for Operations on Replicated Objects

7.2.4. Experimental Details

Our timing experiments consisted of three phases. In the first phase, we performed 200
sets of 11 transactions, each transaction containing 5 operations, for a total of 11,000
operations. The purpose of this phase was to allow the data structure to come to
equilibrium; we did not use the data gathered in this phase. The first phase was omitted
for the array RSM, whose performance does not depend on the contents of the
representatives. The second phase was identical to the first phase, except that the data
was used to compute the average latency of a transaction containing 11 operations, for

132 Chapter 7

each operation supported by the data type. The final phase consisted of 200 sets of 10
transactions, each containing 1 operation. The results of the second and third phases
were used to compute the incremental latency of the operations supported by the data
type. Latencies were computed to the nearest millisecond. The histogram data gathered
in the second and third phases was used as described in Section 7.2.3 to compute the
decompositions of the operations into primitives.

7.2.5. Local Performance

Using the methodology described above, we measured the local performance of our
prototype. Note that these experiments are not at all realistic. Our replication protocols
are by their nature distributed: they depend on distribution for their high availability.
However, these experiments were very useful in testing our understanding of the
system’s performance.

Latencies measured in distributed experiments are typically dominated by
communication times. In addition to being large, distributed communication times tend
to be fairly dispersive, especially in complex networks like the one on which our
experiments were performed. Even if our understanding of the other components of the
latency besides communication were completely flawed, it would probably not be
apparent from the results of distributed experiments alone.

On our system, the local round cost is less that half of the distributed cost. Furthermore,
operations on multiple representative servers do not parallelize in the local case.
Therefore, the latency of an operation absorbs the latencies for Modify and Lock
operations on both representatives in each quorum, rather only one, as in the distributed
case. Combining these effects, our local experiments magnify the importance of the
update and locking components of operational latency by a factor of four relative to the
communication component. Also, local RPC times are quite consistent. If our
understanding of the number of Modifies or Locks performed by an operation were
wrong, it would be much more likely to come out in the local experiments than in the
distributed ones.

The results of our local experiment on the RSM data type are shown in Figure 7-2. The
word time in the caption of Figure 7-2 refers to incremental latency. We will adopt this
usage for the remainder of Section 7.2. The bars illustrating the predicted cost for
operations are subdivided into three parts, representing the portions of the latency due to
communication (Rounds), update (Modifies) and locking (Locks). Note that the Read
operation has no update cost associated with it. The results of our local experiments on
hash table RSMs, array RSMs and MRSMs are shown in Figures 7-3, 7-4 and 7-5. The
same scale is used in the graphs for all three RSM implementations to facilitate
comparison. The results of all of our local experiments are summarized in Table 7-6.

The Performance of Our Architecture 133

Operation

T
im

e
(m

s)

10

20

30

40

50

60

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-2: Predicted and Measured Times for Local RSM Operations

Operation

T
im

e
(m

s)

10

20

30

40

50

60

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-3: Predicted and Measured Times for Local Hash Table RSM Operations

On the whole, the level of agreement between measured and predicted times observed
in our local experiments is quite satisfactory. For all operations on the three RSM
implementations, with the exception of the Write operation on the normal RSM, the
measured time is within 2 ms of the predicted time. This is easily accounted for by

134 Chapter 7

Operation

T
im

e
(m

s)

10

20

30

40

50

60

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-4: Predicted and Measured Times for Local Array RSM Operations

Operation

T
im

e
(m

s)

20

40

60

80

100

120

0
Lookup Lookup2 Insert Delete ModifyData Modify2

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-5: Predicted and Measured Times for Local MRSM Operations

computation costs and experimental error. Besides the computation inherent in our
protocols, significant sources of computation not accounted for in our predictions include
marshaling of arguments in RPCs and hashing and comparison of addresses by the DDS
package. Significant sources of experimental error include measurement error and
background computation on the test machine. The 5 ms disparity observed in the RSM

The Performance of Our Architecture 135

Predicted Measured Difference Percent
Operation Time (ms) Time (ms) (ms) Difference

RSM

Read 19 21 2 11

Write 29 34 5 17

Erase 53 57 4 8

Hash Table RSM

Read 19 20 1 5

Write 25 27 2 8

Erase 39 40 1 3

Array RSM

Read 18 18 0 0

Write 20 20 0 0

Erase 20 20 0 0

MRSM

Lookup 19 20 1 5

Lookup2 19 22 3 16

Insert 38 49 11 29

Delete 81 98 17 21

ModifyData 48 55 7 15

Modify2 82 87 5 6

Figure 7-6: Predicted and Measured Times for Operations on Local Replicated Objects

Write operation (Figure 7-2) is somewhat mysterious: 5 ms represents a fair amount of
computation. This disparity merits further investigation, but we did not have the time to
pursue it.

The level of agreement observed between measurements and predictions is inversely
related to the complexity of the data type. The more complex the implementation, the
more computation is performed, and the less accurate our decomposition of its operations
into primitives. For the array RSM operations, the predictions are exact within the
precision allowed by our measurements. This is not all that surprising, when one

136 Chapter 7

considers that the array RSM operations are very similar to the primitives whose
observed latencies were used to make the predictions. The hash table RSM
implementation is substantially more complex than the array RSM, and the average of the
percent differences between measured and predicted latencies for its operations is 5%.
The RSM implementation is substantially more complex than the hash table RSM, and
we have less confidence in our decomposition of its operations into primitives due to the
complexity of the skip list operations. The average difference between measurements
and predictions for RSM operations is 11%.

The MRSM implementation is more complex than any of the RSM implementations.
The average difference between measurements and predictions for MRSM operations is
14%. Unlike the RSM implementations, the MRSM implementation incurs additional
RPC marshaling expenses due to the use of the RPC batching facility (Section 6.2.1.2).
We examined the operating system’s virtual memory statistics during some MRSM runs
and found that the system was doing a nontrivial amount of paging. These additional
sources of latency amply account for the 14% discrepancy.

7.2.6. Distributed Performance

In our distributed experiments, the performance measurement applications and each
server ran on a separate machine (Figure 7-1), as they would in a practical
implementation of our architecture. The network that connected the workstations used in
our distributed experiments serves the communication needs of the Carnegie-Mellon
University computing community. We ran our experiments at night to minimize
externally generated network load, but backups, software distribution, and other people’s
experiments still caused high loads from time to time. In a commercial application of our
architecture, we anticipate that a dedicated network with sufficient bandwidth to assure
reasonable communication performance would be used. Therefore, we felt no
compunctions about discarding runs wherein latencies were clearly increased by external
network traffic. Note, however, that we never threw away individual sets: all of our
results come from consecutive runs of 11,000 operations.

The results of our distributed experiments are shown in Figures 7-7, 7-8, 7-9 and 7-10.
The format of these graphs is identical to the format used in the graphs illustrating local
performance. Again, the same scale is used in the graphs for all three RSM
implementations. The results of our distributed experiments are summarized in Table
7-6.

As in the local case, the level of agreement between measured and predicted times
observed in our distributed experiments is quite satisfactory. The interpretation of the
distributed results is fairly different from that of the local results. It can be seen in

The Performance of Our Architecture 137

Operation

T
im

e
(m

s)

20

40

60

80

100

120

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-7: Predicted and Measured Times for Distributed RSM Operations

Operation

T
im

e
(m

s)

20

40

60

80

100

120

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-8: Predicted and Measured Times for Distributed Hash Table RSM Operations

Figures 7-7, 7-8, 7-9 and 7-10 our distributed times really are dominated by
communication. Because of our methodology, the component in our primitive cost
vectors representing communication cost is always exact. The accuracy of our prediction
of the cost component due to communication, then, is determined by how closely the
average cost of an RPC in the experimental run matches the cost assigned to the RPC

138 Chapter 7

Operation

T
im

e
(m

s)

20

40

60

80

100

120

0
Read Write Erase

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-9: Predicted and Measured Times for Distributed Array RSM Operations

Operation

T
im

e
(m

s)

25

50

75

100

125

150

175

0
Lookup Lookup2 Insert Delete ModifyData Modify2

Predicted (Communication)
Predicted (Update)
Predicted (Locking)
Measured

Figure 7-10: Predicted and Measured Times for Distributed MRSM Operations

primitive. In essence, the accuracy of our predictions for distributed experiments is
primarily a function of how well-behaved the network was during the run. This is
evidenced by the fact that the average discrepancies for Hash Table RSMs, RSMs, and
MRSMs are 8%, 5%, and 7%; these figures bear no relation to the relative complexities
of the data types.

The Performance of Our Architecture 139

Predicted Measured Difference Percent
Operation Time (ms) Time (ms) (ms) Difference

RSM

Read 43 44 1 2

Write 49 52 3 6

Erase 96 103 7 7

Hash Table RSM

Read 43 47 4 9

Write 46 49 3 7

Erase 75 82 7 9

Array RSM

Read 43 43 0 0

Write 44 44 0 0

Erase 44 44 0 0

MRSM

Lookup 43 45 2 5

Lookup2 44 46 2 5

Insert 53 59 6 11

Delete 140 157 17 12

ModifyData 92 96 4 4

Modify2 135 142 7 5

Table 7-3: Predicted and Measured Times for Distributed Replicated Objects

Our results for array RSM implementation deserve special note. Once again, the
predicted values exactly match the measured values, to within the precision of our
measurements. This is somewhat artificial. While the extreme similarity of the
operations to the primitives is still partially responsible for this result, it is caused in part
by the fact that we knew what to look for in selecting a run to analyze. By the nature of
the array RSM data type, the cost of executing each operation should not vary from
instance to instance. Therefore, any significant variation in the times for sets of the same
operation was assumed to indicate a network anomaly and the run was discarded.

140 Chapter 7

Because the runs were so fast compared to those on other data types, it was much more
likely that the network remained free of anomalies for the duration of a run.

Our results delineate a clear cost-performance tradeoff among the three RSM
implementations. All array RSM operations cost approximately 43 ms (the cost of a
Round), but array RSMs only work for small address spaces, and do not support efficient
range or navigation operations. The Read and Write costs are similar for all three
implementations, but the Erase costs vary substantially. The hash table RSM Erase
operation costs an additional 86% beyond that of the array RSM. In exchange, the hash
table RSM allows the use of infinite address spaces. The normal RSM Erase operation
costs a further 26% beyond the cost of the hash table RSM Erase operation, but the
normal RSM supports efficient range and navigation operations.

The cost of the Erase operations for the hash table RSM and the normal RSM, as well as
the cost of all other multi-round operations, would be reduced substantially if we had
nested each operation in a subtransaction instead of nesting each round (Section 6.3).
The primitive analysis methodology allows us to quantify this. For each operation
requiring more than one round, the cost savings is the number of rounds in excess of one
multiplied by the difference in cost between a parallel RPC and a round, which is 12 ms.
From table 7-2, we see that the savings would be 12 ms for the RSM Erase operation and
7 ms for the hash table RSM Erase operation. Thus, the hash table RSM Erase operation
would have cost only 59% beyond the cost of the array RSM Erase operation if we had
made the correct design decision with regard to subtransaction usage.

7.2.7. Histogram Data

Several pieces of data from the histograms generated by the performance measurement
application deserve to be reported directly. The RSM Write operation required three
rounds 2% of the time. This figure is highly dependent on a system constant, the number
of entries returned in the first stage of the real neighbors determination. This constant
was set to 8 in all of our experiments. Preliminary studies indicate that if this constant
were increased to 10, the third round would only be necessary approximately 0.2% of the
time.

The hash table RSM Write operation completed in a single round 38% of the time. This
indicates that the relevant optimistic two stage protocol (Section 6.2.3.2) was well worth
implementing. The third round was virtually never required for this operation, which
indicates that the value of 8 for the system constant referred to in the previous paragraph
is ample for hash table RSMs. It is possible that a lower value would suffice.

The MRSM uses the same optimistic two stage protocol referred to in the previous
paragraph in both of its component RSMs. This occasionally allows the MRSM Delete

The Performance of Our Architecture 141

and Modify2 operations to complete in two rounds. The Delete operation completed in
two rounds 6% of the time and the Modify2 operation completed in two rounds 18% of
the time. The 6% figure is right on the border in terms of justifying the use of the
optimistic protocol, while the 18% figure clearly justifies it, though the savings are
modest. The Delete and Modify2 operations virtually never required their fourth rounds,
which indicates that the value of 8 for the system constant referred to above is ample for
MRSMs as well.

7.2.8. Performing a Primitive Analysis

The level of agreement between predictions and measurements in all of the experiments
described above is reasonable. The graphs are pretty and the explanations are plausible.
But these results do not tell the whole story. In our initial runs, the predicted and
measured times were not even close. In fact, they showed little relation to one another.
The process of bringing them into accord is the process of coming to understand the
performance of the system. In this process, both the system and the predictions are
modified. When a reasonable level of agreement is achieved, the process is deemed
complete. We briefly describe this process below in the hopes that it will help others
who seek to understand the performance of a distributed system.

Whenever there is a difference between predicted and measured latencies, the question
to ask oneself is: ‘‘Where is the additional time going?’’ A tool that can be of great help
in answering this question is the profiler, which reports on the dynamic behavior of a
program: how often each function is called and how much time is spent in each function.
It is sometimes difficult to get profilers to work properly in a distributed environment, but
it is worth the trouble. A cruder form of profiling, which should always precede the use
of a profiler, is checking which components of a distributed system are accumulating the
bulk of the CPU time. All operating systems provide a utility like Unix’s ps program that
can be used to perform this function. The knowledge of which processes are consuming
the time allows one to target one’s profiling effort to the correct components.

For example, in early runs of our experiments, ps indicated that the performance
measurement application was accumulating substantially more CPU time than the
representative servers, which was highly suspect. We profiled the application, and found
that it was spending a substantial fraction of its time in a function called spin_lock. A
little sleuthing revealed that this function resided in the cthreads library [13], which had
been erroneously configured to do spin locking on uniprocessors. We modified cthreads
to rectify the situation, recompiled our system, and the performance problem went away.

An important source of problems in primitive analyses is analyzing in terms of the
wrong primitives. Initially, instead of using the Round primitive, we used two separate

142 Chapter 7

primitives, the Subtransaction and the Parallel RPC. These primitives seem more
natural, and should provide more information about where the time is going; nested
transaction costs and communication costs are two separate categories. Our measured
costs were consistently higher than our predicted costs even for array RSMs, which are
barely more complex than the primitives. This led us to think about how array RSM
timings differed from primitive timings. The biggest difference that we could think of
was that the array RSM operations combined several primitives.

This observation led us to time a parallel RPC nested in a subtransaction, using the
primitive timing program. The incremental latency for the local form of this operation
was 17.7 ms, while the latencies for Subtransactions and local Parallel RPCs were 4.4 ms

12and 3.9 ms. The Round cost is more than double the sum of the costs of the
Subtransaction and the Parallel RPC. A similar discrepancy exists in the distributed case:
the incremental latency of a distributed parallel RPC is 31 ms, while that of a distributed
Round is 43 ms. We switched to using the Round as a primitive operation, and our
predicted costs came much more into line with our measured costs. The choice of
primitives in primitive analyses is discussed in greater detail in Section 7.2.9.

Several more problems had to be discovered and corrected to achieve the level of
agreement reported in Sections 7.2.5 and 7.2.6. For the most part, the techniques
involved were similar to those used in the scenarios described above. Profiling revealed
the fact that some transactional locks were substantially more expensive than others,
causing us to use two forms of the locking primitive in our analysis. Use of the ps
program alone revealed that a transaction system component in a distributed test was
incorrectly configured. Closer examination showed that it was running with debugging
output enabled, resulting in extremely high latencies for all operations involving the
component.

7.2.9. A Note on the Primitive Analysis Methodology

The problem with our initial decision to use the Subtransaction and Parallel RPC
primitives points to a basic problem with the primitive analysis methodology. The
methodology relies on the property that the incremental latency of a compound operation
is equal to the sum of the incremental latencies of the component primitives. Let us call a
set of primitives for which this property holds an independent set of primitives.

Before performing a primitive analysis, it would be nice to know that the chosen set of
primitives was independent. For a given set of primitives, however, there are infinitely

12Internally, this discrepancy results from the fact that each server has to execute a Camelot TS_Join call
for each subtransaction that it participates in.

The Performance of Our Architecture 143

many ways in which the primitives can be combined to form operations. As a
consequence, it is not possible to check by enumeration whether a given set of primitives
is independent. But it is possible to make strides in that direction.

Suppose we have a set of primitives such that, for any two distinct primitives p and q
drawn from the set, the incremental latency of the compound operation p q is equal to the°
sum of the incremental latencies of the primitive operations p and q. We say that such a
set of primitives is pairwise independent.

Unlike independence, it is practical to check whether a set of primitives is pairwise
independent. If there are n primitives in the set, one must time the incremental latencies
of the of the n(n − 1) ordered pairs of distinct primitives to test for pairwise
independence. Note that order is important. For example, consider the primitives that we
used initially in our experiments. A Parallel RPC in which each RPC does a
Subtransaction will have an incremental latency equal to the sum of the latencies of the
Subtransaction and the Parallel RPC, but the set is not pairwise independent.

Pairwise independence is clearly a necessary condition for independence. While it is
not a sufficient condition, we conjecture that in many practical systems, pairwise
independence of a set of primitives is a sufficient condition for primitive analysis to work
reasonably well most of the time. That is to say, we believe that it is unlikely that there
will be any ‘‘severely nonlinear’’ interactions of three or more primitives if there are no
such interactions between any two primitives.

One more note should be added concerning the primitive analysis methodology. The
methodology is defined in terms of incremental latency. In order for this term to be well
defined, it is critical that the latency of an operation be linear in the number of
occurrences of any primitive in the execution of the operation. In real systems, this often
is not the case. Many transaction system primitives involve computation that is quadratic
or worse in the number of occurrences of the primitive in a given transaction. However,
it typically takes hundreds or thousands of occurrences of these operations in a single
transaction for the quadratic behavior to significantly affect the latency of the transaction.
In practice, a primitive analysis will yield reasonable results if the latency of an operation
is approximately linear in the number of occurrences of each primitive for reasonable
numbers of occurrences per operation.

144 Chapter 7

7.3. Concurrent Performance

We performed an experiment to test the performance of the hash table RSM under
concurrent use. In this experiment, we compared the performance of a single RSM
simultaneously accessed by two clients to that of two separate RSMs each accessed by
one client. In the latter case, both RSMs had their representatives at the same three
representative servers. One would expect the performance of concurrent operations on
separate RSMs to be slightly better, as these operations will never conflict for locks,
whereas operations on the same RSM will occasionally conflict, resulting in increased
latency. In this experiment, we measured latencies of transactions containing a single
operation, rather than incremental latencies, as no additional information would be gained
from the use of incremental latencies.

The experiment consisted of two parts, one for the single RSM and one for the two
separate RSMs. Part 1 consisted of three phases. In the first phase, each client
performed 250 Writes to the RSM, so that it contained approximately 500 occupied
locations. In the second phase, each client performed 100 sets of 100 transactions, each
containing 1 operation, for a combined total of 20,000 operations. This phase allowed
the RSM to come to equilibrium. In the final phase, during which data was gathered,
each client performed 100 sets of 100 transactions each containing 1 operation.

Part 2 consisted of three phases, each similar in nature to the corresponding phase in
Part 1. In the first phase, each client performed 500 Writes to its own RSM, so that both
RSMs contained 500 occupied addresses. In the second phase, each client performed 200
sets of 10 transactions each containing 10 operations, for a total of 20,000 operations on
each RSM. The final phase was identical to the final phase in Part 1, except that each
client performed the operations on its own RSM.

The results of this experiment are presented in figure 7-11. The transaction times
illustrated in this graph were output directly by the performance measurement application
in the third phases of the two parts of the experiment. As expected, the latencies of
concurrent operations on a single RSM are slightly higher than those on separate RSMs.
The average increase in latency is 6%, a reasonable overhead for performing concurrent
operations on the same data object. Note that this figure is sensitive to many parameters,
including the number of hash buckets in the representatives and the length of the
concurrent transactions.

The Performance of Our Architecture 145

Operation

T
im

e
(m

s)

50

100

150

200

250

0
Read Write Erase

Same RSM
Separate RSMs

Figure 7-11: Transaction Times Under Concurrent Usage

7.4. Optimistic Timestamp Performance

In Section 4.1.1, we introduced the notion of the optimistic timestamp. We noted that
optimistic timestamps are more prone to fail when there are hot spots: locations that are
frequently written by multiple clients. However, we conjectured that optimistic
timestamps would not perform badly even when there were hot spots. We performed an
experiment to test this conjecture.

In the experiment, we created a severe hot spot. Two clients repeatedly performed
transactions that wrote to the same location in an array RSM. This is the fastest
transaction possible that performs a Write operation on a replicated object. Each client
performed 100 sets of 100 transactions containing 1 Write operation, for a total of 10,000
Write operations per client. We were not interested in the times reported by the clients,
only the communication cost histograms.

We were surprised by the results of the experiment. In both clients, well over 99% of
the write operations required only a single round. This means that in our prototype
system, virtually all Write operations require only a single round. It is a testament to the
synchronization of the real-time clocks of the workstations used in the tests. This
synchronization is performed by the Internet standard NTP clock synchronization
protocol [41, 42], developed by David Mills.

146 Chapter 7

7.5. Failure Recovery Performance

One aspect of our prototype’s performance that is conspicuously missing from this
chapter is failure recovery performance. We consider the failure recovery performance
of our protocols to be a major selling point. While many replication protocols perform
costly distributed reconfiguration to furnish continued availability in the face of a replica
failure, ours do not. It would seem natural to perform experiments measuring the delay
introduced into an operation by the failure of an underlying representative server. We
initially planned to perform such experiments, but on reflection, we came to the
conclusion that it would be difficult to measure the desired quantity, due primarily to the
coarse granularity of the Unix real-time clock. However, it is possible to roughly
estimate the failure recovery performance of our protocols without the need for
experiment.

Our protocols react to the failure of a representative server by retrying all or part of the
failed operation with a new quorum containing a replacement for the failed server. The
delay introduced by the failure is the sum of the time required to sense the failure and the
time spent performing and aborting the failed operation. In the worst case, the time to
sense a failure is the timeout interval on the RPC to the representative server. The time
spent performing and aborting the failed operation will typically be negligible compared
to any reasonable distributed RPC timeout interval, so the maximum delay introduced by
a failure is essentially the RPC timeout interval.

Most representative server failures will probably cause a delay that is much shorter than
the RPC timeout interval, as Mach and Camelot attempt to actively propagate news of
server crashes. If a client is aware that a server process has crashed before an RPC is
made to the server, the RPC will be cut short immediately at the client side. This case
may be relatively common, as many clients will perform RSM operations only
intermittently (e.g., interactive clients). If a server’s node is aware that the server has
crashed but the client’s node is not yet aware, the RPC will return as soon as it reaches
the server’s node. Even if a server failure occurs during the execution of an RPC, the
RPC will probably terminate before it would time out, because the enclosing transaction

13will be automatically aborted by the Camelot transaction manager at the server’s node.

If a server’s node crashes, as opposed to just the server process, it will take longer for
the client’s node to become aware of the failure; system processes on the server’s node
will no longer be around to report the failure to their peers on the client’s node. But even
in the case of a node failure, an RPC may well terminate before it would time out, as the

13The death pill mechanism [8] in the Camelot library causes RPCs to be promptly terminated when the
enclosing transaction aborts.

The Performance of Our Architecture 147

"ping" timeout interval used by Mach’s network message server to detect node crashes is
likely to be shorter than the RPC timeout interval.

In summary, the delay introduced by the failure of a representative server may vary
from under a millisecond to the timeout interval on RPCs to the server, which may be as
high as 60 seconds. The distribution of delay times is affected by many things, including
the frequency with which the client performs RSM operations, and the details of the
underlying transactional RPC implementation. While it is difficult to make a good
quantitative estimate for the average delay, a reasonable guess might be several times the
average cost of a distributed Round on the underlying platform.

7.6. Conclusions

In this chapter, we evaluated various aspects of the performance of our prototype.
While the prototype is not blazingly fast, it is not slow either. Its lackluster performance
is primarily a reflection of the speed of the underlying hardware and system software, in
particular, the transaction and communication facilities. This is demonstrated by
comparing the replicated operation costs in Table 7-3 to the baseline non-replicated
Round cost of 38 ms.

On the hardware and system software used in the experiments, we estimate that the time
required to perform RSM Read and Write operations is within 10 percent of the time that
would be required to perform the corresponding operations on a non-replicated remote
data object. Our estimate for the replication overhead for the Erase operation varies from
10 to 120 percent, depending on the type of RSM that is used.

The prototype demonstrates the feasibility of our architecture. The experimental results
suggest that the performance of the architecture is quite good relative to that of the
underlying transaction and communication primitives. The transaction and
communication systems underlying the prototype are in themselves research prototypes.
Neither Camelot nor Mach excel in the key areas that determine the performance of the
prototype.

Mach’s distributed RPC times on the hardware described in Section 7.1 are on the order
of 20 ms. Much better RPC performance has been achieved on similar hardware by
several research operating systems with highly optimized RPC facilities. See Schroeder
and Burrows for a comparison of RPC times for such systems [52]. There are few
transaction systems available today that offer facilities comparable to Camelot’s, and
none have been optimized for performance. However, we are aware of many
inefficiencies in Camelot’s protocols and we believe that the next generation of general
purpose distributed transaction systems will be much faster. When the bright outlook for
the future of high speed transaction and communication facilities is taken into account,

148 Chapter 7

our performance results lead us to believe that our architecture shows great promise of
practicality.

Our success in predicting the performance of the prototype from the performance of the
underlying primitives indicates that we have a good understanding of the system, and of
our algorithms. As a result, we can have a fairly high degree of trust in our
decompositions of operations into primitives (Table 7-2). These decompositions can thus
be used with some confidence to predict the performance of our architecture on a faster
platform.

The communication cost histogram data from the basic timings, as well as the results of
the optimistic timestamp experiment, show that our optimistic two-stage protocols are
extremely effective in reducing communication costs. But the results show that
communication still accounts for the lion’s share of the latency. This validates our focus
on reducing the number of rounds of RPCs as a means of decreasing latency. The
dominance of communication costs in the prototype is exacerbated by the poor
transactional RPC performance of Camelot and Mach, but even the most highly
optimized communication systems have distributed RPC times two orders of magnitude
higher than their normal procedure call times [52]. Therefore, our focus on reducing
RPCs is valid independent of the underlying platform, and our optimistic two-stage
protocols will remain effective in reducing latency on any platform.

Chapter 8

Conclusions

In this chapter, we enumerate the contributions of this work, present directions for
future study, and summarize our main results.

8.1. Contributions

The contributions of this dissertation to computer science can be divided into two areas:
systems and theory. The primary contribution in the systems area is the demonstration of
the practicality of replication. In the process of pursuing this goal, several secondary
contributions were made. One such contribution is the invention of optimistic
timestamps, a technique for reducing communication costs in blind-write operations on
replicated objects. A related contribution is the invention of optimistic two-stage
protocols, a generalization of the optimistic timestamp technique to a broad class of
distributed algorithms. Another secondary contribution is the invention of auto-batching,
a technique for reducing communication costs by automatically combining concurrent
RPCs.

Our prototype implementation is an interesting demonstration of the use of a general
purpose transaction system; it is one of the largest and most sophisticated applications
ever built on the Camelot system. Our performance studies on the prototype provide a
good example of the use of the primitive analysis technique to aid in the understanding of
the performance of a complex distributed system. In the process of performing the
analysis, we formalized the primitive analysis methodology and made several
observations concerning its use. In particular, our notion of pairwise independence
should assist future systems practitioners in choosing appropriate primitives for use in
primitive analyses.

The primary contribution of this dissertation in the theory area is the development and
analysis of the replicated sparse memory and its variants, which comprise a new family
of distributed data structures and related algorithms. A key component of the
development is the proof of a basic structural property of the RSM that allows us to
construct a fast algorithm for the Erase operation. Our average-case performance

149

150 Chapter 8

analysis of the RSM represents an interesting mathematical analysis of a complex
distributed data structure. The analysis was remarkably successful in predicting the
performance of simulations and yielded many insights into the operation of the data
structure. A secondary contribution in the theory area is the development of another
distributed data structure, the replicated counter.

8.2. Directions for Future Work

An internal attribute of the RSM that merits further study is delete list length (Section
3.1). While the performance analysis in Chapter 3 tells us the average delete list length
that will be encountered in an RSM under random use, it does not yield any additional
information about the distribution. This distribution relates to the tradeoff between the
number of entries returned in the first stage of the real predecessor algorithm and the
likelihood that the second stage will be necessary. We know from our experiments that
returning eight entries in the first stage is sufficient to eliminate the second stage 98% of
the time (Section 7.2.3) but we do not know any other points on the spectrum. The
simplest approach to obtaining the distribution is to instrument our prototype
implementation to keep a histogram of delete list lengths encountered. Alternatively, a
mathematical analysis could be attempted.

The performance studies in Chapter 7 concentrate on the latency of the operations on
our data objects. It would also be worthwhile to study the throughput of these operations.
The concurrent performance studies in Section 7.3 were fairly limited: they could be
expanded to include other RSM variants and access patterns. The optimistic timestamp
performance studies in Section 7.4 could be expanded to include more severe hot spots,
produced by more than two clients concurrently accessing the same RSM location.

It would be very interesting to do a performance comparison between our algorithms
and other replication algorithms. Unfortunately, a meaningful comparison would be very
difficult because of differences in the function exported by various replication
algorithms, differences in the underlying system models they assume, and the tendency
of many researchers in the field to omit detail from descriptions of their algorithms.
Perhaps the most promising approach to comparing the performance of replication
algorithms is to publish a carefully designed benchmark for these algorithms and
encourage practitioners in the field to report on the benchmark performance of their
algorithms. The success of this approach would be aided by the emergence of a standard
transaction system base, which would provide a natural platform for implementing the
many replication algorithms that require the services of a transaction system.

Several techniques presented in this dissertation might have applications outside our
replication algorithms. Among these techniques are optimistic timestamps, optimistic

Conclusions 151

two-stage protocols, and auto-batching. One possible area for further exploration is the
breadth of applicability of these techniques. Methods from queueing theory might be
used to analyze the sensitivity of optimistic timestamps to concurrency level, update
frequency, clock accuracy, clock precision, and communication speed. A search could be
undertaken for distributed algorithms that fit into the two-stage protocol framework
(Section 4.1.2); such algorithms are candidates for optimistic two-stage protocols.
Similarly, a search could be undertaken for applications wherein a single process sends
multiple independent streams of RPCs to a server; such applications are candidates for
auto-batching. Unlike the other techniques discussed in this paragraph, auto-batching has
not been implemented. It might be worthwhile to implement it and study its
performance.

8.3. Summary

In this dissertation, we presented efficient replication algorithms for a family of table-
like data objects known as replicated sparse memories. The algorithms, which rely on
the support of an underlying distributed transaction system, run on a collection of
general-purpose computers connected by a network. They were designed primarily for
communication efficiency, using optimistic timestamps and other optimistic two-stage
protocols. We showed how a wide variety of useful data objects could be implemented
efficiently on top of replicated sparse memories. We presented an architecture that
implements our algorithms to provide application programmers with easy-to-use, generic
replicated data objects. We built a prototype system to demonstrate the feasibility of our
approach, and performed experiments to evaluate its performance. While the absolute
performance of the prototype was not outstanding, it was excellent relative to that of the
underlying communication and transaction system software.

It seems clear that the dominant hardware paradigm in the upcoming years will be high
speed local area networks of general purpose computers, file servers, display servers, and
the like, which may in turn be connected by long-haul networks. As microprocessor
technology matures, inexpensive computers are becoming extremely fast. It is likely that
distributed transaction system technology, which has been with us for over twenty years,
will soon come of age. The need for highly available computer systems has never been
greater. While replication has been discussed in the literature for years, the only highly
available systems technology generally viewed as commercially viable is special purpose
hardware with locally replicated data. Distributed replication, if it can be made practical,
offers much lower cost, and potentially, higher availability. Our thesis is that it can be
made practical.

152 Chapter 8

Appendix A

Detailed Formulation of Balance Equations

Let us first construct the balance equation for current entries. A formal statement of the
rate balance assertion is:

E[Number of entries entering current class in a chosen representative in one opr]
= E[Number of entries leaving current class in a chosen representative in one opr].

These expected values are computed over a space consisting of all of the possible state
transitions in our model. We expand the expectation values on both sides of the equation
by breaking the space up into three subspaces: the transitions that result from Insert
operations, Update operations and Erase operations:

P[Opr is Insert] × E[Number of entries entering current class in one Insert]
+ P[Opr is Update] × E[Number of entries entering current class in one Update]
+ P[Opr is Erase] × E[Number of entries entering current class in one Erase]

= P[Opr is Insert] × E[Number of entries leaving current class in one Insert]
+ P[Opr is Update] × E[Number of entries leaving current class in one Update]
+ P[Opr is Erase] × E[Number of entries leaving current class in one Erase].

We will assume that all of the probabilities in this equation are 1/3, as Inserts, Updates
and Erases occur with almost equal likelihood. The reason that they do not occur with
exactly equal likelihood is that Erases and Updates cannot occur in states where the RSM
is empty, and Inserts cannot occur in states where the RSM already contains every
address in the address space. However, these states represent a negligible fraction of the
state space and they all occur with extremely low probability. Each term has one of these
factors, so under the assumption, they all cancel out.

To formulate the first balance equation in terms of the unknowns, we expand the
expected values in the order they appear in the equation. The first term is:

E[Number of entries entering the current class in one Insert operation] .

A single entry will enter the current class if and only if the representative under
observation is chosen for the write quorum of the Insert operation. Thus the expected
value is merely the probability that the representative is chosen. Since there are N
representatives in the suite, and W are chosen at random for the write quorum, this is
W/N.

153

154 Appendix A

The second term is:

E[Number of entries entering the current class in one Update operation] .

Again, an entry can enter the current class only if the representative is chosen for the
write quorum. This time, however, the entry for the address being updated will not
necessarily enter the current class, as the representative could already have contained a
current entry for this address. In that case, no entry that was not already current would
become current. Thus, the value of the term is:

P[The representative is chosen for the write quorum]
× (1 − P[Rep already contains a current entry for address being updated]).

The probability that the representative is chosen for the write quorum is W/N. The
address to be updated is chosen at random from occupied addresses in the RSM so:

P[Representative already contains a current entry for address being updated]
= P[Representative contains a current entry for randomly chosen occupied address]
= c ′

Thus, the value of the second term is:

W
(1−c ′).

N

The third term is:

E[Number of entries entering the current class in one Erase operation].

There is no way for an entry to become current in the Erase operation, so this term
vanishes.

Now we come to the terms on the right hand side of the balance equation. The first
term on the right hand side is:

E[Number of entries leaving the current class in one Insert operation].

This term vanishes, as no entries leave the current class in Insert operations.

The second term on the right hand side is:

E[Number of entries leaving the current class in one Update operation] .

If the representative under observation contains a current entry for the address being
updated, and the representative is not chosen for the write quorum, then the current entry
becomes outdated. Thus the value of this term is:

(1 − P[The representative is chosen for the write quorum])
× P[Rep contains a current entry for a randomly chosen occupied address]

W
= (1−) c ′ .

N

The third term on the right hand side is:

E[Number of entries leaving the current class in one Erase operation] .

Detailed Formulation of Balance Equations 155

If the representative under observation contains a current entry for the address being
erased, the entry will leave the current class regardless of whether the representative is
chosen for the write quorum. If it is chosen, the entry will be deleted outright; otherwise,
the entry will become a ghost. Thus the value of this term is:

P[The representative contains a current entry for the address being erased]
= c ′ .

Combining all these terms, the balance equation for current entries is:

W W W
+ (1−c ′) = (1−)c ′ + c ′.

N N N

Simplifying, we get:

W
c ′ = .

N

We now construct the balance equation for outdated entries. By the same argument
used in the construction of the first balance equation, a formal statement of the rate
balance assertion becomes:

E[Number of entries entering the outdated class in one Insert operation]
+ E[Number of entries entering the outdated class in one Update operation]
+ E[Number of entries entering the outdated class in one Erase operation]

= E[Number of entries leaving the outdated class in one Insert operation]
+ E[Number of entries leaving the outdated class in one Update operation]
+ E[Number of entries leaving the outdated class in one Erase operation] .

We make the assumption that entries cannot enter the outdated class in Insert
operations, so the first term of the left hand side of the equation vanishes. In fact, if an
address is inserted when a ghosts for a previous incarnation of that address still remains
in a representative outside of the write quorum for the Insert operation, the ghosts will
become outdated. However, this is an extremely unlikely event, hence this term of the
equation is negligible compared to the others. Furthermore, it is not expressible in terms
of the unknowns.

In the Update operation an entry can become outdated as follows. If the representative
is not chosen for the write quorum and it contains a current entry for the address being
updated, the entry becomes outdated. Thus the value of the second terms is:

(1 − P[The representative is chosen for the write quorum])
× P[Rep contains a current entry for a randomly chosen occupied address]

W
= (1−) c ′ .

N

156 Appendix A

When an Erase operation occurs, entries for the real predecessor and real successor of
the address being erased are inserted into each member of the write quorum where they
do not already appear. They are inserted with version number zero, which assures that
they are outdated entries. This is the only way entries can enter the outdated class in an
Erase operation. Thus the number of entries entering the outdated class in the observed
representative in an Erase operation is zero if the representative is not chosen for the
write quorum. If it is chosen for the write quorum, then one entry will become outdated
if the representative does not contain an entry for the real predecessor of the address
being erased, and another entry will become outdated if the representative does not
contain an entry for the real successor.

We introduce some notation for events, to simplify the discussion that follows:

P = {Representative contains an entry for real predecessor of address being erased}
S = {Representative contains an entry for real successor of address being erased} .

On the basis of the previous observations, the value of the term being expanded is:
c cP[The representative is chosen for the write quorum] ×(P[P] + P[S])

W
= ((1−P[P]) + (1−P[S])) .

N

While P[P] and P[S] cannot be exactly expressed in terms of our unknowns, they can be
very closely approximated. The address to be erased is chosen at random from the
occupied addresses in the RSM, and its real predecessor is merely the occupied address
immediately preceding it in the RSM. If the address being erased is the first occupied
address in the RSM, its real predecessor is the dummy address LOW, which is always
present in every representative. Thus the probability that the real predecessor is present
in the representative (P[P]) is just slightly higher than the probability that a randomly
chosen occupied address is present in the representative. For a large address space like
the one used in the simulations they will be practically identical. By symmetry, the same
argument holds for the real successor. In fact, it shows that P[P]= P[S]. Therefore, we
make the assumption that:

P[P]= P[Representative contains an entry for a randomly chosen occupied address]
= P[Rep contains a current entry for a randomly chosen occupied address]

+P[Rep contains an outdated entry for a randomly chosen occupied address]
= c ′ + o ′,

The third term becomes:

W
2 (1−(c ′+o ′)).

N

Entries cannot leave the outdated class in Insert operations, so the first term of the right
hand side of the equation vanishes. In an Update operation, an entry can leave the
outdated class as follows. If the representative is chosen for the write quorum and it

Detailed Formulation of Balance Equations 157

contains an outdated entry for the address being updated, then this entry is replaced by a
current one. Thus, the second term on the right hand side is:

P[The representative is chosen for the write quorum]
× P[Representative contains an outdated entry for the address being updated]

= P[The representative is chosen for the write quorum]
× P[Rep contains an outdated entry for a randomly chosen occupied address]

W
= o ′ .

N

In an Erase operation, an entry can leave the outdated class as follows: If the
representative contains an outdated entry for the address being erased, then the entry
disappears if the representative is chosen for the write quorum, and it becomes a ghost if
the representative is not chosen for the write quorum. Thus the third term on the right
hand side is:

P[The representative contains an outdated entry for the address being erased]
= P[Rep contains an outdated entry for a randomly chosen occupied address]
= o ′ .

Putting it all together, the balance equation for outdated entries is:

W W W
(1−) c ′ + 2 (1−(c ′ + o ′)) = o ′ + o′ .

N N N

Simplifying, this becomes:

(N−3W)c ′ + 2W
o ′ = .

N+3W

Finally, we construct the balance equation for ghost entries. A formal statement of the
balance assertion becomes:

E[Number of entries entering the ghost class in one Insert operation]
+ E[Number of entries entering the ghost class in one Update operation]
+ E[Number of entries entering the ghost class in one Erase operation]

= E[Number of entries leaving the ghost class in one Insert operation]
+ E[Number of entries leaving the ghost class in one Update operation]
+ E[Number of entries leaving the ghost class in one Erase operation] .

Entries can only enter the ghost class in Erase operations; thus, the first and second
terms of the equation vanish. An entry becomes a ghost in a representative if its address
is being erased and that representative is not chosen for the write quorum of the erase
operation. Thus the second term is:

158 Appendix A

(1 − P[The representative is chosen for the write quorum])
× PRepresentative contains an entry for a randomly chosen occupied address]

W
= (1−) (c ′ + o ′).

N

Entries rarely leave the ghost class in Insert operations, thus we shall assume the first
term on the right hand side vanishes. (This is essentially the same assumption we made
on page 155 when constructing the balance equation for outdated entries.) Entries cannot
leave the ghost class in Update operations, so the second term on the right hand side
actually does vanish. If the representative is chosen for the write quorum of the Erase
operation then all of the ghosts comprising the delete list of the address being erased will
be removed from the representative. Thus the third term of the right hand side is:

P[The representative is chosen for the write quorum]
× E[The size of the delete list of the address being erased]

W
= d .

N

Putting the terms together, the balance equation for ghosts is:

W W
(1−) (c ′ + o ′) = d.

N N

Simplifying:

N−W
d = (c ′ + o ′).

W

References

[1] Amr El Abbadi, Sam Toueg.
Availability in Partitioned Replicated Databases.
In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems. 1986.

[2] Amr El Abbadi, Dale Skeen, Flaviu Cristian.
An Efficient, Fault-Tolerant Protocol for Replicated Data Management.
In Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles

of Database Systems. March, 1985.

[3] P. A. Alsberg, J. D. Day.
A Principle for Resilient Sharing of Distributed Resources.
In Proceedings of the Second International Conference on Software Engineering,

pages 562-570. October, 1976.

[4] Joel Bartlett.
A NonStop (TM) Kernel.
In Proceedings of the Eighth Symposium on Operating System Principles. ACM,

1981.

[5] P. Bernstein, N. Goodman.
An algorithm for concurrency control and recovery in replicated distributed

databases.
ACM Transactions on Database Systems 9(4):596-615, December, 1984.

[6] Andrew D. Birrell, Bruce J. Nelson.
Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems 2(1):39-59, February, 1984.

[7] Joshua J. Bloch.
The Camelot Library: A C Language Extension for Programming A General

Purpose Distributed Transaction System.
In Proceedings of the Ninth International Conference on Distributed Computing

Systems. June, 1989.

[8] Joshua J. Bloch.
The Design of The Camelot Library.
In Jeffrey L. Eppinger, Lily B.Mummert, Alfred Z. Spector (editor), Guide to the

Camelot Distributed Transaction Facility including the Avalon Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[9] Joshua J. Bloch, Jeanette Wing.
A Sample Camelot Application and Server.
In Jeffrey L. Eppinger, Lily B.Mummert, Alfred Z. Spector (editor), Guide to the

Camelot Distributed Transaction Facility including the Avalon Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

159

160

[10] Joshua J. Bloch, Dean S. Daniels, Alfred Z. Spector.
A Weighted Voting Algorithm for Replicated Directories.
JACM 34(4), October, 1987.
Also available as Technical Report CMU-CS-86-132, Carnegie Mellon

University, July 1986.

[11] Luca Cardelli, Peter Wegner.
On Understanding Types, Data Abstraction and Polymorphism.
ACM Computing Surveys 17(4):471-522, December, 1985.

[12] Douglas Comer.
The Ubiquitous B-Tree.
ACM Computing Surveys 11(2):121-137, June, 1979.

[13] Eric C. Cooper, Richard P. Draves.
C Threads.
Technical Report CMU-CS-88-154, Carnegie Mellon University, June, 1988.

[14] Eric C. Cooper.
Replicated Distributed Programs.
In Proceedings of the 10th ACM Symposium on Operating Systems Principles,

pages 63-78. December, 1985.
Published as Operating Systems Review, 19(5).

[15] Eric C. Cooper.
Replicated Distributed Programs.
PhD thesis, Computer Science Division, University of California, Berkeley, April,

1985.
Published as report UCB/CSD/85/231.

[16] Dean S. Daniels, Alfred Z. Spector.
An Algorithm for Replicated Directories.
In Proceedings of the Second Annual Symposium on Principles of Distributed

Computing, pages 104-113. ACM, August, 1983.
Also available in Operating Systems Review 20(1), January 1986, pp. 24-43.

[17] C. J. Date.
The System Programming Series: An Introduction to Database Systems.
Addison-Wesley, Reading, MA, 1981.

[18] Charles T. Davies.
Recovery Semantics for a DB/DC System.
In Proceedings of the ACM National Conference. ACM, 1973.

[19] Jeffrey L. Eppinger, Alfred Z. Spector.
Transaction Processing in Unix: A Camelot Perspective.
Unix Review 7(1):58-67, January, 1989.

[20] K. P. Eswaran, James N. Gray, Raymond A. Lorie, Irving L. Traiger.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

References 161

[21] H. Garcia-Molina, D. Barbara.
How to assign votes in a distributed system.
Journal of the ACM 34(2):841-861, October, 1985.

[22] David K. Gifford .
Weighted Voting for Replicated Data.
In Proceedings of the Seventh Symposium on Operating System Principles, pages

150-162. ACM, December, 1979.

[23] David K. Gifford.
Information Storage in a Decentralized Computer System.
PhD thesis, Stanford University, 1981.
Available as Xerox Palo Alto Research Center Report CSL-81-8, March 1982.

[24] David K. Gifford, Nathan Glasser.
Remote Pipes and Procedures for Efficient Distributed Communication.
ACM Transactions on Computer Systems 6(3), August, 1988.
Also Available as MIT LCS TR-384.

[25] A. Goldberg, D. Robson.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[26] James N. Gray.
Notes on Database Operating Systems.
In R. Bayer, R. M. Graham, G. Seegmuller (editor), Lecture Notes in Computer

Science. Volume 60: Operating Systems - An Advanced Course, pages
393-481. Springer-Verlag, 1978.

Also available as Technical Report RJ2188, IBM Research Laboratory, San Jose,
California, 1978.

[27] James N. Gray.
A Transaction Model.
Technical Report RJ2895, IBM Research Laboratory, San Jose, California,

August, 1980.

[28] James N. Gray, et al.
The Recovery Manager of the System R Database Manager.
ACM Computing Surveys 13(2):223-242, June, 1981.

[29] Theo Haerder, Andreas Reuter.
Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15(4):287-318, December, 1983.

[30] Abdelsalam Abdelhamid Heddaya.
Managing Event-Based Replication for Abstract Data Types in Distributed

Systems.
PhD thesis, Aiken Laboratory, Harvard Univerisity, October, 1988.

[31] Maurice P. Herlihy.
A Quorum-Consensus Replication Method for Abstract Data Types.
ACM Transactions on Computer Systems 4(1), February, 1986.

162

[32] Michael B. Jones, Richard P. Draves, Mary R. Thompson.
MIG - The Mach Interface Generator.
1987.
Mach Group document.

[33] T. A. Joseph.
Low Cost Management of Replicated Data.
PhD thesis, Cornell, November, 1985.

[34] John G. Kemeny, J. Laurie Snell.
Finite Markov Chains.
D. Van Nostrand & Co., New York, 1960.

[35] Brian Kernighan, Dennis Ritchie.
The C Programming Language.
Prentice-Hall, 1978.

[36] Henry F. Korth.
Locking Primitives in a Database System.
Journal of the ACM 30(1):55-79, January, 1983.

[37] Philip L. Lehman, S. Bing Yao.
Efficient Locking for Concurrent Operations on B-Trees.
ACM Transactions on Database Systems 6(4), December, 1981.

[38] Bruce G. Lindsay, et al.
Notes on Distributed Databases.
Technical Report RJ2571, IBM Research Laboratory, San Jose, California, July,

1979.
Also appears in Droffen and Poole (editors), Distributed Databases, Cambridge

University Press, 1980.

[39] Barbara H. Liskov, Robert W. Scheifler.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July,

1983.

[40] D.P.A. MacManus.
Let Him Dangle.
In Elvis Costello (editor), Spike. Warner Brothers, Burbank, CA, 1989.

[41] D. L. Mills.
Network Time Protocol (Version 2) Specification and Implementation.
Technical Report DARPA Network Working Group Report RFC-1119,

University of Delaware, September, 1989.

[42] D. L. Mills.
Internet Time Snychronization: the Network Time Protocol.
IEEE Transactions on Communications , 1990.
To Appear.

References 163

[43] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz.
Aries: A Transaction Recovery Method Supporting Fine-granularity Locking and

Partial Rollbacks Using Write-ahead Logging.
Technical Report RJ6649, IBM Almaden Research Center, January, 1989.

[44] J. Eliot B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
MIT Press, 1985.

[45] Bruce Jay Nelson.
Remote Procedure Call.
PhD thesis, Carnegie Mellon University, May, 1981.
Available as Technical Report CMU-CS-81-119a, Carnegie Mellon University.

[46] Brian M. Oki.
Viewstamped Replication: A General Primary Copy Method to Support Highly-

Available Distributed Systems.
In Proceedings of the Seventh ACM Symposium on the Principles of Distributed

Computing. ACM, August, 1988.

[47] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, G. Thiel.
LOCUS: A Network Transparent, High Reliability Distributed System.
In Proceedings of the Eighth Symposium on Operating System Principles, pages

169-177. ACM, 1981.

[48] J. B. Postel.
User Datagram Protocol.
Technical Report RFC 768, Network Working Group, August, 1980.

[49] William Pugh.
Skip Lists: A Probabilistic Alternative to B-Trees.
In Algorithms and Data Structures Workshop, WADS ’89. Springer-Verlag,

August, 1989.

[50] Richard F. Rashid.
Threads of a New System.
Unix Review 4(8):37-49, August, 1986.

[51] J. B. Rothnie, N. Goodman, P. A. Bernstein.
The Redundant Update Methodology of SDD-1: A System for Distributed

Databases (The Fully Redundant Case).
Technical Report CCA-77-02, Computer Corporation of America, 1977.

[52] Michael D. Schroeder, Michael Burrows.
Performance of Firefly RPC.
In Proceedings of the Twelfth Symposium on Operating System Principles, pages

83-90. ACM, December, 1989.

[53] Peter M. Schwarz.
Transactions on Typed Objects.
PhD thesis, Carnegie Mellon University, December, 1984.
Available as Technical Report CMU-CS-84-166, Carnegie Mellon University.

164

[54] Peter M. Schwarz, Alfred Z. Spector.
Synchronizing Shared Abstract Types.
ACM Transactions on Computer Systems 2(3):223-250, August, 1984.
Also available in Stanley Zdonik and David Maier (editors), Readings in Object-

Oriented Databases. Morgan Kaufmann, 1988. Also available as Technical
Report CMU-CS-83-163, Carnegie Mellon University, November 1983.

[55] Alfred Z. Spector, Dean S. Daniels.
Performance Evaluation of Distributed Transaction Facilities.
September, 1985.
Presented at the Workshop on High Performance Transaction Processing,

Asilomar, September, 1985.

[56] Irving L. Traiger, Jim Gray, Cesare A. Galtieri, Bruce G. Lindsay.
Transactions and Consistency in Distributed Database Systems.
ACM Transactions on Database Systems 7(3):323-342, September, 1982.

[57] F. Waters (editor).
IBM RT Personal Computer Technology.
International Business Machines Corporation, 1986.

[58] William E. Weihl.
Specification and Implementation of Atomic Data Types.
PhD thesis, MIT, March, 1984.

[59] William E. Weihl.
Local Atomicity Properties: Modular Concurrency Control for Abstract Data

Types.
ACM Transactions on Programming Languages and Systems 11(2):249-283,

April, 1989.

[60] Andrew Chi-Chih Yao.
On Random 2-3 Trees.
Acta Informatica (9):159-170, 1978.

